
Optimization of Polytomies: State Set and Parallel Operations

Molecular Phylogenetics and Evolution
Vol. 22, No. 2, February, pp. 269–275, 2002
doi:10.1006/mpev.2001.1049, available online at http://www.idealibrary.com on
Pablo A. Goloboff

Instituto Miguel Lillo, Miguel Lillo 205, 4000 San Miguel de Tucumán, Argentina

E-mail: instlillo@infovia.com.ar.

Received April 9, 2001; revised July 27, 2001
The algorithms of Fitch (1971), defined in terms of

New algorithms for calculating the most parsimoni-

ous state sets for polytomies under Fitch parsimony
are described. Because they are based on state set
operations, these algorithms can be extended for opti-
mization of several characters in parallel, thus in-
creasing speed by a significant factor. This speed in-
crease may facilitate analysis of molecular data sets,
many of which contain hundreds of taxa, thousands of
multistate nonadditive characters, and numerous
polytomies. © 2002 Elsevier Science (USA)

INTRODUCTION

One of the schemes of substitution most commonly
used in parsimony analysis of molecular sequences
consists of considering all possible substitutions
equally costly. This type of transformation cost is also
used for many morphological characters. Under such a
substitution scheme, the algorithms of Fitch (1971)
and Hartigan (1973) allow calculating (for any given
tree) both tree lengths and most parsimonious state
sets (a process known as “optimization”). In computer
programs for phylogenetic analysis the state sets are
normally represented using individual bits of numbers,
so that the state set operations (mostly unions and
intersections) required to optimize a given character
can be done more efficiently.

A now common technique to speed up optimization is
to represent several characters in a single 32-bit word,
long used in Hennig86 (Farris, 1988), and described by
Ronquist (1998) and Moilanen (1999). This allows op-
timizing multiple characters together. The increase in
speed can be very significant; for example, Rice et al.
(1997) analyzed Chase et al.’s (1993) 500-taxon data set
with PAUP for 3.5 months without ever finding mini-
mum length, but by coupling efficient search strategies
with parallel optimization, Goloboff (1999) was able to
find minimum length trees (two steps shorter than the
best trees Rice et al. found) in an average time of 10
min.
269
state set operations, can be easily adapted for parallel
optimization. Fitch’s algorithms, however, can be ap-
plied only to strictly dichotomous trees. The algorithms
of Hartigan (1973) are more general, because they can
be used for multifurcations as well. However, they
require counting how many descendants have (or lack)
each of the possible states for a given character, and
thus they cannot be directly used in multicharacter
optimization. The optimization of multifurcations is
normally not required during tree-searches (the most
time consuming part of parsimony analysis, which can
use specific shortcuts; see Goloboff, 1994, 1996, 1999),
but it is sometimes necessary to optimize an arbitrary
set of trees. Molecular data sets often contain hundreds
of taxa and thousands of characters. Therefore, even
for tasks such as tree diagnosis or comparisons (rela-
tively modest in comparison to a search for optimal
trees), it may be necessary to optimize hundreds of
thousands of trees with numerous polytomies. The
computational demand for this task can be lessened by
using better algorithms. The aim of this paper is thus
to describe methods for optimizing polytomies, which
are directly based on state set operations, and can thus
be easily used in parallel optimization. The algorithms
described are used in the program T.N.T. (Goloboff et
al., 1999). With some simplifications, the algorithms
described would also be efficient for optimizing charac-
ters with very numerous states.

NOTATION

Throughout, the state sets of a node, of its left, me-
dial, and right descendant, and of its ancestor are
indicated as n, l, m, r, and a, respectively. A lowercase
letter indicates a preliminary (locally optimal) state
set, while an uppercase indicates a final (globally opti-
mal) state set. The set of all possible states is defined as
P. The complement of a set S is indicated as ;S (note
that ;S must be a subset of P).
1055-7903/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.

