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Abstract

In this paper we model knowledge dynamics in agents’ belief bases in a collaborative multi-
agent system. Four change operators are introduced: expansion, contraction, prioritized revision,
and non-prioritized revision. For all of them, both constructive definitions and an axiomatic
characterization by representation theorems are given. We formally justify minimal change,
consistency maintenance, and non-prioritization principles. These operators are based on an
epistemic model for multi-source belief revision in which a rational way to weigh the beliefs
using a credibility order among agents is developed. The defined operators can be seen as skills
added to the agents improving the collective reasoning of a multi-agent system.

1 Introduction and motivation

Belief revision (BR) is the process of changing beliefs to take into account a new piece of
information, observation, or evidence. The AGM paradigm (Alchourrón et al., 1985) has been
widely accepted as a standard framework for belief revision; usually, Individual Belief Revision
(IBR) in a single agent environment is achieved satisfying or adapting AGM postulates.

Single agent systems have evolved into multi-agent systems (MAS), where multiple interacting
agents can collaborate, negotiate, discuss, etc., in order to achieve their goals. In many multi-
agent domains and applications, each agent has its own initial beliefs as well as beliefs acquired
from other informant agents. Hence, an agent can receive information from other agents which is
contradictory with its own current beliefs. Therefore, IBR needs to be extended to multi-agent
environments.

This paper focuses on Multi-Source Belief Revision (MSBR); i.e., belief revision performed
by a single agent that can obtain new beliefs from multiple informants. Therefore, one of the
contributions of our approach is the definition of an epistemic model for MSBR that considers both
beliefs and meta-information representing the credibility of the belief’s source. We investigate
how the belief base of an agent can be rationally modified when the agent receives information
from other agents that can have different degrees of credibility. Thus, our main contribution
is the definition based on the AGM model of four different belief change operators which use
the credibility of informant agents in order to decide prevailing information. These operators
are defined through constructive models and representation theorems that provide a complete
axiomatic characterization for the proposed formalism.

An analysis of Belief Revision in Multi-Agent Systems was developed in (Liu and Williams,
1999) where the hierarchy of Figure 1 was introduced. There, the distinction of Multi-Agent Belief
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Revision (MABR), Multi-Source Belief Revision (MSBR) and Single agent Belief Revision (SBR)
is clearly explained. In contrast to MSBR, MABR investigates the overall belief revision behavior
of agent teams or a society in which, in order to pursue the mutual goal, the agents involved need
to communicate, cooperate, coordinate, and negotiate with one another. A MABR system is a
MAS whose mutual goal involves belief revision. Different formalisms have been presented to deal
with MABR (Liu and Williams, 1999, 2001, Kfir-Dahav and Tennenholz, 1996, Malheiro et al.,
1994). Nevertheless, in MSBR, an individual belief revision process is carried out in a multi-agent
environment where the new information may come from multiple sources that may be in conflict.
The main focus of our work is this kind of belief revision, also studied by (Dragoni et al., 1994).

Figure 1 Belief Revision Hierarchy.

Consider, for instance, the following (simplified) scenario. An agent A has three informants
A1, A2 and A3 where, for A, A3 is the most credible and the other two are equally credible. Agent
A wants to use a resource S, but it believes that S is not available. Then A1 informs A that S

is available and hence, A revises its beliefs to take into account this new piece of information.
If then A3 informs A that S is not available, since A3 is more credible than A2, then A should
change its belief about S. Observe that new information could be rejected if the new belief is
informed by a less credible agent.

In the literature, there are several studied prioritized methods (e.g.,partial meet revi-
sion (Alchourrón et al., 1985) and kernel revision (Hansson, 1999)). In these methods, the new
information has priority over the beliefs in the base of the receiver agent. However, as is mentioned
in (Fermé and Hansson, 1999) and (Falappa et al., 2002), in some scenarios a prioritized method
can be unrealistic. Thus, some models of belief revision have been developed allowing for two
options: either the new information is fully accepted or completely rejected (Hansson, 1997,
Makinson, 1997, Hansson et al., 2001, Konieczny et al., 2010). For instance, if information comes
from different sources, and these sources are not equally credible, a non-prioritized method can
be more adequate. In contrast, if an agent always acquires information from the same source,
then a prioritized method can be used.

In this paper, based on kernel revision, we develop a complete change model for MSBR where
both non-prioritized and prioritized belief revision are defined. First, we propose a formalism
for knowledge representation in a MAS; and then, based on this formalism we define different
change operators for MSBR, either to add beliefs (expansion), to withdraw beliefs (contraction),
or to maintain consistency (revision). We will introduce a credibility order among agents and,
based on this order, a comparison criterion among beliefs is defined. In the revision process,
if inconsistency arises, the credibility order is used to decide which information prevails. The
contraction operator is based on kernel contraction (Hansson, 1994) and also uses the credibility
order to decide which information prevails. We show that the proposed non-prioritized revision
operator satisfies the minimal change principle, and incoming information can be rejected when
the agent has more credible beliefs that contradict the new information. In the literature, there
are other approaches that also attach information to agents’ beliefs that represents its credibility:
(Benferhat et al., 1993), (Dragoni et al., 1994), (Cantwell, 1998) and (Benferhat et al., 2002).
However, our approach differs from them as we will explain in detail below.

Some preliminary works related to this paper have been reported in two workshop
papers (Tamargo et al., 2008, 2009). However, here, we extend both in several ways. We will define
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different operators which describe a complete change model based on informants: expansion,
contraction, prioritized revision and non-prioritized revision. These operators are based on an
epistemic model in which a rational way to weigh beliefs is developed. These operators can be
seen as skills added to the agents which improve the collective reasoning of a MAS. For these
operators we give both constructive definitions and an axiomatic characterization of them by
representation theorems. We also formally justify minimal change and consistency principles.
Thus, a complete change model where both prioritized and non-prioritized belief revision are
defined. The rest of this paper is structured as follows. Next, Section 2 introduces the epistemic
model for MSBR. Section 3 develops the concept of plausibility used to decide which beliefs
will be preserved or erased in change operators. Section 4 defines change operators based on
informants: expansion, two kinds of contractions, and two kinds of revisions. Section 5 presents
forwarding information among agents. Finally, in Section 6 conclusions are given and related
works are commented. All proofs can be found the Section 7.

2 Epistemic model for MSBR

In this section, we introduce an epistemic model for Multi Source Belief Revision which is based
on informants. Then, in the following sections, we will define change operators based on agents
interactions to add beliefs (expansion), to withdraw beliefs (contraction) and to revise beliefs.
Note that the AGM model (Alchourrón et al., 1985) represents epistemic states by means of belief
sets, that is, sets of sentences closed under logical consequence. Other models use belief bases;
i.e., arbitrary sets of sentences (Fuhrmann, 1991, Hansson, 1992). Our epistemic model is based
on an adapted version of belief bases which have additional information.

We adopt a propositional language L with a complete set of boolean connectives, namely
{¬, ∧, ∨, →, ↔}. Also, we assume the existence of an operator Cn that satisfies inclusion
(B ⊆ Cn(B)), iteration (Cn(B) = Cn(Cn(B))), monotonicity (if B ⊆ C then Cn(B)⊆ Cn(C)),
and compactness (if α ∈ Cn(B), then α ∈ Cn(B′) for some finite subset B′ ⊆B) and includes the
classical consequence operator. In general, we will write α ∈ Cn(B) as B ` α.

When interacting, agents will incorporate the received information into their knowledge base
in form of information objects. An information object will associate a sentence with an agent.
For the identification of the individual agents we introduce a finite set of agent identifiers that is
denoted as A= {A1, . . . , An}.

Definition 1 (Information object) An information object is a tuple I = (α, Ai), where α

is a sentence of a propositional language L and Ai ∈ A.

Information objects are used to represent an agent’s belief base. Observe that the agent
identifier of an information object I can be used for representing the agent from which the
information is received, or the agent that has generated the information. In Section 5, we will
describe different criteria for forwarding information that will determine which agent identifier
will be used.

Definition 2 (Belief base) Let A= {A1, . . . , An} be a set of agent identifiers. A belief base
of an agent Ai (1≤ i≤ n) is a set KAi = {I1, . . . , Ik} containing information objects (α, Aj)
(1≤ j ≤ n) received from other agents (j 6= i) and proper beliefs (j = i).

Example 1 Consider the set of agent identifiers A= {A1, A2, A3, A4} and the belief base
of the agent A1, KA1 = {(β, A1), (α, A2), (α, A3), (α→ β, A4), (ω, A3), (ω→ β, A4), (α→ δ, A1),
(α→ δ, A2), (δ → β, A1), (γ, A3), (γ, A4), (γ → ε, A2)}. Observe that KA1 has two information
objects with the sentence α; however, each one has a different agent identifier.

The set K = 2L×A will represent all the belief bases. Next, two auxiliary functions are
introduced in order to obtain the set of sentences or the set of agents that belong to a belief
base K ∈ K.
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Definition 3 (Sentence function) The sentence function Sen (Sen :K→ 2L) is a function
such that for a given belief base K ∈ K, Sen(K) = {α : (α, Ai) ∈K}.

In our proposal, each agent A ∈ A will have a consistent belief base KA. A belief base KA is
consistent if Cn(Sen(K)) is consistent.

Definition 4 (Agent identifier function) The agent identifier function Ag (Ag :K→ 2A)
is a function such that for every base K ∈ K, Ag(K) = {Ai : (α, Ai) ∈K}.
Example 2 Consider KA1 of Example 1. Then,

• Sen(KA1) = {β, α, α→ β, ω, ω→ β, α→ δ, δ → β, γ, γ → ε}.
• Ag(KA1) = {A1, A2, A3, A4}.

The agent identifier of an information object can be used to evaluate the truthfulness of the
received information. In our approach, an assessment function will be used for representing the
credibility each agent assigns to other agents. For defining this assessment, we assume a set of
credibility labels C = {c1, . . . , ck} (common to all agents) with an order ≺c such that for all c1,
c2, c3 ∈ C: if c1 ≺c c2 and c2 ≺c c3 then c1 ≺c c3; c1 ≺c c2 or c2 ≺c c1; c1 ≺c c1 does not hold; and
if c1 ≺c c2, then c2 ≺c c1 does not hold. That is, following (Hein, 2010), we assume an irreflexive
total order (also known strict total order).

Definition 5 (Assessment) Let A= {A1, . . . , An} be a set of agent identifiers and C =
{c1, . . . , ck} a set of credibility labels. An assessment cAi for the agent Ai is a function cAi : A→C
assigning a credibility value from C to each agent Aj ∈ A.

The set of credibility labels is the same for all agents; however, each agent will have its own
assessment and different agents may have different assessments. Thus, the assessment of an agent
can be replaced in a modular way without changing its belief base and without affecting other
agents assessments.

