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A method that allows estimating consensus trees without
exhaustive searches is described. The method consists
of comparing the results of different independent superfi-
cial searches. The results of the searches are then summa-
rized through a majority rule, consensed with the strict
consensus tree of the best trees found overall. This
assumes that to the extent that a group is recovered by
most searches, it is more likely to be actually supported
by the data. The effect of different parameters on the
accuracy and reliability of the results is discussed.
Increasing the cutoff frequency decreases the number of
spurious groups, although it also decreases the number
of correct nodes recovered. Collapsing trees during swap-
ping reduces the number of spurious groups without
significantly decreasing the number of correct nodes
recovered. A way to collapse branches considering subop-
timal trees is described, which can be extended as a
measure of relative support for groups; the relative sup-
port is based on the Bremer support, but takes into
account relative amounts of favorable and contradictory
evidence. More exhaustive searches increase the number
of correct nodes recovered, but leave unaffected (or
increase) the number of spurious groups. Within some

limits, the number of replications does not strongly affect
the accuracy of the results, so that using relatively small
numbers of replications normally suffices to produce a
reliable estimation. q 2001 The Willi Hennig Society
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INTRODUCTION

Several authors have criticized parsimony on the

grounds that it is an intractable problem. The degree

to which parsimony analysis of large data sets is impos-

sible, however, has been much exaggerated. This exag-

geration comes, no doubt, from the use of both poor

search strategies and programs. For example, Rice et
al. (1997) were unable to find shortest trees for Chase

et al.’s (1993) 500-taxon data set in 11.5 months of CPU

time using PAUP (Swofford, 1993). In contrast, Nixon

(1999), using NONA (Goloboff, 1994) and the ratchet,

was able to find trees of minimum length for Zilla in

an average time of 4 h, and Goloboff et al. (1999), using

TNT and combined search strategies, were able to find

them in an average time of 10 min. However, even

with good strategies and good implementation, finding

shortest trees may become very difficult for much

larger, or much more complex, data sets. This does not

mean that parsimony cannot be used as a criterion in

phylogenetic inference. As proposed by Farris et al.
(1996), finding all most parsimonious trees for large

data sets is not only impractical, but also unnecessary.
Methods that simply attempt to produce an estimation

of the consensus tree, without doing exhaustive

searches, are possible, and that problem is explored in

this paper.
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of correct groups and minimize the number of spurious

groups, we have experimented with changing sev-
Methods for Quick Consensus Estimation

Farris et al.’s (1996) method combines two different

aspects. One is doing a quick estimation based on mul-

tiple Wagner trees; the other is using resampling (jack-

nifing or bootstrapping) as a way to assess support. The

quick estimation part is based on using the information

provided by the degree to which the results produced

by independent searches are similar. It can be assumed

that groups found for all (or most) of the independent

searches are more likely to be actually supported by

the data (but see below, under “Problems”). This is the

case regardless of the specific search algorithm used

in each individual search and regardless of resampling.

Thus, none of the methods discussed here uses charac-

ter resampling, since they are not primarily intended

to measure support; just doing several independent

Wagner trees followed by TBR swapping, and keeping

only those groups that occured in a high percentage

of the replications, normally produces a good estima-

tion of the actual consensus, without the need to ever

find multiple trees through branch-swapping. Al-

though this is ideally the case, two problems occur in

practice. First, some groups actually supported by the

data are not recovered. Second, some of the groups

recovered are not actually supported by the data (i.e.,

the analysis often produces “spurious” groups). Ide-

ally, one would want a method that recovered all the

supported groups and no spurious groups, but no

quick method proposed so far attains this ideal (and

perhaps none will). The extent to which these methods

can be trusted, however, can be judged only by compar-

ing their results to the “correct” results (i.e., those ob-

tained by exhaustive searches); the comparisons re-

ported here were automated, by means of several

programs and batch files. The “error rate” is the num-

ber of spurious groups found, divided by the total

number of nodes in the estimated consensus. This gives

an idea of the probability of a group picked from in-

specting the results being actually unsupported by the

data. Note that just recovering many true groups does

not produce reliable results; for example, recovering

all true groups is not of much help if an equal number

of unsupported groups are found: this is a reliability

of 50%. The data sets used in the comparisons reported

here are Chase et al.’s (1993) “Search II” (500 rbcL plant

sequences, 398 nodes in the consensus, called “Zilla”
by some workers), a data set from Szumik (1997) (85

embiids, 40 nodes in the consensus), and Ballard et
al.’s (1992) data set (40 invertebrates, 21 nodes in the
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consensus). Our general conclusions regarding the in-

fluence of different factors have also been observed for

other data sets. All the timings reported are in a double

Pentium II (266 MHz), running under Windows NT.