ALGORITHMS FOR DICHOTOMOUS TREES fewer operations are needed during the up-pass. The

270 PABLO A. GOLOBOFF
Multistate Characters

The algorithms of Fitch (1971) are defined almost
exclusively in terms of state set operations. They de-
termine preliminary states in a down-pass, and final
states in an up-pass. In the down-pass, each node is
assigned a state set n such that it minimizes the sum
of transformation costs in the two branches subtended
from the node:

if l " r Þ A n 5 l " r
else n 5 l : r

In the up-pass, Fitch’s algorithm determines N as fol-
lows:

if A " ;n 5 A N 5 A case 1
if A " ;n Þ A and n 5 l : r N 5 n : A case 2
if A " ;n Þ A and n 5 l " r N 5 n : (A " (l : r)) case 3

It is easy to see that, if no state absent from n is
present in A (case 1), then for each of the states in A
present in n, no extra cost will be incurred; if a state
present in n but not in A is left in N, this would require
one more step. For cases 2 and 3, the operations pro-
posed by Fitch (1971) could be seen as simply adding to
n those states shared in A and a state set which we
could call T (for “temporary”). Thus:

if (l " r 5 A) T 5 P
else T 5 l : r

When so defined, T comprises all those states which, if
assigned to the node instead of n, would require 0 or 1
steps beyond the minimum possible (see also Hartigan,
1973). When a state not present in n is found in A, this
means that some reconstruction will have to postulate
a transformation from one of the states in A to one of
the states found in n, which is one step in the branch
from ancestor to node, and no additional steps in the
branch(es) from node to descendant(s). But, if some
state(s) would require only one additional step in the
branch(es) from node to descendant(s), and one less in
the branch from ancestor to node, the total cost would
be the same. This is why the state set n must often be
enlarged to form N (Hartigan, 1973). If T is determined
in this form during the down-pass itself (and stored),
up-pass then simply becomes:

if A " ;n 5 A N 5 A
else N 5 n : (A " T)

Note that states can be eliminated from n to form N
only when A " ;n 5 A; otherwise, states can only be
added to n, never eliminated from it, to form N.

Binary Characters

The algorithms shown above can be simplified when
only two states are possible. In this case, when l " r 5
A, it follows that n 5 P and (in the subsequent up-
pass) A " ;n will always be A (so that T is not actually
required). The determination of T is therefore of inter-
est only when l " r Þ A, and even then, only when n Þ
P (i.e., when n has a single state). In this case, it is easy
to see that a state will require one additional step if
present in one the descendant state sets and absent in
the other (and the other state must be present in both
l and r, because l " r Þ A). Then, in the case of binary
characters, T can be determined during the down-pass
simply as T 5 l : r (regardless of whether l " r 5 A).

ALGORITHMS FOR TRICHOTOMIES

Multistate Characters

When a node leads to three descendant branches, the
assignments to n must be done considering the states
in l, m, and r. The following is an exhaustive list of
possibilities during the down-pass:

Case (1): If some states are shared among the three
descendants of the node then those states must be
assigned to n and no steps are required.

Case (2): Otherwise, if any two out of l, m, and r
share states, then assigning to n any of the states
present in two out of the three descendant branches
will require one step, the minimum possible.

Case (3): Otherwise, any of the states present in l,
m, or r will require two steps, the minimum possible.

T can be determined as follows. For case (1), any state
present in two out of the three descendants, but not in
the three, will require (when assigned to the node) one
more step than any state shared by the three descen-
dants. For case (2), any state present in only one of l,
m, and r will require two steps, instead of the single
step required by the states shared by two out of the
three. Last, for case (3), any of the states in P not
present in l, m, or r will require three steps, instead of
the two required by any of the states present in l, m, or
r. Thus,

n 5 l " m " r

271PARALLEL OPTIMIZATION OF POLYTOMIES
if l " m " r Þ A 5no length increase

T 5 (l " m) : (l " r) : (r " m)

else 5 if (l " m) : (l " r) : (r " m) Þ A

else

5
n 5 (l " m) : (l " r) : (r " m)

increase length in 1

T 5 l : m : r

5
n 5 l : m : r

increase length in 2

T 5 P
When T is determined in this way, N can be calculated possible to optimize several characters at a time (Far-

during the up-pass just as before, without regard for
whether the node is a bifurcation or a trifurcation:

if A " ;n 5 A N 5 A
else N 5 n : (A " T)