Example 3 Consider the set of agent identifiers A= {A1, A2, A3, A4} and the set of credibil-
ity labels C = {c1, c2, c3, c4, c5, c6}, where c1 ≺c c2 ≺c c3 ≺c c4 ≺c c5 ≺c c6. The agents of A can
have the following assessments:

A1 :cA1(A1) = c1, cA1(A2) = c2, cA1(A3) = c2 and cA1(A4) = c3.
A2 :cA2(A1) = c2, cA2(A2) = c2, cA2(A3) = c2 and cA2(A4) = c2.
A3 :cA3(A1) = c4, cA3(A2) = c3, cA3(A3) = c2 and cA3(A4) = c1.
A4 :cA4(A1) = c4, cA4(A2) = c3, cA4(A3) = c2 and cA4(A4) = c1.

Observe that for agent A2 all agents have the same credibility, for agent A3 all agents have
different credibility, and agents A3 and A4 have the same assessment.

Thus, based on its own assessment, each agent can have a credibility order over the set A.

Definition 6 (Credibility order among agents) A credibility order among agents for an
agent Ai, denoted by ‘≤Ai

Co’, is a total order over A where A1 ≤Ai

Co A2 means that according to
Ai, A2 is at least as credible than A1, and holds if cAi(A1)≺c cAi(A2) or cAi(A1) = cAi(A2).
The strict relation A1 <Ai

Co A2, denoting that A2 is strictly more credible than A1, is defined as
A1 ≤Ai

Co A2 and A2 6≤Ai

Co A1. Moreover, A1 =Ai

Co A2 means that A1 is as credible as A2, and it holds
when A1 ≤Ai

Co A2 and A2 ≤Ai

Co A1.

Since ‘≤Ai

Co’, is a total order over A then for all A1, A2, A3 ∈ A it holds:

• Reflexive: A1 ≤Ai

Co A1.
• Totality or Completeness: A1 ≤Ai

Co A2 or A2 ≤Ai

Co A1.
• Transitivity: if A1 ≤Ai

Co A2 and A2 ≤Ai

Co A3, then A1 ≤Ai

Co A3.
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• Antisymmetry: if A1 ≤Ai

Co A2 and A2 ≤Ai

Co A1, then A1 =Ai

Co A2 .

Example 4 Consider the set of agent identifiers A= {A1, A2, A3, A4} and the set of cred-
ibility labels C = {c1, c2, c3}, where c1 ≺c c2 ≺c c3. Suppose that according to the assessment
of A1, cA1(A1) = c1, cA1(A2) = c2, cA1(A3) = c2 and cA1(A4) = c3. Then, the credibility order,
according to A1, is: A1 ≤A1

Co A2, A1 ≤A1
Co A3, A1 ≤A1

Co A4, A2 ≤A1
Co A3, A3 ≤A1

Co A2, A2 ≤A1
Co A4, and

A3 ≤A1
Co A4. Hence, A1 <A1

Co A2 =A1
Co A3 <A1

Co A4.

The information received by an agent can be contradictory with its current beliefs. For instance,
consider again the belief base (KA1) of Example 1, where Sen(KA1) ` β (observe that there
are several derivations for β). Suppose now that the agent A1 receives the information object
I =(¬β, A4). It is clear that adding (¬β, A4) to KA1 will produce an inconsistent belief base.
Therefore, the agent has to decide whether it rejects (¬β, A4) or withdraws β. In our approach,
the credibility order ‘≤Ai

Co’ will be used to decide which information prevails. If the new incoming
information prevails, then the agent has to withdraw β. To do that, an adapted version of Kernel
contractions will be introduced where all the minimal subsets of KA1 that entail β will be
considered.

Kernel contractions were introduced in (Hansson, 1994) and they are based on a selection
among the sentences that are relevant to derive the sentence to be retracted. Note that kernel
contractions are a generalization of safe contractions proposed in (Alchourrón and Makinson,
1985). In order to perform a contraction, kernel contractions use incision functions which cut
into the minimal subsets that entail the information to be given up. Therefore, we will adapt the
definition of α-kernel to our epistemic model which will be used below to define a comparison
criterion among sentences (called plausibility) and to define incision functions.

Definition 7 (α-kernel) Let K ∈ K and α ∈ L. Then H is an α-kernel of K if and only if

1. H ⊆K.
2. Sen(H) ` α.
3. if H ′ ⊂H, then Sen(H ′) 6` α.

Note that an α-kernel is a minimal set of tuples from K that entails α. The set of α-kernels

of K is denoted K⊥⊥α and is called kernel set (Hansson, 1994).

Example 5 Consider KA1 of Example 1.
K⊥⊥

A1
β = {Ha, Hb, Hc, Hd, He, Hf , Hg, Hh} where

Ha = {(β, A1)} He = {(α, A2), (α→ δ, A1), (δ → β, A1)}
Hb = {(α, A2), (α→ β, A4)} Hf = {(α, A3), (α→ δ, A1), (δ → β, A1)}
Hc = {(α, A3), (α→ β, A4)} Hg = {(α, A2), (α→ δ, A2), (δ → β, A1)}
Hd = {(ω, A3), (ω→ β, A4)} Hh = {(α, A3), (α→ δ, A2), (δ → β, A1)}

Observe that a belief base can contain the same sentence in two (or more) information objects
with different agent identifiers. For instance, in Example 1 {(α, A2), (α, A3)} ⊆KA1 . As it will
be explained in detail bellow, when an agent Ai receives an information object (α, Aj) consistent
with its current belief base (i.e., Sen(KAi) 6` ¬α), then (α, Aj) is added to KAi (expansion). Note
that it may be the case that Sen(KAi) ` α; however, (α, Aj) is also added to KAi because the
credibility of the associated agent can increase the plausibility of α. From the information objects
point of view, there is no redundancy due to the fact that each information object represents a
different informant.

Thus, in a belief base the same sentence can be in several information objects (with different
agent identifiers). Therefore, if the assessment of the agent is changed and the credibility of a
particular agent is increased, then all the sentences associated to this agent automatically have
more credibility. Nevertheless, it will be useful that given a belief base K, a compacted belief base
K ′ can be obtained; i.e., a base where there are no tuples with the same sentence and the more



6 l. h. tamargo et al.

credible associated agent remains. In order to make more efficient the construction of changes,
we propose that kernel sets can be computed over compacted belief bases.

Next, a function that given a belief base returns a compacted one is introduced (Definition 10).
This function needs to know which is the most credible associated agent with respect to a given
sentence, and this is returned by the top agent function.

Definition 8 (Top agent function) The top agent function, Top : L ×K→ 2A, is a func-
tion such that for a given belief base KAi ∈ K and a given sentence α ∈ Sen(KAi), Top(α, KAi) =
{Ak : (α, Ak) ∈KAi and for all (α, Aj) ∈KAi , Aj ≤Ai

Co Ak}.
We assume that there is a function (see Definition 9) that based on a given policy1 returns

a single agent identifier from a set of agent identifiers to which the assessment assigns the same
label. For instance, the policy could be based on a lexicographical ordering among agent identifiers
- A1 is lesser than A2.

Definition 9 (Selection function) The selection function of an agent Ai, SAi
: 2A→ A, is

a function such that for a given set of agent identifiers with equal credibility with respect to the
assessment of Ai, it returns a single agent identifier based on a given policy.

Definition 10 (Compact belief base function) The compact belief base function
(Compact :K→K) is a function such that for a given belief base KAi ∈ K:

Compact(KAi) = {(α, Aj) : (α, Aj) ∈KAi and Aj = SAi(Top(α, KAi))}

In order to simplify the notation we use K↑
Ai

instead of Compact(KAi).

Example 6 Consider again the agent A1 of Example 1, where
KA1 = {(β, A1), (α, A2), (α, A3), (α→ β, A4), (ω, A3), (ω→ β, A4), (α→ δ, A1), (α→ δ, A2),
(δ → β, A1), (γ, A3), (γ, A4), (γ → ε, A2)}, and consider the credibility order among agents
according to A1 from Example 4, A1 <A1

Co A2 =A1
Co A3 <A1

Co A4. Then,

• Top(γ, KA1) = {A4} and Top(α→ δ, KA1) = {A2}.
• Top(α, KA1) = {A2, A3}.
• SA1({A2, A3}) = A2 where the policy adopted is based on a lexicographical ordering among

agent identifiers.
• The compact belief base is:

K↑
A1

= {(β, A1), (α, A2), (α→ β, A4), (ω, A3), (ω→ β, A4), } ∪
∪{(α→ δ, A2), (δ → β, A1), (γ, A4), (γ → ε, A2)}

• K↑
A1
⊥⊥β = {Ha, Hb, Hd, Hg} where

Ha = {(β, A1)} Hd = {(ω, A3), (ω→ β, A4)}
Hb = {(α, A2), (α→ β, A4)} Hg = {(α, A2), (α→ δ, A2), (δ → β, A1)}

It is important to note that from the Definitions 3, 7, 8 and 10, the following proposition is
straightforwardly deduced.

Proposition 1 Let KAi ∈ K, it holds that: K↑
Ai
⊆KAi , Sen(K↑

Ai
) = Sen(KAi), and

K↑
Ai

⊥⊥α⊆K⊥⊥
Ai

α.

Consider α ∈ L and β ∈ Sen(KAi) such that β is in m tuples of KAi (m > 1). Then K↑
Ai
⊂KAi .

If X ∈K↑
Ai

⊥⊥α and β ∈ Sen(X), then K⊥⊥
Ai

α will have at least m α-kernels differing only in the
agent identifier of the tuple in which β is in. Nevertheless, since K↑

Ai
has only one tuple containing

β, then K↑
Ai

⊥⊥α⊂K⊥⊥
Ai

α. In the following section, we will prove that it is equivalent to compute
the plausibility of a sentence either with K↑

Ai
or with KAi .

1A policy can be seen as a design decision.
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3 Sentences plausibility

As stated above, when an agent Ai receives an information object that is inconsistent with its
knowledge base (e.g.,it receives (¬β, A4) and it holds that Sen(KAi) ` β), then the credibility
order among agents ≤Ai

Co will be used to decide which sentence prevails. Note that a sentence
can have more than one derivation from a given knowledge base. Therefore, a comparison order
among sentences (called Plausibility) will be defined. That is, if α and β are sentences, the
notation α¹KAi

β will represent the following: for the agent Ai, β is at least as plausible as α

relative to its assessment cAi
and its belief base KAi

. The plausibility of a sentence will be used
to define revision and contraction operators.

The concept of plausibility is related to epistemic entrenchment (Gärdenfors and Makinson,
1988) although the epistemic entrenchment orders are structured in a very specific way, and we
apply it on belief bases instead of belief sets. According to (Gärdenfors, 1992), “...some sentences
in a belief system have a higher degree of epistemic entrenchment than others... The guiding idea
for the construction is that when a belief set K is revised or contracted, the sentences in K that
are given up are those having the lowest degrees of epistemic entrenchment”.

The following function characterizes all the sentences that can be entailed from a belief base.

Definition 11 (Belief function) The belief function, Bel :K→ 2L, is a function such that
for a given belief base K ∈ K, Bel(K) = {α : α ∈ L and Sen(K) ` α}.

Similar to Proposition 1, note that from the Definitions 8, 10 and 11, the following proposition
is straightforwardly deduced.