A multithread program, Est, was used (Est is available

at ftp.unt.edu.ar/pub/parsimony; a sister program,

West, estimates consensus trees under implied

weights). All the tables report averages based on re-

peating 30 runs with different random seeds, except

Table 3a (which reports averages for only 15 runs).

The method that has been explored in more detail

is the “double consensus” method, implemented in

Est/West, which consists of five steps:

(1) do several independent searches (e.g., Wagner

tree plus TBR, saving a single tree per replication);

(2) collapse the trees to eliminate unsupported

groups;

(3) calculate the majority rule consensus tree for

the collapsed trees, using a relatively high cutoff fre-

quency (85 to 95%);

(4) calculate the strict consensus tree of a percent-

age of the best trees found (here, we used 25%, or all

the shortest trees, if more than 25%).

(5) calculate the consensus of the trees produced

in steps 3 and 4.

Step (4) indicates that groups not appearing in the

best trees will not appear in the final result, which is

a form of making more influential those replications

that produced better results. To maximize the number
eral parameters.

PROBLEMS

None of the methods studied so far guarantees per-

fect results in every case. Whether the degree of accu-

racy is acceptable may well depend on the problem

being analyzed and on whether obtaining more reliable

results is feasible. The reason for consistently recov-

ering unsupported groups is that some groups may be

more frequent in optimal or nearly optimal trees, even

if unsupported. It is then much more likely that a given
individual search will end up in one tree having the

frequent group, even if the group is entirely unsup-

ported. Thus, unsupported but frequent groups are



85 312.63 6 5.48 78.95 6 1.38 1.500 6 1.137 0.477 6 0.354

90 299.20 6 6.39 75.56 6 1.61 1.067 6 1.048 0.353 6 0.342

.6
95 274.40 6 6.41 69.29 6 1

consistently recovered. Since this effect is systematic,

not random, repeating the estimation will often retrieve

the same unsupported groups. This problem affects

more than just the estimation methods described here;

unless very large numbers of trees are saved (or mini-
S28 Goloboff and Farris

TABLE 1

Effect of Increasing the Cutoff Frequency, on Zilla (for 16 Replications of Random Addition Sequence Wagner Tree Followed by TBR

with No Mulpars, Collapsing with TBR)

Cutoff Correct nodes True nodes recovered (%) Wrong nodes Error rate (%)

75 322.03 6 5.49 81.32 6 1.39 2.333 6 1.348 0.718 6 0.409
mum length is hit many times independently), it also

affects more traditional search strategies, such as multi-
ple random addition sequences.

EFFECT OF DIFFERENT PARAMETERS

Cutoff Frequency

The error rate is decreased at higher cutoff frequen-

cies, but then, fewer correct groups are recovered (Table

1). Since some unsupported groups may be found more

frequently than some supported groups, it is obvious

that increasing the cutoff will lose some supported

(infrequent) groups before losing the unsupported (fre-

quent) groups. Increasing the cutoff frequency there-

fore does not in itself solve the problem, although it

makes for more reliable results (i.e., lower error rates).

Collapsing the Trees
To eliminate (or reduce) spurious groups, large num-

None 321.60 6 4.91 81.21

SPR 315.23 6 5.15 79.60

TBR 312.63 6 5.48 78.95
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However, this would require a lot of time in swapping,

while the very purpose of these methods is to provide

a quick estimation. A solution is to collapse the trees

by doing branch-swapping and, when a rearrangement

produces a tree of the same length as the one being

swapped, collapsing all of the nodes between source

and destination (and new root, in the case of TBR).

This is equivalent to saving all the trees of equal length

produced by swapping the tree and then producing

their strict consensus, but takes less time and needs

no extra memory space. Collapsing during swapping

is the best means of eliminating unsupported groups

without greatly reducing the number of correct groups.

The swapping algorithm for collapsing can be either

SPR or TBR; TBR eliminates more spurious groups

than SPR, losing few correct groups (Table 2). The net

effect of using TBR for collapsing is then an increase

in the reliability of the results.