Binary Characters

The determination of n and T can be simplified in the
case of binary characters. Case (1) remains the same,
but as soon as the conditions for case (1) do not hold, it
follows that the conditions for case (2) must hold (i.e.,
case (3) is impossible for binary characters). Thus, for
binary characters,

if l " m " r Þ A 5
n 5 l " m " r

no length increase

T 5 (l " m) : (l " r) : (r " m)

else 5
n 5 (l " m) : (l " r) : (r " m)

increase length in 1

T 5 l : m : r

MULTICHARACTER ALGORITHMS

Representation

The state sets are normally represented in computer
programs as sets of ON/OFF bits. Thus, the state set {0,
3, 4} will be the number 20 1 23 1 24 5 25. Using, for
example, the C programming language, it then be-
comes possible to make the state set operations by
using the bitwise operations “and” (&, intersection),
“inclusive or” (u, union), “exclusive or” (V, a bit becomes
OFF if either ON in both or OFF in both, ON other-
wise), and “complement” (;, a bit becomes ON if OFF,
and vice versa). If the state sets for several characters
are represented in a single number, it then becomes
ris, 1988; Ronquist, 1998; Moilanen, 1999). Two possi-
bilities arise here: all the states for several characters
can be included in bit fields of a single number (“hori-
zontal packing” of Ronquist, 1999), or different states
may be represented by different numbers and every bit
of a number represents a given character (“vertical
packing”). The examples below discuss only horizontal
packing, but the method could be adapted for vertical
packing as well. For parallel optimization, some of the
operations require right (..) or left (,,) shifting of the
bits. In this section, Si indicates the number corre-
sponding to several state sets i combined (“horizon-
tally”) in a single 32-bit word (obviously, real programs
will use pointers for this).

Multistate Characters

Ronquist (1998) proposed down- and up-pass algo-
rithms for both vertical and horizontal packing, and for
four-state characters, for bifurcations only. For the
sake of comparison, the following pseudocode illus-
trates a down-pass for horizontally packed four-state
characters, in the case of a bifurcation:

x 5 Sl & Sr;

y 5 SlzSr;

c 5 F0 VV ((F0 & x)z((F1 & x) .. 1)

z((F2 & x) .. 2)z(F3 & x) .. 3));

length 15

onbits [(cz(c .. 15)) & 65535];

c z 5 (c ,, 1)z(c ,, 2)z(c ,, 3);

ST 5 czy;

Sn 5 xz(y & c);

The constants F0–F3 are defined as masks with (re-
spectively) every first, second, third, and fourth bit of

each field as ON (e.g., F0 5 286331153). The code for Binary Characters

272 PABLO A. GOLOBOFF
bifurcations in the example above differs from Ron-
quist’s (1998) algorithms in three respects: the deter-
mination of c, the calculation of the length increase,
and the calculation of a temporary value ST to be later
used in the up-pass. The variable c is first assigned a
value such that the first bit of a field is ON if the bit
field is empty (OFF otherwise), and then a value such
that a bit field is full (i.e., equals P) if the first bit of the
field was ON (empty otherwise). Ronquist (1999) pro-
posed using a loop through the bit fields, shifting a
mask; using constants improves speed. (But it is pos-
sible to make further improvements so that similar
results are achieved with about half the operations
(Farris, pers. comm.); the example above, however,
suffices to illustrate the parallelization.) The length
increase in Ronquist’s (1998) algorithms was also made
using a loop through the bit fields, while the above
example uses Moilanen’s (1999) approach, precalculat-
ing the numbers of ON bits in a lookup table (stored in
the array onbits). The down-pass for sets of four-state
characters in the case of trifurcations would be

x 5 Sl & Sm & Sr;

y 5 (Sl & Sm)z(Sl & Sr)z(Sm & Sr);

z 5 SlzSmzSr;

c 5 F0 VV ((F0 & x)z((F1 & x) .. 1)

z((F2 & x) .. 2)z(F3 & x) .. 3));

d 5 F0 VV ((F0 & y)z((F1 & y) .. 1)

z((F2 & y) .. 2)z(F3 & y) .. 3));

length 15

onbits [(cz(c .. 15)) & 65535]1

onbits [(dz(d .. 15)) & 65535];

c z5 (c ,, 1)z(c ,, 2)z(c ,, 3);

d z5 (d ,, 1)z(d ,, 2)z(d ,, 3);