Proposition 2 Let KAi ∈ K, it holds that Bel(K↑
Ai

) = Bel(KAi).

In order to calculate the plausibility of a sentence β, all its proofs have to be analyzed. Since
we adopt a cautious approach, from each β-kernel we will consider those tuples that have the
agent identifiers that are less credible. Two auxiliary functions are introduced below:

Definition 12 (Least credible sources function) The least credible sources function,
min :K→ 2K, is a function such that for a given belief base KAi ∈ K, min(KAi) = {(α, Ak) :
(α, Ak) ∈KAi and for all (δ, Aj) ∈KAi , Ak ≤Ai

Co Aj}.
Definition 13 (Most credible sources function) The most credible sources function,
max :K→ 2K, is a function such that for a given belief base KAi ∈ K, max(KAi) = {(α, Ak) :
(α, Ak) ∈KAi and for all (δ, Aj) ∈KAi , Aj ≤Ai

Co Ak}.
Example 7 Consider the set of agent identifiers A= {A1, A2, A3} and the credibility order of
agent A1: A1 <A1

Co A2 <A1
Co A3. Let KA1 = {(α, A1), (α, A2), (β, A1), (γ, A1), (α→ γ, A3)} be the

belief base of A1. Then,

• min(KA1) = {(α, A1), (β, A1), (γ, A1)}.
• max(KA1) = {(α→ γ, A3)}.

Next, based on the agent comparison criterion ≤Ai

Co of each agent, we will define a comparison
criterion among sentences of Bel(KAi). First, we introduce the function Pl(α, KAi) that given
a sentence α ∈ Bel(KAi), it returns an agent identifier that represents the plausibility of α with
respect to the assessment of agent Ai. Then, based on the function Pl , in Definition 15, a
comparison criterion ¹KAi

among sentences of Bel(KAi) is introduced.

Definition 14 (Plausibility function) The plausibility function, Pl : L ×K→ A, is a
function such that for a given belief base KAi ∈ K and a sentence α ∈ Bel(KAi):

Pl(α, KAi) = SAi(Ag(max(
⋃

X∈K↑⊥⊥
Ai

α

min(X))))
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Observe that the function max can return more than one agent identifier, therefore Pl uses
the selection function SAi

of Definition 9 that returns only one identifier. Note also that it may
be the case in which (γ, A1) ∈KA1 and Pl(γ, KA1) 6= A1. For instance, consider Example 7, there
Pl(α, KA1) = A2, Pl(β, KA1) = A1 and Pl(γ, KA1) = A2.

Definition 15 (Plausibility criterion) Let KAi
∈ K be the belief base of agent Ai and let

{α, β} ⊆ Bel(KAi), then α¹KAi
β if and only if it holds that Pl(α, KAi)≤Ai

Co Pl(β, KAi).

Thus, the notation α¹KAi
β will represent: “for the agent Ai, β is at least as plausible as α”.

The strict relation α≺KAi
β, representing “β is more plausible than α”, is defined as “α¹KAi

β

and β �KAi
α”. Moreover, α'KAi

β means that α is as plausible as β, and it holds when α¹KAi
β

and β ¹KAi
α. From the previous definition we can observe that the plausibility of the sentences

inherits the properties of the credibility order among agents (‘¹KAi
’ is a total order on L).

Furthermore, note that the relation ‘¹KAi
’ is only defined with respect to a given KAi

(different
belief bases may be associated with different orderings of plausibility).

Example 8 Consider a set A= {A1, A2, A3}. Suppose that agent A2 has the following
belief base KA2 = {(α, A1), (β, A2), (γ, A3)} and according to A2 the credibility order is
A1 <A2

Co A2 <A2
Co A3. Furthermore, suppose that agent A3 has the following belief base KA3 =

{(α, A1), (β, A3), (γ, A2)} and the same credibility order than A2, A1 <A3
Co A2 <A3

Co A3. Then, for
both agents, β is more plausible than α (i.e., α≺KA2

β and α≺KA3
β). However, for A2, γ

is more plausible than β (β ≺KA2
γ) whereas for A3, β is more plausible than γ (γ ≺KA3

β).
In this example A2 and A3 have the same assessment and Sen(KA2) = Sen(KA3) but their
beliefs have different associated agents. It is clear that two agents with the same belief base but
different credibility orders produce different orderings of plausibility. For instance, consider that
KA1 = KA2 and A2 <A1

Co A1 <A1
Co A3 then α≺KA2

β but β ≺KA1
α.

The following example shows how the plausibility of a sentence can be calculated from a kernel
set obtained from a compacted belief base.

Example 9 Consider again Example 1, where the belief base of A1 is KA1 = {(β, A1),
(α, A2), (α, A3), (α→ β, A4), (ω, A3), (ω→ β, A4), (α→ δ, A1), (α→ δ, A2), (δ → β, A1),
(γ, A3), (γ, A4), (γ → ε, A2)}, and consider the credibility order among agents according to A1

from Example 4, A1 <A1
Co A2 =A1

Co A3 <A1
Co A4. Then, suppose that agent A1 needs to calculate the

plausibility of β. In order to do so, A1 will do the following steps.

• Step 1. Find the minimal subsets that derive β from the compacted belief base KA1 (K↑
A1
⊥⊥β).

From Example 6 we can see that:
K↑

A1
⊥⊥β = {Ha, Hb, Hd, Hg}.

• Step 2. Apply ‘min’ to each β-kernel ∈K↑
A1
⊥⊥β:

min(Ha) = {(β, A1)} min(Hd) = {(ω, A3)}
min(Hb) = {(α, A2)} min(Hg) = {(δ → β, A1)}

• Step 3. Apply ‘max’ to the union of all the sets found in step 2.
max({(β, A1), (α, A2), (ω, A3), (δ → β, A1)}) = {(α, A2), (ω, A3)}.

• Step 4. Find from the tuples of the previous item, the set containing the agent identifiers:
Ag({(α, A2), (ω, A3)}) = {A2, A3}.

• Step 5. Find from the set of agent identifiers of the previous item, a single agent identifier
based on a given policy. For instance, if the policy is the lexicographical ordering among agent
identifiers, then SA1({A2, A3}) = A2.

Therefore, Pl(β, KA1) = A2.
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Proposition 3 shows that given a belief base KAi
, the plausibility of a sentence can be obtained

from either KAi
or K↑

Ai
. However, applying the computation to KAi

requires computing more
kernels than with K↑

Ai
.

Proposition 3 Let KAi ∈ K and let α ∈ Bel(KAi), then the plausibility of α in the belief base
KAi

is equal to the plausibility of α in the compacted belief base K↑
Ai

. That is,
Pl(α, KAi

) = SAi
(Ag(max(

⋃
X∈K↑⊥⊥

Ai
α min(X)))) = SAi

(Ag(max(
⋃

X∈K⊥⊥
Ai

α min(X)))).

Proof: See Appendix in Section 7.

Since the belief base of an agent may contain the same sentence in several different tuples, it
could be natural to preserve only “the most plausible derivation” of each sentence. However, in
the following example it is shown that this criterion may be problematic.

Example 10 Consider A= {A1, A2, A3} where A3 <A2
Co A2 <A2

Co A1. Let KA2 = {(β →
α, A2), (α, A3)} be the belief base of A2. Suppose that A2 incorporates (β, A2) to KA2 . In this
scenario there are two derivations for α, and Pl(α, KA2) = A2. Note that the plausibility of α

was increased and it is unnatural to withdraw sentences from KA2 in order to preserve just one
derivation of α.

As we have shown in the previous example, it is very restrictive to have each sentence supported
by only one derivation. For this reason, belief bases may be non-compacted. Thus, the plausibility
of a sentence will be determined only by the plausibility function. Another reason for this decision
is that we achieve a more dynamic framework since the evaluation of the credibility of the agent
identifiers is separated by use of the assessment function.

It is important to note that the assessment function may change in time realizing dynamic
assessments. Hence, the credibility order among agents can be changed without changing the
knowledge base.

4 Change operators based on informants

In this section, we will define a change theory for multi-agent system focusing on Multi-
Source Belief Revision (MSBR). The most widely studied model for belief revision is AGM
model (Alchourrón et al., 1985) which distinguishes three change operators: expansions, con-
tractions and revisions. The AGM model represents epistemic states by means of belief sets,
that is, sets of sentences closed under logical consequence. Nevertheless, as introduced above,
our epistemic model uses belief bases; that is, arbitrary sets of sentences. Next, in Section 4.1
we will define an expansion operator based on our epistemic model. Then in Section 4.2, we will
introduce two contraction operators. In Section 4.3, we will define a prioritized revision operator
and finally, in Section 4.4 we will propose a non-prioritized revision operator.

4.1 Expansion operator based on informants

In this subsection we will define an expansion operator for our epistemic model. This is the most
simple operator to characterize from the logical point of view because it consists only in the
addition of new information objects.

Definition 16 (Expansion using plausibility) Let KAi ∈ K the belief base of an agent
Ai and (α, Aj) an information object. The operator “+”, called expansion using plausibility, is
defined as follows:

KAi + (α, Aj) = KAi ∪ {(α, Aj)}

In contrast to the expansion proposed in (Hansson, 1999), here we consider information
objects instead of single sentences. Therefore, if α ∈ Bel(KAi), then this operation could increase
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the plausibility of α. This operation, as Hansson’s expansion, does not guarantee a consistent
epistemic state.

Let KAi
, KAj

∈ K two belief bases and let Ai, Aj , Ak ∈ A. The expansion operator will be
represented by “+”. We propose the following postulates for expansion using plausibility operator.

(EP-1) Success: (α, Aj) ∈KAi + (α, Aj).

The first postulate establishes that the expansion should be successful; i.e., the result of
expanding a belief base KAi

by an information object (α, Aj) should be a new belief base that
contains (α, Aj).

(EP-2) Inclusion: KAi ⊆KAi + (α, Aj).

Obtaining information is a very expensive process, thus avoiding the unnecessary loss of
information is wished in any change operator. Since KAi

+ (α, Aj) follows from adding an
information object to KAi

without withdrawing any belief, it is natural to think that KAi
does

not contain beliefs that do not belong to KAi
+ (α, Aj).

(EP-3) Vacuity: If (α, Aj) ∈KAi then KAi + (α, Aj) = KAi .

A particular case of expansion occurs when a belief base KAi is expanded by an information
object (α, Aj) which is in KAi . In this case, expanding KAi by (α, Aj) does not generate any
change in KAi .

(EP-4) Monotonicity: If KAj ⊆KAi then KAj + (α, Ak)⊆KAi + (α, Ak).

Suppose that there are two belief bases and one of these is contained in the other. If both
belief bases are expanded by the same belief then the inclusion relation between them should be
preserved.

(EP-5) Dynamic Plausibility: If α ∈ Bel(KAi) then Pl(α, KAi)≤Ai

Co Pl(α, KAi + (α, Aj)).

Suppose a belief base KAi is expanded by an information object (α, Aj) where α ∈ Bel(KAi).
In this case, the result of expanding KAi by (α, Aj) should not decrease the plausibility of α.
Thus, this operation could increase the plausibility of α.