Exhaustiveness of Searches

Instead of doing a Wagner tree (as in the original

method of Farris et al., 1996), every independent repli-

cation may search by means of a Wagner tree plus

branch-swapping. For more exhaustive searches, the
results of the independent replications will be more

similar among them, and thus the number of correct
bers of multiple trees per replication should be saved. groups is increased. However (unexpectedly), the

TABLE 2

Effect of Different Collapsing Algorithms on Zilla (16 Replications of Wagner Tree Followed by TBR with No Mulpars,

All with Cut 5 85)

Collapse algorithm Correct nodes True nodes recovered (%) Wrong nodes Error rate (%)
6 1.24 7.767 6 2.029 2.356 6 0.608

6 1.30 2.000 6 1.145 0.630 6 0.355

6 1.38 1.500 6 1.137 0.477 6 0.354



NNI 11.133 27.8 0.000 0

SPR 16.733 41.8 1.267 7.04

TBR 18.733 46.8 2.133 11.39

Wagner 150.23 6 7.38 37.94 6 1.86 0.800 6 0.484 0.528 6 0.319

NNI 152.73 6 9.04 38.57 6 2.28 1.033 6 0.414 0.674 6 0.279

SPR 299.57 6 5.02 75.65 6 1.27 2.167 6 1.053 0.716 6 0.340
number of spurious groups was not significantly re-

duced when using more exhaustive swapping algo-

rithms (SPR or TBR). When more exhaustive algo-

rithms are used, it is possible to increase the cutoff

frequency, losing fewer correct groups, but the absolute

number of spurious groups at a given cutoff frequency

is the same—or higher. Wagner trees or nearest neigh-

bor interchange has a number of wrong nodes lower

than SPR or TBR, because applying the SPR-collapsing

algorithm to a Wagner tree produces a very strict col-

lapsing (shorter trees are treated just like trees of equal

length). The effect is very pronounced in the embiid

data set (Tables 3a and 3b). This allows doing very

quick, but still very conservative, searches. For exam-

ple, doing 16 Wagner trees (collapsed with SPR) for

Zilla takes 1 min and produces an error rate below 1%

(recovering 38% of the supported nodes).

The best results were obtained when using the parsi-

mony ratchet.1 The ratchet (Nixon, 1999) is much more

exhaustive than using just TBR and also takes longer.

As observed with SPR/TBR, increasing the exhaus-

tiveness by using the ratchet often increases the error

rate at similar cutoff frequencies. However, the ratchet

with a cutoff of 95% recovers more nodes than TBR

with a cutoff of 85% (Table 4). It is then possible to
1Possibly, better results could be obtained by using the methods

of Goloboff et al. (1999). Those methods had not yet been developed

when the present paper was first submitted.
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have more reliable estimations by combining more ex-

haustive search algorithms with higher cutoff frequen-

cies. Using the ratchet at a cutoff of 95%, over 80% of

the nodes supported were recovered, and the average

error rate was 0.174%.

Number of Replications

On first thought, it would appear that doing more

replications would improve the results. However,

within some limits, the number of replications does not

strongly affect the number of correct groups recovered

(Table 5). That is determined more by the frequency

with which spurious groups appear, and they do ap-

pear in a large part of the replications, no matter how

many replications are done. The error rate is, anyway,

decreased when more replications are used, because

then the strict consensus is done for more trees (4 trees

for 16 replications, 11 for 45). If fewer replications are

done, the results are more subject to sampling error:

the variances then are smaller for more replications,

even when the means are about the same. The only

source for variation in the methods described here is

the variability of the results of searches, while in jack-
Methods for Quick Consensus Estimation S29

TABLE 3a

Effect of Different Search Algorithms, on the Embiid Data Set of Szumik (16 Replications, Cut 5 85, Collapsing with SPR)

Search algorithm Correct nodes True nodes recovered (%) Wrong nodes Error rate (%)

Wagner 7.467 18.7 0.000 0
TABLE 3b

Effect of Different Search Algorithms, on Zilla (16 Replications, Cut 5 85, Collapsing with SPR)

Search algorithm Correct nodes True nodes recovered (%) Wrong nodes Error rate (%)
nifing it is the same plus the possible combinations

of characters sampled. This suggests that, if the only



RAT 85 358.90 6 6.71 90.63 6 1.70 2.633 6 1.245 0.726 6 0.340

90 346.47 6 5.54 87.49 6 1.40 1.567 6 1.406 0.446 6 0.395

95 326.77 6 7.23 82.52 6 1.83 0.567 6 0.971 0.174 6 0.297
purpose is estimating the consensus, doing large num-

bers of replications (as required in jacknifing or boot-

strapping) is actually unnecessary. In general, 16 repli-

cations provides a reasonable estimation. Because the

strict consensus of a fourth of the replications is done,

the net effect of using more replications is more reliable

and conservative estimations.