ST 5 yz(c & z)zd;

Sn 5 xz(y & c)z(z & d);

Having determined ST as shown, the up-pass can pro-
ceed independent of whether the node is bi- or trifur-
cated:

x 5 SA & ;Sn;

c 5 (F0 & x)z((F1 & x) .. 1)

z((F2 & x) .. 2)z(F3 & x) .. 3);

c z5 (c ,, 1)z(c ,, 2)z(c ,, 3);

SN 5 (SA & ;c)z(c & (SnzSA & ST));
The algorithms for both bi- and trifurcations can be
simplified in the case of binary characters. In this case,
B0 and B1 are defined as masks with every first and
second bit ON, respectively. The following pseudocode
will optimize 16 characters in tandem:

if (bifurcation){

x 5 Sl & Sr;

c 5 B0 VV ((x & B0)z((x & B1) .. 1));

length 15

onbits [(cz(c .. 15)) & 65535];

c z5 (c ,, 1);

ST 5 SlzSr;

Sn 5 xzc;}

else if (trifurcation){

x 5 Sl & Sm & Sr;

y 5 (Sl & Sm)z(Sl & Sr)z(Sm & Sr);

c 5 B0 VV ((x & B0)z((x & B1) .. 1));

length 15

onbits [(cz(c .. 15)) & 65535];

c z5 (c ,, 1);

ST 5 yz(c & (SlzSmzSr));

Sn 5 xz(y & c);}

The up-pass is similar to the four-state case:

x 5 SA & ;Sn;

c 5 (B0 & x)z((B1 & x) .. 1);

c z5 (c ,, 1);

SN 5 (SA & ;c)z(c & (SnzSA & ST));

Multifurcations

When the node leads to more than three descendant
nodes, the operations to determine Sn and ST are more
involved. For each field (in the horizontal packing) it
becomes necessary to count how many descendants
have a given state as present and how many as absent.
It is possible to do this without explicitly counting the
bits in each of the descendants. Table 1 shows an
example of code, for four-state characters (binary char-
acters would require using masks B0 and B1 instead of
F0–F3). To count in parallel the number of descen-
dants with each state (of each character) as absent, an

dants (in the example, this is all fields, except the lastTABLE 1

273PARALLEL OPTIMIZATION OF POLYTOMIES
array of integers (absin) is used. This array of integers
is first set to a preliminary value such that, if j descen-
dants have the corresponding bit as OFF, the values
for any i < j will have the bit as ON (this is done in the
loop of lines 5–9). Then, the final values are calculated;
for the ith value, an ON bit is changed to OFF if the
same bit is ON in the value for i 1 1 (this is done in the
loop of lines 11–13). Figure 1 shows an example of the
values of the preliminary and final values of the bit
counters, with five descendants. Once the bit counters
have been set, two masks must be initialized (Fig. 2).
The first, msk, is set as full (lines 15–18) for all those
fields for which no bit (5state) is shared by all descen-

Code for Assigning Preliminary Sets of States in Par-
allel, for Multifurcations, When Node node (Leading
to numdes Descendants, the Leftmost of Which Is
first_desc [node]) Is to Be Optimized

1 i 5 first_desc [node];
2 for (c 5 0; c 11 <numdes;) absin [c] 5 0;
3 absin [0] 5 ;0;
4 k 5 2;
5 while (i >5 0){
6 x 5 ;pckmat [i];
7 i 5 sister [i];
8 for (j 5 k 11; j 22> 1;)
9 absin [j] z5 absin [j 2 1] & x;}