The postulates EP-1 . . . EP-5 characterize axiomatically our expansion operator. For all belief
base K and all information object (α, Ai), K + (α, Ai) is the smallest belief base which satisfies
EP-1 . . . EP-5. Note that, EP-1 . . . EP-4 are defined in a similar way to those that define the
expansion in AGM (Alchourrón et al., 1985), whereas the new postulate EP-5 considers the case
that our belief base contains a belief with different associated agents.

4.2 Contraction operator based on informants

The contraction is a change operation which withdraws beliefs without adding anything. In
practice, this situation occurs when an agent believes in α and perceives that ¬α is true. In this
case, before adding ¬α it should be withdrawn α. Even thought this operation gives rise to an
adding of a new belief, can be discomposed in two operations: a contraction with respect to α,
and a subsequent expansion with respect to ¬α. Bellow we introduce two contraction operators
that are based on kernel contraction and adapted to our epistemic model.
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4.2.1 Construction
In the belief base of an agent, several derivations for one sentence can exist. For instance, consider
again the belief base (KA1) of Example 9. Suppose now agent A1 needs to withdraw β from its
belief base. Since there are several derivations of β, then it has to “cut” all of them. The credibility
order will be used to decide which information prevails. For doing that, all the minimal subsets
of KA1 that entail β are obtained.

Kernel contractions are based on a selection among the sentences that are relevant to derive
the sentence to be retracted. In order to perform a contraction, kernel contractions use incision
functions which cut into the minimal subsets that entail the information to be given up. We will
adapt this notion to our epistemic model. An incision function only selects information objects
that can be relevant for α and at least one element from each α-kernel.

Definition 17 (Incision function) An incision function σ for KAi
∈ K is a function such

that for all α:

1. σ(K⊥⊥
Ai

α)⊆ ∪(K⊥⊥
Ai

α), and
2. if ∅ 6= X ∈K⊥⊥

Ai
α, then X ∩ σ(K⊥⊥

Ai
α) 6= ∅.

In the definition of an incision function in Hansson’s work it is not specified how the function
selects the sentences that will be discarded of each α-kernel. In our approach, this will be solved
with the sentences plausibility that we have defined above. Thus, the incision function will select
the least credible information objects of each α-kernel.

Definition 18 (Bottom incision function) σ↓ is a bottom incision function for KAi if σ↓
is an incision function such that, σ↓(K⊥⊥

Ai
α) = {(δ, Ak) : (δ, Ak) ∈X ∈K⊥⊥

Ai
α and for all (β, Aj) ∈

X it holds that δ ¹X β}2.

Example 11 Consider a set A= {A1, A2, A3} where the credibility order according to
A2 is A1 <A2

Co A2 <A2
Co A3. Suppose that the agent A2 has the following belief base KA2 =

{(α, A3), (β, A2), (β → α, A1), (β → α, A3), (ω, A1), (ω→ α, A3), (δ, A1)}. Then, K⊥⊥
A2

α =
{Ha, Hb, Hc, Hd} where:

Ha = {(α, A3)} Hc = {(β, A2), (β → α, A3)}
Hb = {(β, A2), (β → α, A1)} Hd = {(ω, A1), (ω→ α, A3)}

Then, the bottom incision function is:

σ↓(K⊥⊥
A2

α) = {(α, A3), (β → α, A1), (β, A2), (ω, A1)}

Now that we have given the necessary background, two contraction operators will be defined.
One of these operators (Definition 19) takes into consideration the whole belief base, and the other
(Definition 20) considers its associated compacted belief base when an agent wants to apply the
contraction operator.

Definition 19 (Contraction using plausibility) Let KAi ∈ K, α ∈ L and let σ↓ be a bot-
tom incision function for KAi . The operator “ªσ↓”, called contraction using plausibility, is
defined as follows:

KAi ªσ↓ α = KAi \ σ↓(K⊥⊥
Ai

α)

Note that when an agent wishes to contract its belief base for a sentence, it applies the
contraction operator over the sentence and not over an information object. Furthermore, note
that, it makes sense to have a version of contraction where the object to be contracted is a
determined tuple (and not a sentence); however, we consider that it is not nessesary for the aim
of this article .
2We assume that, given a relation ¹KAi

on L × L, it is possible to define a relation ¹X on every X ⊆KAi .
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Example 12 Consider the set A= {A1, A2, A3, A4} where the credibility order accord-
ing to A1 is A1 <A1

Co A2 =A1
Co A3 <A1

Co A4. Suppose that the agent A1 has the following
belief base KA1 = {(β, A1), (α, A2), (α, A3), (α→ β, A2), (α→ β, A4), (ω, A1), (ω→ β, A4), (α→
δ, A2), (δ → β, A1), (γ, A3), (γ → ε, A2), (ε→ β, A2), (ε→ β, A3), (ε→ β, A4)}. Then, suppose A1

wants to contract by β using “ªσ↓”.

• Step 1. Find the minimal subsets that derive β from KA1 .
K⊥⊥

A1
β = {Ha, Hb, Hc, Hd, He, Hf , Hg, Hh, Hi, Hj , Hk} where

Ha = {(β, A1)} Hg = {(α, A2), (α→ δ, A2), (δ → β, A1)}
Hb = {(α, A2), (α→ β, A2)} Hh = {(α, A3), (α→ δ, A2), (δ → β, A1)}
Hc = {(α, A3), (α→ β, A2)} Hi = {(γ, A3), (γ → ε, A2), (ε→ β, A2)}
Hd = {(α, A2), (α→ β, A4)} Hj = {(γ, A3), (γ → ε, A2), (ε→ β, A3)}
He = {(α, A3), (α→ β, A4)} Hk = {(γ, A3), (γ → ε, A2), (ε→ β, A4)}
Hf = {(ω, A1), (ω→ β, A4)}

• Step 2. Apply the bottom incision function “σ↓” to K⊥⊥
A1

β to find the set containing the least
credible information objects from each β-kernel.

σ↓(K⊥⊥
A1

β) = {(β, A1), (α, A2), (α→β, A2), (α, A3), (ω, A1)} ∪
∪{(δ→β, A1), (γ, A3), (γ→ε, A2), (ε→β, A2), (ε→β, A3)}

• Step 3. KA1 ªσ↓ β = KA1 \ σ↓(K⊥⊥
A1

β).
KA1 ªσ↓ β = {(α→ β, A4), (ω→ β, A4), (α→ δ, A2), (ε→ β, A4)}.

Note that, in Example 12 there are kernels that differ only in the associated agent identifier.
This occurs when a base has the same sentence in several information objects. Since the incision
function selects the least credible information objects of each α-kernel, then as more information
object containing the same belief are in KAi , more information objects will be selected by
the bottom incision function. As a consequence, in some cases, this operator withdraws several
information objects. In contrast, if the agent considers a compacted belief base when it applies
the contraction operator, there will be less information objects selected by the incision function.

Definition 20 (Optimal contraction using plausibility) Let KAi∈K, α∈L and let σ↓
be a bottom incision function for KAi . The operator “−σ↓”, called optimal contraction using
plausibility, is defined as follows:

KAi −σ↓ α = KAi \X

where: X = {(ω, Aj) : ω ∈ Sen(σ↓(K
↑
Ai

⊥⊥α)) and (ω, Aj) ∈KAi}.

Example 13 Consider KA1 and ‘≤A1
Co’ of Example 12. Then, suppose A1 wants to contract

by β using “−σ↓”.

• Step 1. Find the minimal subsets that derive β from a compacted belief base KA1 .

K↑
A1

= {(β, A1), (α, A2), (α→ β, A4), (ω, A1), (ω→ β, A4)} ∪
∪{(α→ δ, A2), (δ → β, A1), (γ, A3), (γ → ε, A2), (ε→ β, A4)}

Note that, the policy used by the selection function (Definition 9), when we apply the compact
belief base function (Definition 10), is based on a lexicographical ordering among agent
identifiers.
K↑

A1
⊥⊥β = {Ha, Hd, Hf , Hg, Hk} where

Ha = {(β, A1)} Hg = {(α, A2), (α→ δ, A2), (δ → β, A1)}
Hd = {(α, A2), (α→ β, A4)} Hk = {(γ, A3), (γ → ε, A2), (ε→ β, A4)}
Hf = {(ω, A1), (ω→ β, A4)}
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• Step 2. Apply the bottom incision function “σ↓” to K⊥⊥
A1

β.
σ↓(K⊥⊥

A1
β) = {(β, A1), (α, A2), (ω, A1), (δ → β, A1), (γ, A3), (γ → ε, A2)}.

• Step 3. KA1 −σ↓ β = {(α→ β, A2), (α→ β, A4), (ω→ β, A4), (α→ δ, A2), (ε→ β, A2), (ε→
β, A3), (ε→ β, A4)}.

Note that, since the belief base may be non-compacted, in step 3 of Example 13, all those tuples
whose beliefs were selected by the bottom incision function without regarding the respective
associated agents are discarded from KA1 . Besides, observe that in the last two examples the
contracted belief bases have the same beliefs (see Proposition 4). However, in the latest example,
the belief base contains more information objects than in the previous one (see Proposition 5).
Then, this operator does not lose the associated agents of the belief remaining after the
contraction. Consequently, this type of contraction is more conservative.

Proposition 4 Let KAi
∈ K, α ∈ L, “ªσ↓” be a contraction using plausibility operator and

“−σ↓” an optimal contraction using plausibility operator, then

Sen(KAi
ªσ↓ α) = Sen(KAi

−σ↓ α)

Proof: See Appendix in Section 7.

Proposition 5 Let KAi ∈ K, α ∈ L, “ªσ↓” be a contraction using plausibility operator and
“−σ↓” an optimal contraction using plausibility operator, then

KAi ªσ↓ α⊆KAi −σ↓ α

Proof: See Appendix in Section 7.

4.2.2 Properties
Next we will give the rationality postulates for optimal contraction using plausibility operator,
adapting some of the postulates given in (Hansson, 1999), considering the following principle.

Minimal change. As much old knowledge as possible should be retained in the

revised/ contracted knowledge. That is, we should give up beliefs only when forced

to do so, and then we should discard as few of them as possible.

Let Ai, Aj , Ak, Ap ∈ A and let KAi ∈ K be a belief base. The contraction operator will be
represented by “−”. We propose the following postulates for contraction.

(CP-1) Success: if α 6∈ Cn(∅), then α 6∈ Bel(KAi − α).

The first postulate establishes that the contraction should be successful; i.e., the result of
contracting a belief base KAi by a sentence α (that is not a tautology) should be a new belief
base that does not imply α.

(CP-2) Inclusion: KAi − α⊆KAi .

Since KAi − α follows from withdrawing some beliefs from KAi without adding any belief, it
is natural to think that KAi − α does not contain beliefs that do not belong to KAi .

(CP-3) Uniformity: If for all K ′ ⊆KAi , α ∈ Bel(K ′) if and only if β ∈ Bel(K ′) then KAi − α =
KAi − β.