Using Only the Best Trees

If larger numbers of replications are used, one could

discard some of the trees. In some sense this is equiva-

lent to increasing the exhaustiveness of the search, and

it is therefore unsurprising that it increases the number

of correct nodes recovered, but also increases slightly

the number of spurious nodes (Table 6). The gain in

correct nodes recovered by doing more TBR replica-

tions and discarding the worse trees, however, is lower

than the gain by doing a smaller number of replications

with a more exhaustive search algorithm (like the
S30 Goloboff and Farris

TABLE 4

Results of TBR and 15 Iterations of TBR-ratchet in Each Replication (Collapsing with TBR)

Cutoff Correct nodes True nodes recovered (%) Wrong nodes Error rate (%)

TBR 85 312.63 6 5.48 78.95 6 1.38 1.500 6 1.137 0.477 6 0.354

90 299.20 6 6.39 75.56 6 1.61 1.067 6 1.048 0.353 6 0.342

95 274.40 6 6.41 69.29 6 1.62 0.433 6 0.568 0.158 6 0.208
as the ratio between the amounts of favorable andratchet), especially at higher cutoffs, and therefore this

option is not of much help, unless very large numbers contradictory evidence. The amounts of contradictory

and favorable evidence can be estimated by comparingof replications are done (i.e., hundreds).
TABLE 5

Effect of the Number of Replications, on Zilla (Each Replication with Wagner Tree Plus TBR, Collapsing with TBR)

Replications Cutoff Correct nodes True nodes recovered (%) Wrong nodes Error rate (%)

16 85 312.63 6 5.48 78.95 6 1.38 1.500 6 1.137 0.477 6 0.354

90 299.20 6 6.39 75.56 6 1.61 1.067 6 1.048 0.353 6 0.342

95 274.40 6 6.41 69.29 6 1.62 0.433 6 0.568 0.158 6 0.208
45 85 299.30 6 4.02 7

90 293.37 6 3.85 7

95 283.30 6 5.31 7
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RELATIVE SUPPORTS

Because the best way found to decrease the error

rate without decreasing the number of correct nodes

is to use better collapsing algorithms, collapsing on

rearrangements that produce slightly suboptimal trees

might improve the results. The degree to which a tree

is suboptimal compared to another could be deter-

mined by the absolute step (or fit) difference between

the two trees, as in the Bremer support. A defect of

that method, however, is that it does not always take

into account the relative amounts of evidence contra-

dictory and favorable to the group. For example, ac-

cording to the Bremer support, a group supported by

2 uncontradicted characters is better supported than a

group supported by 100 and contradicted by 97. The

first case, however, is a relatively well-supported

group, while in the second case there is about as much

evidence in favor of the group as against. This problem

is diminished if the support for the group is calculated
5.58 6 1.01 0.467 6 0.571 0.155 6 0.190

4.08 6 0.97 0.367 6 0.556 0.124 6 0.188

1.54 6 1.34 0.233 6 0.430 0.082 6 0.151



95 100% 283.30 6 5.31 71.54 6 1.34 0.233 6 0.430 0.082 6 0.151

50% 300.10 6 4.77 75.78 6 1.21 0.567 6 0.679 0.186 6 0.222

33% 293.73 6 5.94 74.18 6 1.50 0.667 6 0.994 0.225 6 0.336
the steps, character by character, among different trees.

Given two trees, when character i fits the most parsimo-

nious tree better, the (weighted) fit difference for that

character in the two trees is favorable to the most parsi-

monious tree ( fi). When character i fits the least parsi-

monious tree better, the fit difference is contradictory

(ci). Define F 5 ( fi , and C 5 ( ci. The Bremer support

measures support of groups using simply the differ-

ence F 2 C, but this is merely one of the aspects of the

support of a group. The other aspect of the support of

a group is given by the ratio C/F. C/F varies between

0 and 1, inversely with the support of a group, so it is

better to use its complement as a measure of support,

1 2 C/F 5 (F 2 C )/F. The ratio (F 2 C )/F is the

relative fit difference, RFD, between two trees. If RFD

5 0, the group is entirely unsupported, and if RFD 5

1, the group is entirely uncontradicted. A measure of

relative support based on the RFD could be calculated

like the Bremer supports, comparing optimal and sub-

optimal trees. What is more important for present pur-

poses is that the relative supports can be easily esti-

mated during branch-swapping for tree collapsing. In

this case, all the nodes between source and destination

for a rearrangement that produces a tree with a relative

fit difference below a specified value Q can be col-

lapsed. When a clade is clipped off the main tree (to

be moved to a different location), the decrease in length

places an upper bound in the maximum increase that

still can lead to a relative fit difference below Q. Denote

the length difference (summed over all characters) be-
tween the entire tree and the divided tree as D, and

the difference between the divided tree and the new

(suboptimal) tree as X. Then,
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X 2 D
X