10 msk 5 absin [numdes];
11 for (c 5 numdes; c 22;){
12 absin [c] 5 (absin [c]zmsk) VV msk;
13 msk z5 absin [c];}
14 bak 5 0;
15 this 5 x 5 absin [0];
16 msk 5 F0VV((F0 & x)z((F1 & x) .. 1)

z((F2 & x).. 2)z(F3 & x) .. 3));
17 length 15 onbits [(mskz(msk .. 15)) & 65535];
18 msk z5 (msk ,, 1)z(msk ,, 2)z(msk ,, 3);
19 prevmsk 5 ;0;
20 for (c 5 0; c 11< numdes;){
21 x 5 absin [c];
22 this z5 msk & x;
23 bak z5 prevmsk & x;
24 prevmsk &5 msk;
25 if (!prevmsk) break;
26 curmsk 5 F0VV((F0 & x)z((F1 & x) .. 1)

z((F2 & x).. 2)z(F3 & x) .. 3));
27 curmsk z5 (curmsk ,, 1)z(curmsk ,, 2)z(curmsk ,, 3);
28 msk &5 curmsk;
29 x 5 msk & F0;
30 length 15 onbits [(xz(x .. 15)) & 65535];}
31 pckmat [node] 5 this;
32 pckbak [node] 5 bak;

Note. The count of descendants not having a given state is stored
in absin (if a bit of absin[i] is ON; this means that i descendants
lack the corresponding state). The sister of node i is sister[i] (sis-
ter[i] equal to 21 indicates that i is the last descendant of node).
The variable pckmat[i] represents the (super)sets of characters for
node i, the variable pckbak[i] represents the (super)sets of states
suboptimal by one step for node i (to be used in the up pass).
one; see Fig. 2). The second, prevmsk, is always ini-
tialized as full for every field (line 19). The bit counters
for 0, 1, 2, . . . n (where n 5 number of descendants) are
then visited in order. Every time a field has nonzero
value, the corresponding states are added to the down-
pass states for the node (line 22; this will only add
states if no states had been placed in the field before,
because in that case the mask will be empty for the

FIG. 1. Example of determination of preliminary and final val-
ues for the array of bit counters (see text for explanation), for a node
leading to five descendants, and for four-state characters (only four
bit fields are shown).

274 PABLO A. GOLOBOFF
field), and the mask for the field is set as empty (lines
26–28). When a field had a nonzero value in the pre-
vious bit counter, the states for the current bit counter
(if any) are added to the backup (temporary) states
(line 23), and prevmsk is set as empty for the field
(line 24). Note that for each bit field that becomes
nonempty, msk is set as empty, and prevmsk is set as
nonempty in the next execution of the loop. Once all the
fields have been set for both the locally optimal and
backup states, prevmsk will be 0, and the loop can be
interrupted (line 25; see Fig. 2).

Given that (for a character with s states, and a node
leading to d descendants) a state occurring in less than
d/s descendants can never be in the most parsimonious

TABLE 2

Times (in s) to Optimize 300 Random Trees for
Chase et al.’s (1993) 500-Taxon Data Set

Trichotomies Polytomies

Single character algs. 34.4 60.6 40.3 51.0
PAUP* 14.0 27.0 16.5 43.0
T.N.T. 3.2 4.1 5.8 6.3

Note. The polytomous trees had up to 12-tomies.

FIG. 2. Determination of preliminary and back-up states,
preliminary state set of the node, and a state occurring
in less than (d/s) 2 1 descendants can never be in the
set of backup states, it would appear that the code
shown could be improved by taking this into account,
changing the limits for the loop of lines 8–9, so that k
never increases beyond (d/s) 1 1. The amount of time
saved, however, would not be very significant, because
k already remains below (d/s) 1 1 for a fraction (s 2
1)/s of the time. Thus, for four-state characters, this
would save at most 25% of the execution time of the
loop of lines 8–9 for about 25% of the loop iterations;
the entire loop, in turn, uses only about 25% of the total
execution time during optimization. Thus, for four-
state characters, execution would be speeded up by less
than 2%. For two-state characters, the increase would
be somewhat greater, but still well below 5%.