This property establishes that if two sentences α and β are implied by exactly the same subsets
of KAi , then the contraction of KAi by α should be equal to the contraction of KAi by β.
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Next, we propose a new postulate which is an adapted version of the postulate of core-
retainment defined in (Hansson, 1994): “The beliefs that we give up in order to contract KAi

by α should all be such that they contributed to the fact that KAi , but not KAi − α, implies α.
More precisely, for β to be deleted in the process of forming KAi

− α from KAi
, there should

be some order in which the elements of KAi
can be removed, such that the removal of β is the

crucial step by which α stops to be logically implied.” In our contraction operator, this order is
based on the credibility order among agents.

(CP-4) Minimal Plausibility Change: If (β, Ap) ∈KAi and (β, Ap) 6∈KAi − α then there is K ′ ⊆
KAi

where α 6∈ Bel(K ′) but there exists (β, Aj) ∈KAi
such that:

• α ∈ Bel(K ′ ∪ {(β, Aj)}),
• p = j or Ap ≤Ai

Co Aj , and
• for all (δ, Ak) ∈K ′ such that α 6∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}) it holds that Aj ≤Ai

Co Ak.

The intuition behind (CP-4) is that, if β is removed, δ is preserved and both are used in a
derivation of α, then β is removed because is less credible than δ. In order to remove β from KAi

,
we should withdraw from KAi

all the information objects containing β.

Theorem 1 Let KAi ∈ K and let “−σ↓” be a contraction operator. “−σ↓” is an optimal
contraction using plausibility for KAi if and only if it satisfies CP-1, ..., CP-4, i.e., it satisfies
success, inclusion, uniformity and minimal plausibility change.
Proof: See Appendix in Section 7.

Note that, from CP-4 it is straightforwardly possible verify the following remark.

Remark 1 The optimal contraction using plausibility operator follows the principle of minimal
change.

4.3 Prioritized revision using plausibility

In many multi-agent domains and applications, each agent has usually its own initial beliefs as
well as knowledge acquired from other agents. In this Section and in Section 4.4, we develop
two different ways in which the belief base of an agent can be rationally modified when the
agent receives information from other agents that can have different degree of credibility. In the
literature, there are several studied prioritized methods (e.g.,partial meet revision (Alchourrón
et al., 1985) and kernel revision (Hansson, 1999)). In these methods, the new information has
priority over the beliefs in the base of the receiver agent. Our approach is based on kernel revision
and the epistemic model defined above. Thus, we focus on MSBR, where agents maintain the
consistency of their belief bases.

4.3.1 Construction
The revision operator is the most complex change operator. This type of change guarantees a
consistent epistemic state. When a belief base KAi ∈ K is revised by an information object (α, Aj)
we will have two tasks:

• to maintain the consistency of KAi . If α is inconsistent with Bel(KAi), that is ¬α ∈ Bel(KAi),
a deeper analysis is required because it is necessary to erase some information objects from
KAi .

• to add (α, Aj) to KAi . This is the most simple task to characterize from the logical point of
view because it consists only in the addition of new information object. As showed above, if
α ∈ Bel(KAi) then this operation could increase the plausibility of α.
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The first task can be accomplished contracting by ¬α. The second task can be accomplished
expanding by (α, Aj). If a belief base does not imply ¬α, then (α, Aj) can be added without
loss of consistency. This composition is based on the Levi identity (Gärdenfors, 1981, Alchourrón
et al., 1985), which proposes that a revision can be constructed out of two sub-operations: a
contraction by ¬α and an expansion by (α, Aj).

Definition 21 (Prioritized revision using plausibility) Let KAi
∈ K, let (α, Aj) be an

information object and let σ↓ a bottom incision function for KAi . Let −σ↓ be the optimal
contraction using plausibility operator and + the expansion using plausibility operator. The
operator “∗σ↓”, called prioritized revision using plausibility, is defined as follows:

KAi
∗σ↓ (α, Aj) = (KAi

−σ↓ ¬α) + (α, Aj)

Example 14 Consider the set A= {A1, A2, A3, A4, A5} where the credibility order according
to A1 is A1 <A1

Co A2 =A1
Co A3 <A1

Co A4 <A1
Co A5. Suppose that the agent A1 has the following

belief base KA1 = {(β, A1), (α, A2), (α, A3), (α→ β, A2), (α→ β, A4), (ω, A1), (ω→ β, A4), (α→
δ, A2), (δ → β, A1), (γ, A3), (γ → ε, A2), (ε→ β, A2), (ε→ β, A3), (ε→ β, A4)}. Then, suppose A1

wants to revise by (¬β, A5) using “∗σ↓”. Since β ∈ Bel(KA1) then it is necessary to contract
KA1 by β and then expand KA1 by (¬β, A5). Thus, KA1 ∗σ↓ (¬β, A5) = {(α→ β, A2), (α→
β, A4), (ω→ β, A4), (α→ δ, A2), (ε→ β, A2), (ε→ β, A3), (ε→ β, A4)} ∪ {(¬β, A5)}.

4.3.2 Properties
Next we will give the rationality postulates for prioritized revision using plausibility operator.
We must introduce the following principle, similar to the principle proposed in (Dalal, 1988).

Maintenance of consistency. If a belief base K and a belief α are both consistent,

then K revised by α is consistent.

Let Ai, Aj , Ak, Ap ,Aq ∈ A and let KAi ∈ K be a belief base. The prioritized revision operator
will be represented by “∗”.

(RP-1) Success: (α, Aj) ∈KAi ∗ (α, Aj).

Since the revision operator defined here is considered prioritized; i.e., the new information has
priority, the first postulate we give establishes that the revision should be successful. That is, the
result of revising a belief base KAi by an information object (α, Aj) should be a new belief base
that contains (α, Aj).

(RP-2) Inclusion: KAi ∗ (α, Aj)⊆KAi ∪ {(α, Aj)}.

A particular case in the revision process occurs when a belief base KAi is revised by (α, Aj) and
¬α ∈ Bel(KAi). In this case, before adding (α, Aj), ¬α should be withdrawn from KAi . Hence,
if ¬α ∈ Bel(KAi) then the revision of KAi by (α, Aj) is contained in the expansion of KAi by
(α, Aj). In contrast, if α ∈ Bel(KAi) (i.e., α is consistent with KAi) then the revision operation
is equivalent to an expansion operation.

(RP-3) Consistency : if α is consistent then KAi ∗ (α, Aj) is consistent.

The main aim of the revision operator is to hold consistency in the belief base revised. However,
there exist special cases in which this is not possible. If a belief base is revised by an information
object containing a contradictory sentence, then the resultant belief base is inconsistent. Hence,
the revision operator should preserve the consistency in the belief base if and only if an information
object containing a contradictory sentence is not being added to the belief base.
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(RP-4) Uniformity: If for all K ′ ⊆KAi
, {α} ∪ Sen(K ′) `⊥ if and only if {β} ∪ Sen(K ′) `⊥ then

KAi
∩ (KAi

∗ (α, Aj)) = KAi
∩ (KAi

∗ (β, Ak)).

This postulate determines that if two beliefs α and β are inconsistent with the same sub-bases
of KAi

then KAi
revised by information objects containing those beliefs should preserve the same

information objects from KAi
.

(RP-5) Minimal Plausibility Change: If (β, Ap) ∈KAi
and (β, Ap) 6∈KAi

∗ (α, Ak) then there is
K ′ ⊆KAi

where ¬α 6∈ Bel(K ′) but there exists (β, Aj) ∈KAi
such that:

• ¬α ∈ Bel(K ′ ∪ {(β, Aj)}),
• p = j or Ap ≤Ai

Co Aj , and
• for all (δ, Aq) ∈K ′ such that ¬α 6∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Aq)}) it holds that Aj ≤Ai

Co Aq.

The intuition behind this postulate is similar to that of the minimal plausibility change
postulate (CP-4) for contractions introduced above.

Theorem 2 Let KAi ∈ K and let “∗σ↓” be a revision operator. “∗σ↓” is a prioritized revision
using plausibility for KAi if and only if it satisfies RP-1, ..., RP-5, i.e., it satisfies success,
inclusion, consistency, uniformity and minimal plausibility change.
Proof: See Appendix in Section 7.

Note that, from RP-3 and RP-5, it is straightforwardly possible verify the following remark.

Remark 2 The prioritized revision using plausibility operator follows the principles of mini-
mal change and maintenance of consistency.

Proposition 6 If “+” satisfies EP-1,...,EP-5 and “−σ↓” satisfies CP-1,...,CP-4 then “∗σ↓”
satisfies RP-1,...,RP-5.
Proof: See Appendix in Section 7.

4.4 Non prioritized revision using plausibility

A prioritized revision operator is characterized by success postulate from which we may infer
that α ∈ Bel(KAi ∗ (α, Aj)). That is, the incoming information has priority over the beliefs in
the base of the receiver agent. However, as is mentioned in (Fermé and Hansson, 1999), this
is an unrealistic feature, since actual epistemic agents, when confronted with information that
contradicts previous beliefs, often reject it. Several models of belief revision have been developed
that allow for two options: either the new information is completely accepted or it is completely
rejected (Hansson, 1997, Makinson, 1997). Below, a non-prioritized revision operator for our
proposed epistemic model is introduced.

When an agent always acquires information from the same source, then a prioritized method
can be used. Nevertheless, if information comes from different sources, and this sources are not
equally credible, a non-prioritized method can be more adequate. This occurs in many multi-
agent domains and applications. Thus, we focus on a non-prioritized belief revision operator
that is based on the credibility ordering among agents. We propose a method for analyzing
the information received; if inconsistency arises, the credibility order is used to decide which
information prevails. Thus, we show that, with this new revision operator, incoming information
can not be accepted when the receiver agent has more credible beliefs that contradict the new
information.
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4.4.1 Construction
When a belief base K ∈ K is revised by an information object I = (α, Ai) using a non-prioritized
revision operator there are two cases:

• α is consistent with Bel(K). In this case, the operator is equivalent to the prioritized version.
• α is inconsistent with Bel(K), that is ¬α ∈ Bel(K). First, it is necessary to determine whether

the sentence will be accepted; and then if the input is accepted, then the operator is equivalent
to the prioritized version.

According to this, two options arise: completely accept all the input, or completely reject
all the input. In the literature there are other operators which may partially accept the new
information, for instance, Revision by a Set of Sentences defined on belief bases (Falappa et al.,
2002) and Selective Revision defined on belief sets (Fermé and Hansson, 1999).

Definition 22 (Non-prioritized revision using plausibility) Let KAi be a belief base in
K, (α, Aj) be an information object, and σ↓ a bottom incision function for KAi

. Let ∗σ↓ be the
prioritized revision using plausibility operator and + be the expansion using plausibility operator.
The operator “◦σ↓”, called non-prioritized revision using plausibility, is defined as follows:

KAi ◦σ↓ (α, Aj) =





KAi + (α, Aj) if ¬α 6∈ Bel(KAi)
KAi if ¬α ∈ Bel(KAi) and Aj <Ai

Co Pl(¬α, KAi)
KAi ∗σ↓ (α, Aj) if ¬α ∈ Bel(KAi) and Pl(¬α, KAi)≤Ai

Co Aj

Note that, if the incoming information is as credible as the beliefs which are possibly withdrawn,
this operator prioritizes the input. That is, if an agent receives information from the same
informant, it is natural that the more recent information will be accepted.