# RFD

(because X 2 D 5 F 2 C and X $ F ). Therefore,

only when

X 2 D
X

, Q

will it be possible for the RFD between the original

tree and the new tree to be less than Q. But further,

that inequality can be rewritten as

X ,
D

(1 2 Q)

and therefore, when calculating length for a re-

arrangement, as soon as the length increase X is greater

than D divided by (1 2 Q), the rearrangement can be

abandoned without further calculations (i.e., without

calculating length increases for any additional charac-

ters). When this is done, a round of swapping on an

optimal tree takes almost as little time as needed to

collapse when the trees are equally optimal; for Q 5

0.10, only an additional 5% of time is necessary for

tree collapsing.

Potential advantages of the relative supports (i.e.,

measured using RFD) over normal Bremer support are

that they vary between 0 and 1 and they provide an

approximate measure of the amount of favorable/con-

tradictory evidence (for example, if the RFD is 0.25, the
Methods for Quick Consensus Estimation S31

TABLE 6

Effect of Considering Only the Best Trees for the Estimation (45 Replications of Wagner Tree Plus TBR, Collapsing with TBR)

Cutoff Use best Correct nodes True nodes recovered (%) Wrong nodes Error rate (%)

85 100% 299.30 6 4.02 75.58 6 1.01 0.467 6 0.571 0.155 6 0.190

50% 317.20 6 4.54 80.10 6 1.15 1.600 6 1.545 0.498 6 0.475

33% 323.87 6 5.85 81.78 6 1.48 2.400 6 1.610 0.733 6 0.487

90 100% 293.37 6 3.85 74.08 6 0.97 0.367 6 0.556 0.124 6 0.188

50% 310.27 6 3.42 78.35 6 0.86 1.133 6 1.196 0.361 6 0.377

33% 312.77 6 4.29 78.98 6 1.08 1.533 6 1.432 0.485 6 0.447
amount of contradictory evidence is 75% the amount of

favorable evidence, so it is equivalent to the conflict

of 4 characters versus 3). Under weighting methods



FIG. 2. See text for explanation.
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such as those of Goloboff (1993, 1997), the Bremer sup-

ports may be hard to interpret, but the relative sup-

ports—for different weighting strengths—are di-

rectly comparable.

A disadvantage of the relative supports is that the

values of RFD in different pairs of trees must be calcu-

lated carefully. In particular, if a and b are two equally

parsimonious trees, and c is less parsimonious, it is

possible that RFDac Þ RFDbc. This is because Fab 5 Cab

5 0, and Fac 2 Cac 5 Fbc 2 Cbc, but possibly Fac Þ Fbc

and Cac Þ Cbc. Consider the data set of Fig. 1 as an

example. That data set produces two trees of 14 steps.

The “correct” value of relative support for group (ab)

is 0.5, since there are two characters in favor and one

against. This value of RFD is obtained for nonmono-

phyly of group (ab) if comparing the first tree in Fig.

1 (suboptimal) with the second (optimal). The only

difference between the two trees is the monophyly of

(a b). However, if the comparison is done between the

first and the third (optimal) trees, RFD 5 0.25; F 2 C
is the same when comparing the suboptimal tree to

any of the optimal trees, but in the second case both

F and C are larger because of conflict within (d e f).

Conflict within (d e f) is actually irrelevant at the time

of determining conflict within (a b c), and to factor out

cases like this, the RFD for a suboptimal tree should

be considered as the maximum RFD between the sub-

optimal tree and each of the optimal trees. Other cases
where the RFD value may be misleading are possible,

as in the example shown in Fig. 2. In that case, there

FIG. 1. See text for explanation.
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by no characters, but there are some suboptimal trees

with RFD , 1 and having the group as not monophy-

letic. An example is the second tree shown, suboptimal

by virtue of (1) making the uncontradicted (a b) non-

monophyletic and (2) making (d e) monophyletic. Be-

cause there are some characters in favor of (d e), C is

greater than 0, and the RFD between the two trees

is 0.50.