Speedups

The gains in speed by applying the algorithms de-
scribed can be very significant. As an example, Table 2
shows the times to do a down-pass (e.g., to calculate
length) and to do a two-pass optimization (e.g., to col-
lapse zero-length branches) on 300 randomly gener-
ated trees (on a 266-MHz Pentium II machine, running
under Windows NT), for Chase et al.’s (1993) 500-taxon

ed on the final values of the bit counters calculated in Fig. 1.
bas

data set. It can be seen in Table 2 that applying the REFERENCES

275PARALLEL OPTIMIZATION OF POLYTOMIES
algorithms for trifurcations described here makes the
down-pass 10.7 times faster, and the double-pass opti-
mization about 14.7 times (this data set has over 75%
of the characters with three or four states; the paral-
lelization algorithms for trifurcations save even more
time for binary characters, because instead of optimiz-
ing eight characters in parallel, they optimize 16). For
higher furcations, the increase in efficiency by using
the parallelization described here is, if not so large,
also very significant, speeding up the down-pass by a
factor of 6.9 and the double-pass by a factor of 8.1. Note
that the trees used to evaluate the method had no node
leading to more than 12 descendants; the amount of
time saved by the algorithms (at a given node) depends
on the number of descendants of the node; for many
more descendants, less time could be saved (the loop of
lines 5–9 would use more time). The widely used
PAUP* (Swofford, 1998) may implement some kind of
(undescribed) parallelization for multifurcations, be-
cause it is over two times faster than the single char-
acter algorithms; the algorithms, however, are signifi-
cantly slower than the ones used by TNT (4.3 to 6.3
times slower, in the case of trifurcations, and 2.8 to 6.8
times slower, in the case of higher furcations).

ACKNOWLEDGMENTS

I thank Rob DeSalle, Steve Farris, Julián Faivovich, Gonzalo
Giribet, and Mike Steel for discussion, comments, and/or facilitating
literature. The research was carried out with deeply appreciated
support from CONICET (PEI 0324/97) and Agencia Nacional de
Promoción Cientı́fica y Tecnológica (PICT 98 01-04347), in the facil-
ities provided by the Instituto Superior de Entomologı́a “Dr. Abra-
ham Willink.”
Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H.,
Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qiu, Y.-L.,
Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R.,
Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark,
W. D., Hedren, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee,
C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q.-Y.,
Plunkett, G. M., Soltis, P. S., Swensen, S. M., Willimas, S. E.,
Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learn,
Jr., G. H., Graham, S. W., Barret, S. C. H., Dayanandan, S., and
Albert, V. A. (1993). Phylogenetics of seed plants: An analysis of
nucleotide sequences from the plastid gene rbcL. Ann. Mo. Bot.
Gard. 80: 528–580.

Farris, J. (1988). Hennig86. Program and documentation, distrib-
uted by the author.

Fitch, W. (1971). Toward defining the course of evolution: Minimal
change for a specific tree topology. Syst. Zool. 20: 406–416.

Goloboff, P. (1994). Character optimization and calculation of tree
lengths. Cladistics 9: 433–436.

Goloboff, P. (1996). Methods for faster parsimony analysis. Cladistics
12: 199–220.

Goloboff, P. (1999). Analyzing large data sets in reasonable times:
Solutions for composite optima. Cladistics 15: 415–428.

Goloboff, P., Farris, J., and Nixon, K. (1999). T.N.T.: Tree Analysis
Using New Technology. Program available at www.cladistics.com.

Hartigan, J. (1973). Minimum mutations fit to a given tree. Biomet-
rics 29: 53–65.

Moilanen, A. (1999). Searching for most parsimonious trees with
simulated evolutionary optimization. Cladistics 15: 39–50.

Rice, K., Donoghue, M., and Olmstead, R. (1997). Analyzing large
data sets: rbcL 500 revisited. Syst. Biol. 46: 554–563.

Ronquist, F. (1998). Fast Fitch-parsimony algorithms for large data
sets. Cladistics 14: 387–400.

Swofford, D. (1998). PAUP*: Phylogenetic Analysis Using Parsimony
(and other methods), version 4.0b4a. Sinauer Associates, Sunder-
land, MA.

	INTRODUCTION
	NOTATION
	ALGORITHMS FOR DICHOTOMOUS TREES
	ALGORITHMS FOR TRICHOTOMIES
	MULTICHARACTER ALGORITHMS
	TABLE 1
	FIG. 1
	FIG. 2
	TABLE 2

	ACKNOWLEDGMENTS
	REFERENCES