Example 15 Consider KA1 and ‘≤A1
Co’ of Example 14. Then, suppose A1 wants to

revise by (¬β, A5) using “◦σ↓”. Since Pl(β, KA1) = A2 <A1
Co A5 then KA1 ◦σ↓ (¬β, A5) =

KA1 ∗σ↓ (¬β, A5) = {(α→ β, A2), (α→ β, A4), (ω→ β, A4), (α→ δ, A2), (ε→ β, A2), (ε→
β, A3), (ε→ β, A4)} ∪ {(¬β, A5)}.

It is important to note that if the input of Example 15 is (¬β, A1) rather than (¬β, A5), then
the revision will not have effect because A1 <A1

Co A2. Thus, this operator will never discard more
plausible sentences than the input.

4.4.2 Properties: success postulate must be weakened
An operator defined following the Definition 22, in general, satisfies the same postulates that
satisfies the prioritized version. However, we must introduce the following principle.

Non-prioritization principle. If a belief base is revised by an information object

(α, Aj), then α will not be necessarily accepted in the revised belief base. A sentence

α will be accepted in the revised belief base only when its informant Aj is sufficiently

plausible or credible.

Let Ai, Aj and Ak ∈ A, let KAi ∈ K be a belief base and let “∗” be a prioritized revision
operator on KAi . The non-prioritized revision operator will be represented by “◦”. In the general
case, the non-prioritized revision operator will be equal to a prioritized revision operator. However,
in some particular cases, “◦” does not satisfies success and, therefore, we need weaker versions
of this postulate.

(NRP-1) Weak Success: if ¬α 6∈ Bel(K) then (α, Aj) ∈KAi ◦ (α, Aj).
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This postulate establishes that α is accepted in the revised belief base if ¬α is not derived in the
original belief base.

(NRP-2) Relative Success: KAi
◦ (α, Aj) = KAi

or (α, Aj) ∈KAi
◦ (α, Aj).

This postulate, inspired in (Hansson et al., 2001), says that all or nothing is accepted. That is,
α is accepted in the revised belief base or nothing changes.

Both weak success and relative success do not capture the intuitions behind the non-
prioritization principle. Therefore, we propose the following postulate, called Conditional Success.

(NRP-3) Conditional Success: If (β, Ak) ∈K↑
Ai

and β 6∈ Sen(KAi ∗ (α, Aj)) then (α, Aj) ∈KAi ◦
(α, Aj) if and only if Ak ≤Ai

Co Aj .
This postulate establishes that α is accepted in the revised belief base when its informant is
sufficiently plausible.

Following Definition 22 it is possible to show that let KAi ∈ K, “◦σ↓” is a non-prioritized
revision using plausibility for KAi if and only if it satisfies uniformity, consistency, conditional
success, inclusion and minimal plausibility change. Hence, we can straightforwardly note that
the non-prioritized revision using plausibility operator follows the principles of minimal change,
maintenance of consistency and non-prioritization.

4.5 Application example

Consider the following scenario. An agent A1 wants to travel to a village in a mountain and knows
from the Tourist Information Office (At) that if it rains (ρ), then the road to the village is not
open (¬o). Hence, KA1 = {(ρ→¬o, At)}. Agent A1 also knows that it can obtain information
from other sources: an agent Ac coming down from the village, an agent Ag at the gas station,
an agent Ar at some restaurant, or the weather report on the radio (Aw). The credibility order
of A1 is A1 <A1

Co Ar <A1
Co Ag <A1

Co At <A1
Co Aw <A1

Co Ac and A1 uses the non-prioritized operator ◦σ↓
introduced above to revise its beliefs.

Then, the agent A1 obtains from Ag the information object I1 = (ρ, Ag) and revises its
belief base: KA1 ◦σ↓ (ρ, Ag) = {(ρ→¬o, At), (ρ, Ag)}. Observe that I1 is added to its belief
base, and now ¬o ∈ Bel(KA1) (i.e., with this new information A1 believes that the road is
not open). Later, A1 obtains from Ar the information object I2 = (¬ρ, Ar). Since ρ ∈ Bel(KA1)
and Ar <A1

Co Pl(ρ, KA1) = Ag, then I2 is rejected and its belief base does not change. Agent
A1 then obtains I3 = (ρ, Aw) from the weather report and revises KA1 by I3. Since I3 is not
contradictory with KA1 , I3 is added: KA1 ◦σ↓ (ρ, Aw) = {(ρ→¬o, At), (ρ, Ag), (ρ, Aw)}. Observe
that the plausibility of ρ and ¬o are both increased.

Finally, A1 obtains I4 = (o, Ac) (the road is open) from an agent Ac that is coming down from
the village. Since this new information is contradictory with A1 beliefs (because ¬o ∈ Bel(KA1))
then the kernel set for ¬o is obtained: K↑

A1
⊥⊥¬o = {{(ρ→¬o, At), (ρ, Aw)}}. Then, (ρ→¬o, At)

is selected to withdraw it, and hence, KA1 ◦σ↓ (o, Ac) = {(o, Ac), (ρ, Ag), (ρ, Aw)}. Observe that
now o ∈ Bel(KA1). That is, since the information that the road is open is more credible than the
most plausible derivation for ¬o (the road is not open), then the revision operator contracts KA1

using the incision function which selects (ρ→¬o). Then I4 is added to the agent belief base in a
consistent way. Thus, A1 finally believes that the road is open. Note that the sentences selected
by the incision function in the revision are less credible than o.

5 Forwarding information

In the previous sections we have introduced a formalism for Multi-Source Belief Revision. Using
that formalism, agents can acquire information objects from multiple sources and incorporate
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them into their proper beliefs. Both prioritized and non-prioritized revision operators were
introduced using the credibility order of each agent in order to decide which information prevails.
Nevertheless, nothing was said about how an agent can forward information that is obtained from
others. In the following, we assume that all agents use the epistemic model introduced above,
have their own credibility order, and incorporate information objects through some of the revision
operators defined above.

Although the contribution of this paper is focused on the formalism presented above, in this
section we briefly comment different strategies for forwarding information to other agents. In
particular, we study how to rationally choose meta-information to be sent as a label in the
information objects. The choice of the agent identifier to be sent with the piece of information
is crucial as it influences the decision of the receiver about whether to accept the transmitted
information. Thus, it is in the interest of the sending agent, and in fact in the interest of the
whole coalition of agents, to choose this meta-information carefully.

As stated above, when an agent sends information to another agent, it sends information
objects. Consider the set of agent identifiers A= {A1, A2, A3, A4} where A1 <A1

Co A2 =A1
Co A3 <A1

Co

A4. Suppose that the belief base of the agent A1 is KA1 = {(α, A2), (α, A4), (β, A3), (β → α, A1)}.
If A1 wants to send α to A2, it should send a tuple I =(α, Agent), and it is clear that there are
several choices for the identifier “Agent” of I.

In (Krümpelmann et al., 2009), we describe different criteria for forwarding information that
determine which agent identifier is considered by the receiver at the moment of reasoning. That
is to say, we analyze different alternatives which determine which agent identifier is sent in the
information object. Some of those are: “Sender identifier criterion” which, as in (Dragoni et al.,
1994), suggests sending the proper sender (A1) in the information object; “Source identifier
criterion” that proposes sending one of the identifiers stored with α in the sender’s base (e.g.,A2,
A4) that can be one of them arbitrarily or the more credible of them as is suggested by the
“Combined criterion”. In (Krümpelmann et al., 2009) is shown that there are some examples in
which these simple criteria can select an unappropriated identifier.

In this section, we show a more elaborated criterion that takes the plausibility of sentences
obtained from agents credibility into consideration. This criterion calculates the plausibility of
a sentence α based on all its proofs before being forwarded. This calculation should return an
agent identifier which will be used as the agent identifier of α. Thus, a forwarding criterion can
be implemented by sending an information object I = (α, Ai) where Ai is the agent identifier
obtained using the plausibility function defined above; i.e., Ai = Pl(α, KA1) where A1 is the
forwarder. For instance, if the agentA1 of application example of Section 4.5 wants to send the
sentence ρ, it will send the information object (ρ, Aw).

Example 16 Let us consider Example 9 again. If the agent A1 wishes to send β to agent
A4 then, according to the plausibility based criterion, A1 will send the information object
(β, Pl(β, KA1)) to A4. That is, A1 sends, based on its belief base KA1 and its credibility order
“≤A1

co ”, (β, A2) to A4.

An important decision we made is to forward an agent identifier with a sentence rather than a
credibility label in order to give additional information to the beliefs. One reason for this decision
is that we achieve a more dynamic framework since the evaluation of the credibility of the agent
identifiers is separated by use of the assessment function. Note that the assessment function may
change in time realizing dynamic assessments. Hence, the credibility order among agents can be
changed without changing the knowledge base or the operator. That is, if the credibility order
among agents changes, then the plausibility of all sentences will also change without having to
modify the belief base of the agent. Another reason for this decision is that since each agent has
its own assessment (as stated in Section 2), it is more suitable to send agent identifiers and then
the receiver agent can evaluate the received belief based on the credibility it has according to its
own assessment. This means that the sending agent expresses that it considers the information
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it transmits as credible as it considers the agent identifier in the information object. Now it is
up to the receiver to assess how credible it considers each agent from its perspective using its
own assessment function. We believe that this represents an advanced way of communication in
multi-agent systems.

6 Conclusion and related work

In this work, we have proposed a general framework to deal with the knowledge dynamics of a
multi-agent system. We have introduced an epistemic model and a set of operators to change
the belief base of each agent: expansion, contraction, prioritized revision and non-prioritized
revision. We have defined a set of postulates for every operator, we have proved representation
theorems for the more important changes (contractions and revisions), and we have shown some
interesting principles for each of them. We have shown how these operators can be used for multi-
source belief revision system weighing beliefs following a credibility order among agents, giving
illustrative examples, and showing that these operators may improve the collective reasoning of
a multi-agent system.

In the literature, different formalisms have been presented to deal with MABR (Liu and
Williams, 1999, 2001, Kfir-Dahav and Tennenholz, 1996, Malheiro et al., 1994) where the overall
belief revision of agent teams is investigated. In contrast to these, we focused on MSBR which
is one of the essential components of MABR. Here, the agents maintain the consistency of their
belief bases. Two other approaches that cope with MSBR are (Dragoni et al., 1994) and (Cantwell,
1998). The epistemic model in these works is similar to the one we defined in Section 2; however,
our theory change is different to theirs. That is, like us, both consider that the reliability of
the source affects the credibility of incoming information, and this reliability is used for making
decisions. Nevertheless, these two approaches differ from ours in several issues as is detailed
bellow.