The problems mentioned could perhaps be avoided

if F and C are measured onto trees chosen more care-

fully. A reasonable possibility (suggested by M. Ramı́-

rez, personal communication) is to use, in order to

evaluate support for each group, only those trees that

differ from the optimal trees in a number of steps no

greater than the Bremer support of the group. This

modification would produce a correct evaluation of

the support for the example in Fig. 2, but we have not

tested it on a wide variety of cases. The modification,

however, seems unnecessary for our purpose, which

is just using the RFD as a quick and approximate way

to consider suboptimal trees, not using it as a measure

of support. The RFD is best used in combination with

the absolute fit difference, that is, to collapse nodes

with RFD below Q, and a step (or fit) difference below

S steps.

The number of wrong groups and the error rate de-

crease when collapsing the nodes in which the esti-

mated support is low (Table 7), but so does the number

of correct nodes (obviously, many nodes in the consen-

sus are poorly supported). Using this leads to estima-

tions with fewer errors, but with less resolution. Using
is a single optimal tree, with group (a b) contradicted
Goloboff and Farris
low values of Q, the resolution is not decreased so

much, and then this may be of help in combination

with higher cutoff frequencies.



15 272.40 6 9.23 68.79 6 2.33 0.833 6 0.747 0.303 6 0.269

25 212.93 6 8.00 53.77 6 2.02 0.433 6 0.504 0.203 6 0.237

single group of low support is recovered, and in the

remaining 4, no group of low support is recovered
33 164.07 6 10.71 41.43 6 2.70

Additionally, when tree collapsing is done with abso-

lute and relative fit differences combined, the least

supported groups tend to be eliminated first. For Bal-

lard et al.’s (1992) data set, the groups were first ar-

ranged according to their jacknife supports (as mea-

sured with the GC statistic, calculated with more or

less exhaustive searches), subsequently checking

which groups were and were not recovered with the

estimation procedure (Fig. 3, using 5 to 10 runs in each

case; a dark square indicates presence of the group,

and a light square indicates absence). Using either RFD

or absolute fit difference alone to collapse groups dur-

ing swapping (first three columns in Fig. 3), it was

found that many recovered groups have a support
lower than that of some unrecovered groups. This ef-

to their jacknife GC values (indicated in the leftmost column). The

numbers in the bottom row indicate the number of spurious groups

found in each case. See text for additional explanation.
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0.400 6 0.498 0.247 6 0.310
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TABLE 7

Effect of Increasing the Q Value, for Zilla (16 Replications of TBR, Collapsing with TBR, Cutoff 90%)

Q Correct nodes True nodes recovered (%) Wrong nodes Error rate (%)

0 299.20 6 6.39 75.56 6 1.61 1.067 6 1.048 0.353 6 0.342

10 292.17 6 8.25 73.78 6 2.08 0.967 6 0.809 0.328 6 0.271
here are not only much faster than Rice et al.’s (1997)

strategy, but also significantly more precise and reli-
fect is decreased if the absolute fit difference is used

in combination with RFD, where in 6 of 10 cases a

FIG. 3. Groups for Ballard et al.’s (1992) data set, arranged according
(rightmost column in Fig. 3).

DISCUSSION

Rice et al. (1997) ran Zilla on PAUP for 3.5 months

on three machines; the consensus they found recovers

more correct nodes than the estimation methods de-

scribed here, but also has a large number of spurious

nodes (Table 8). Thus, the chances of a group picked

by inspecting the results of Rice et al. (1997) being

wrong (i.e., not actually supported by the data) are

over 10%. Rice et al. (1997) made an effort in trying to

find the minimum length possible, but they found that

length only once, so that their result is based on a

single tree island. The high error rate of Rice et al.’s
(1997) tree shows that just finding one or a few reason-

ably short trees does not solve the problem of dis-

covering which groups are actually supported by the

data.2 In this regard, the estimation methods described
able. On a double Pentium II (266 MHz), both the TBR

TABLE 8

Statistics for Rice et al.’s (1997) Tree

Correct True nodes Wrong Error rate

nodes recovered (%) nodes (%)

388 97.49 46 10.60
2This would apply as well if Rice et al. (1997) had succeeded in

finding a tree of minimum length, but only once or twice.
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and ratchet estimations (at cutoff 95%) take 10 min

to 1 h to complete (2500 to 15,000 times faster). The

probability of a group based on such methods being
wrong is only 0.17 to 0.16%—60 times more reliable
than Rice et al.’s (1997) consensus tree.
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