In (Dragoni et al., 1994, 1997), it is considered that agents detect and store in tables the
nogoods, which are the minimally inconsistent subsets of their knowledge bases. A good is a
subset of the knowledge base such that: it is not inconsistent (it is not a superset of a nogood),
and if augmented with whatever else assumption in knowledge base, it becomes inconsistent. In
contrast to our approach, they do not remove beliefs to avoid a contradiction, but quite more
generally, they choose which is the new preferred good among them in knowledge base. In our
model, we obtain the kernel sets to cut some sentences, thus we break the contradictions if it is
necessary.

Like us, they propose to store additional information with each sentence. However, their tuples
contain 5 elements: <Identifier, Sentence, OS, Source, Credibility>, where Origin Set (OS) records
the assumption nodes upon which it really ultimately depends (as derived by the theorem prover).
In contrast to them, in our model a tuple only store a sentence and an associated agent, but a
tuple does not store the credibility. That is, in our model, the plausibility of a sentence is not
explicitly stored with it, as it is in (Dragoni et al., 1994). Thus, when the plausibility of some
sentence is needed, the plausibility function should be applied. As is shown in Example 17, given
a sentence α, its plausibility depends on its proofs (α-kernels). Therefore, if one of the sentences
of these proof changes, then the plausibility of α may change. Hence, if the credibility order is
replaced, then the sentence plausibility may change without changing the belief base.

Example 17 Consider a set A= {A1, A2} where the credibility order is A1 ≤A1
Co A2, KA1 =

{(α, A1), (α→ β, A2)} and KA2 = {(α, A2)}. By Definition 14, Pl(β, KA1) = A1. Now, suppose
that A1 receives from A2 the belief α. Now KA1 = {(α, A1), (α, A2), (α→ β, A2)} and A1 has
two derivations for β, hence Pl(β, KA1) = A2. Observe that plausibility of β is increased.

The communication policy in (Dragoni et al., 1994) is that agents do not communicate
the sources of the assumptions, but they present themselves as completely responsible for the
knowledge they are passing on; receiving agents consider the sending ones as the sources of
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all the assumptions they are receiving from them. In Section 5, we showed a more elaborated
criterion which proposes to calculate the plausibility of a sentence based on all its proofs before
being forwarded. An important decision we made was to forward an agent identifier with a
sentence rather than a credibility label in order to give additional information to the beliefs. One
reason for this decision is that since each agent has its own assessment, it is more suitable to
send agent identifiers so in this way, the receiver agent can evaluate the belief received based on
the credibility it has according to its own assessment. Another reason is that we achieve a more
dynamic framework since the evaluation of the credibility of the agent identifiers is separated by
use of the assessment function.

In (Cantwell, 1998), a scenario (set of incoming information) presented by a source is treated
as a whole and not sentence by sentence, and therefore, it can be inconsistent. A relation of
trustworthiness is introduced over sets of sources and not between single sources. Besides, if two
sources give the same piece of information α, and a single agent gives ¬α, then α will be preferred,
that is, the decision is based on majority. In his approach, the order in which the evidence is
considered does not seem to be important. However, in our work, the order in which beliefs are
considered is important: If an agent receives α and then receives ¬α and both have the same
plausibility, then ¬α will be rejected.

Our work has some link with the idea of epistemic entrenchment (Gärdenfors and Makinson,
1988, Rott, 1992). Here the sentence plausibility is used in a similar way to epistemic entrenchment
to modify knowledge. However, there are some differences between them. For instance, in our work
the order among sentences is based on the informants, whereas in (Gärdenfors and Makinson,
1988) the order among sentences is implicitly defined over belief states represented by belief sets.

When we count on a multi-agent system that has only one agent, the new operator is very
drastic. In this scenario there is no order among agents. The same happens when all the agents
of a multi-agent system have equal credibility. In these cases the bottom incision function does
not have enough information to select sentences and it will erase all sentences in the α-kernels.
This behavior is similar to full meet revision on belief bases (Hansson, 1999). Nevertheless, when
a multi-agent system has several agents with different credibility and it is necessary to represent
knowledge dynamics of the agents, plausibility seems to be a good criteria.

In (Benferhat et al., 1993), several methods to deal with inconsistency are investigated by
defining notions of consequence capable of inferring non trivial conclusions from an inconsistent
knowledge base. It is clear that the methods proposed here and in (Benferhat et al., 1993) follow
different attitudes when facing inconsistent knowledge. In (Benferhat et al., 1993) inconsistency-
tolerant consequence relations in layered knowledge bases are proposed, whereas here a revision
operator is defined.

It is important to note that the revision operator proposed here is similar to the revision
operator proposed in (Benferhat et al., 2002). However, these operators are built in a different
way. In (Benferhat et al., 2002), the epistemic state is represented by a possibility distribution
which is a mapping from the set of classical interpretations or worlds to the [0,1] interval.
This distribution represents the degree of compatibility of the interpretations with the available
information and the revision is done over the possibility distribution. This revision modifies the
ranking of interpretations so as to give priority to the input information. The input must be
incorporated in the epistemic state; in other words, it takes priority over information in the
epistemic state. They discuss the revision with respect to uncertain information; the input is
of the form (φ, a), which means that the classical formula φ should be believed to a degree of
certainty of exactly a.

Both approaches differ in some interesting ways. A first difference occurs in the way they
handle the epistemic state. In (Benferhat et al., 2002), the authors use belief sets, whereas we use
belief bases. The use of belief bases makes the representation of the agent’s cognitive state more
natural and computationally tractable. That is, following (Hansson, 1999, page 24), we consider
that agents’ beliefs could be represented by a limited number of sentences that correspond to the



22 l. h. tamargo et al.

explicit beliefs of the agent. Another important difference, related to the intention of using the
operator in a MAS environment, is the additional information added to each belief. Here, to decide
whether to reject or accept a new belief, a comparison criterion among beliefs is defined. This
criterion (called plausibility) is based on the credibility order among agents. We have assumed
that this order is fixed; however, this order can be changed without affecting the definition of
the operator. This characteristic is one of the motivations for using agent identifiers instead of
representing the plausibility of a sentence as in (Benferhat et al., 2002). Moreover, here a total
order among agents is necessary, but this assumption can be relaxed considering a partial order
among agents.

As future work, we will try to extend the applications of the proposed framework in
environments in which the credibility of agents changes, and therefore, the plausibility of beliefs
(and the results of changes) can be dynamically modified. That is, since the revision process is
based on the credibility order among agents, it is possible to define an operator to revise the
credibility order. This will allow to represent changes over the credibility order.
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7 Appendix

Proposition 3. Let KAi ∈ K and let α ∈ Bel(KAi), then the plausibility of α in the belief base
KAi is equal to the plausibility of α in the compacted belief base K↑

Ai
. That is,

Pl(α, KAi) = SAi(Ag(max(
⋃

X∈K↑⊥⊥
Ai

α min(X)))) = SAi(Ag(max(
⋃

X∈K⊥⊥
Ai

α min(X)))).

Proof Let A= {A1, . . . , An}. If K↑
Ai

= KAi then is trivially proved. If K↑
Ai
⊂KAi then

there exists some sentence β in Sen(KAi) such that β occurs in m tuples in KAi (m≥ 2).
Consider (β, Ai) ∈X (1≤ i≤ n) for some X ∈K↑

Ai

⊥⊥α then K⊥⊥
Ai

α will have m β-kernels

(X, Y1, . . . , Ym−1) such that they will differ only in the tuple containing β. Suppose that
(β, Ap

j ) ∈ Yp for all p (1≤ p≤m− 1, j 6= i and 1≤ j ≤ n). Next, we will prove that X will contain
the only relevant tuples to compute the plausibility of α. There are three cases:

• If min(X) = (β, Ai), then we have that min(Yp) = (β, Ap
j ). By Definition 10, Ap

j ≤Ai

Co Ai

for all p. Moreover X, Y1, ..., Ym−1 differ only in the tuple in that is β. Therefore,
max((β, Ai),(β, A1

j ),...,(β, Am−1
j )) = (β, Ai)∈X. In case that Ap

j =Ai

Co Ai, note that the
selection function follows the same policy either in compact belief base function as plausibility
function. Hence, the selection function returns the same agent identifier in both cases.

• If min(X) 6= (β, Ai) and min(Yp) 6= (β, Ap
j ), then min will return the same tuple in all the

cases. Then X, Y1, ..., Ym−1 differ only in the tuple containing β.
• If min(X) 6= (β, Ai) (suppose that min(X) = (ω, Aj)) and min(Yp) = (β, Ap

j ) for some p,
then since (ω, Aj) ∈ Yp, Ap

j ≤Ai

Co Aj . Note that, if min(Yp) 6= (β, Ap
j ) then by the previous

case min(Yp) = (ω, Aj). Hence, max(min(X) ∪min(Y1) ∪ . . . ∪min(Ym−1))) = (ω, Aj) ∈X.
In case that Ap

j =Ai

Co Ai, note that the selection function follows the same policy either in
compact belief base function as plausibility function. Hence, the selection function returns
the same agent identifier in both cases.

Therefore, from the m β-kernels (X, Y1, . . . , Ym−1) only X will contain the relevant tuples to
calculate the plausibility of α. Then, Pl(α, KAi) is equal to:

SAi(Ag(max(
⋃

X∈K↑⊥⊥
Ai

α

min(X)))) = SAi(Ag(max(
⋃

X∈K⊥⊥
Ai

α

min(X))))
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Proposition 4. Let KAi
∈ K, α ∈ L, “ªσ↓” be a contraction using plausibility operator and

“−σ↓” an optimal contraction using plausibility operator, then

Sen(KAi ªσ↓ α) = Sen(KAi −σ↓ α)

Proof

(⊆) Let β ∈ Sen(KAi
ªσ↓ α). We should prove that β ∈ Sen(KAi

−σ↓ α). Then, by Definition 3
there exists an information object (β, Aj) ∈KAi ªσ↓ α. It follows from Definition 19 that
(β, Aj) ∈ (KAi

\ σ↓(K⊥⊥
Ai

α)). Thus (β, Aj) ∈KAi
and (β, Aj) 6∈ σ↓(K⊥⊥

Ai
α). Since by Proposition 1

K↑
Ai

⊥⊥α⊆K⊥⊥
Ai

α then, by Definition 18, σ↓(K
↑
Ai

⊥⊥α)⊆ σ↓(K⊥⊥
Ai

α) and (β, Aj) 6∈ σ↓(K
↑
Ai

⊥⊥α).
Hence, by Definition 3, β 6∈ Sen(σ↓(K

↑
Ai

⊥⊥α)) and, by Definition 20, β ∈ Sen(KAi
−σ↓ α).

(⊇) Let β ∈ Sen(KAi −σ↓ α). We should prove that β ∈ Sen(KAi ªσ↓ α). Then, by Defini-
tion 3, there exists an information object (β, Aj) ∈KAi

−σ↓ α. It follows from Definition 20
that (β, Aj) ∈KAi

\X where X = {(ω, Ak) : ω ∈ Sen(σ↓(K
↑
Ai

⊥⊥α)) and (ω, Ak) ∈KAi
}. Thus

(β, Aj) ∈KAi
and (β, Aj) 6∈X. Then there exists (β, Ap) ∈K↑

Ai
such that (β, Ap) 6∈ σ↓(K

↑
Ai

⊥⊥α)
with Aj ≤Ai

Co Ap. In case that (β, Ap) 6∈
⋃

(K⊥⊥
Ai

α) then, by Definition 18, (β, Ap) 6∈ σ↓(K⊥⊥
Ai

α).
Since (β, Ap) 6∈ σ↓(K

↑
Ai

⊥⊥α), it follows from Definition 18 that there exists (δ, Aq) ∈ Y ∈K↑
Ai

⊥⊥α

such that Aq ≤Ai

Co Ap. Since (δ, Aq) ∈K↑
Ai

(and, by Proposition 1, (δ, Aq) ∈KAi) then for all
Z ∈K⊥⊥

Ai
α such that Sen(Y ) = Sen(Z), (β, Ap) 6∈ Z ∩ σ↓(K⊥⊥

Ai
α). Thus (β, Ap) 6∈ σ↓(K⊥⊥

Ai
α). Then

(β, Ap) ∈KAi \ σ↓(K⊥⊥
Ai

α). Hence, by Definition 19, β ∈ Sen(KAi ªσ↓ α).

Proposition 5. Let KAi ∈ K, α ∈ L, “ªσ↓” be a contraction using plausibility operator and
“−σ↓” an optimal contraction using plausibility operator, then

KAi ªσ↓ α⊆KAi −σ↓ α

Proof Let (β, Aj) ∈KAi ªσ↓ α, we should prove that (β, Aj) ∈KAi −σ↓ α. It follows from
Definition 19 that (β, Aj) ∈ (KAi \ σ↓(K⊥⊥

Ai
α)). Thus (β, Aj) ∈KAi and (β, Aj) 6∈ σ↓(K⊥⊥

Ai
α).

Since by Proposition 1 K↑
Ai

⊥⊥α⊆K⊥⊥
Ai

α, then by Definition 18 σ↓(K
↑
Ai

⊥⊥α)⊆ σ↓(K⊥⊥
Ai

α). Thus
(β, Aj) 6∈ σ↓(K

↑
Ai

⊥⊥α). Hence, by Definition 3, β 6∈ Sen(σ↓(K
↑
Ai

⊥⊥α)). Then, by Definition 20,
(β, Aj) ∈KAi −σ↓ α.

Next, we give a lemma used in the representation theorem of contraction operator (Theorem 1).
Note that this Lemma is an adapted version of a property defined in (Hansson, 1999).

Lemma 1. K↑⊥⊥α = K↑⊥⊥β if and only if for all subsets K ′ of K↑: α ∈ Bel(K ′) if and only if
β ∈ Bel(K ′).

Proof We will use reductio by absurdum.
(⇒) Suppose that there is some subset B of K↑ such that α ∈ Bel(B) and β 6∈ Bel(B). By
compactness, there is some subset B′ of K↑ such that α ∈ Bel(B′). Then, there is some element
B′′ of K↑⊥⊥α such that B′′ ⊆B′. Since B′′ ⊆B and β 6∈ Bel(B), we have β 6∈ Bel(B′′), so that
B′′ 6∈K↑⊥⊥β. Then B′′ ∈K↑⊥⊥α and B′′ 6∈K↑⊥⊥β contrary to K↑⊥⊥α = K↑⊥⊥β.
(⇐) Suppose that K↑⊥⊥α 6= K↑⊥⊥β. We may assume that there is some X ∈K↑⊥⊥α such that
X 6∈K↑⊥⊥β. There are two cases:

- β 6∈ Bel(X): then we have α ∈ Bel(X) and β 6∈ Bel(X), showing that the conditions of the
lemma are not satisfied.
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- β ∈ Bel(X): then it follows from X 6∈K↑⊥⊥β that there is some X ′ such that X ′ ⊂X and
β ∈ Bel(X ′). It follows from X ′ ⊂X ∈K↑⊥⊥α that α 6∈ Bel(X ′). We than have β ∈ Bel(X ′)
and α 6∈ Bel(X ′), showing that the conditions of the lemma are not satisfied.

Theorem 1. Let KAi
∈ K and let “−σ↓” be a contraction operator. “−σ↓” is an optimal

contraction using plausibility for KAi
if and only if it satisfies CP-1, ..., CP-4, i.e., it satisfies

success, inclusion, uniformity and minimal plausibility change.

Proof
• Postulates to Construction. We need to show that if an operator (−) satisfies the enumerated
postulates, then it is possible to build an operator in the way specified in the theorem (−σ↓). Let
“σ↓” be a function such that, for every base KAi (KAi ∈ K) and for every consistent belief α, it
holds that:

[Hypothesis] σ↓(K
↑
Ai

⊥⊥α) = K↑
Ai
\KAi − α.

We must show:
− Part A.

1. “σ↓” is a well defined function.
2. σ↓(K

↑
Ai

⊥⊥α)⊆⋃
(K↑

Ai

⊥⊥α).
3. If X ∈K↑

Ai

⊥⊥α, X 6= ∅, then X ∩ σ↓(K
↑
Ai

⊥⊥α) 6= ∅.
4. If (β, Aj) ∈ σ↓(K

↑
Ai

⊥⊥α) then (β, Aj) ∈X ∈K↑
Ai

⊥⊥α and for all (δ, Ak) ∈X it holds that
Aj ≤Ai

Co Ak.

− Part B. “−σ↓” is equal to “−”, that is, KAi −σ↓ α = KAi − α.

Part A.
1. “σ↓” is a well defined function.

Let α and β two sentences such that K↑
Ai

⊥⊥α = K↑
Ai

⊥⊥β. We need to show that σ↓(K
↑
Ai

⊥⊥α) =
σ↓(K

↑
Ai

⊥⊥β). It follows from K↑
Ai

⊥⊥α = K↑
Ai

⊥⊥β, by Lemma 1, for all subset K ′ of K↑
Ai

, α ∈ Bel(K ′)
if and only if β ∈ Bel(K ′). Since Sen(KAi) = Sen(K↑

Ai
) and K↑

Ai
⊆KAi then, for all subset K ′′

of KAi , α ∈ Bel(K ′′) if and only if β ∈ Bel(K ′′). Thus, by uniformity, KAi − α = KAi − β.
Therefore, by the definition of σ↓ adopted in the hypothesis, σ↓(K

↑
Ai

⊥⊥α) = σ↓(K
↑
Ai

⊥⊥β).

2. σ↓(K
↑
Ai

⊥⊥α)⊆⋃
(K↑

Ai

⊥⊥α).
Let (β, Aj) ∈ σ↓(K

↑
Ai

⊥⊥α). By the definition of σ↓ adopted in the hypothesis (β, Aj) ∈ (K↑
Ai
\

KAi − α). Thus, (β, Aj) ∈K↑
Ai

and (β, Aj) 6∈KAi − α. It follows by minimal plausibility
change that there is some K ′ ⊆K↑

Ai
such that α 6∈ Bel(K ′) and α ∈ Bel(K ′ ∪ {(β, Aj)}). By

compactness, there is some finite subset K ′′ of K ′ such that α ∈ Bel(K ′′ ∪ {(β, Aj)}). Since
α 6∈ Bel(K ′) we have α 6∈ Bel(K ′′). It follows from α 6∈ Bel(K ′′) and α ∈ Bel(K ′′ ∪ {(β, Aj)})
that there is some α-kernel that contains (β, Aj). Hence, (β, Aj) ∈

⋃
(K↑

Ai

⊥⊥α).

3. If X ∈K↑
Ai

⊥⊥α, X 6= ∅, then X ∩ σ↓(K
↑
Ai

⊥⊥α) 6= ∅.
Let ∅ 6= X ∈K↑

Ai

⊥⊥α, we need to show that X ∩ σ↓(K
↑
Ai

⊥⊥α) 6= ∅. We should prove that, there
exists (β, Aj) ∈X such that (β, Aj) ∈ σ↓(K

↑
Ai

⊥⊥α). By success, α 6∈ Bel(KAi − α). Since X 6= ∅
then α ∈ Bel(X) and X *KAi − α; i.e., there is some (β, Aj) such that (β, Aj) ∈X and (β, Aj) 6∈
KAi − α. Since X ⊆K↑

Ai
it follows that (β, Aj) ∈ (K↑

Ai
\KAi − α); i.e., by the definition of σ↓

adopted in the hypothesis (β, Aj) ∈ σ↓(K
↑
Ai

⊥⊥α). Therefore, X ∩ σ↓(K
↑
Ai

⊥⊥α) 6= ∅.
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4. If (β, Aj) ∈ σ↓(K
↑
Ai

⊥⊥α) then (β, Aj) ∈X ∈K↑
Ai

⊥⊥α and for all (δ, Ak) ∈X it holds that Aj ≤Ai

Co

Ak.
Suppose that (β, Aj) ∈ σ↓(K

↑
Ai

⊥⊥α). Then, by the definition of σ↓ adopted in the hypothesis,
(β, Aj) ∈ (K↑

Ai
\KAi − α). Thus, (β, Aj) ∈K↑

Ai
and (β, Aj) 6∈KAi − α. It follows by mini-

mal plausibility change that there is some K ′ ⊆K↑
Ai

such that α 6∈ Bel(K ′), but α ∈
Bel(K ′ ∪ {(β, Aj)}) and for all (δ, Ak) ∈K ′ such that α 6∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}) it
holds that Aj ≤Ai

Co Ak. By compactness, there is some finite subset K ′′ of K ′ such that α ∈
Bel(K ′′ ∪ {(β, Aj)}). Since α 6∈ Bel(K ′) we have α 6∈ Bel(K ′′). It follows from α 6∈ Bel(K ′′) and
α ∈ Bel(K ′′ ∪ {(β, Aj)}) that there is some α-kernel X that contains (β, Aj). Then, for all
(δ, Ak) ∈X, α 6∈ Bel(X \ {(δ, Ak)}). Since X ⊆K ′, it follows that Aj ≤Ai

Co Ak.

Part B. “−σ↓” is equal to “−”, that is, KAi
−σ↓ α = KAi

− α.

Let “−σ↓” a contraction operator defined as KAi −σ↓ α = KAi \X where: X = {(ω, Aj) : ω ∈
Sen(σ↓(K

↑
Ai

⊥⊥α)) and (ω, Aj) ∈KAi} and σ↓ defined as in the hypothesis.

(⊇) Let (δ, Aj) ∈KAi
− α. It follows by inclusion that KAi

− α⊆KAi
and (δ, Aj) ∈KAi

. Thus,
it follows from (δ, Aj) ∈KAi

− α and (δ, Aj) ∈KAi
that (δ, Aj) 6∈ (KAi

\KAi
− α). Since K↑

Ai
⊆

KAi , then (δ, Aj) 6∈ (K↑
Ai
\KAi − α). Thus, by the definition of σ↓ adopted in the hypothesis,

(δ, Aj) 6∈ σ↓(K
↑
Ai

⊥⊥α). We have two cases:

- (δ, Aj) ∈K↑
Ai

. Then δ 6∈ Sen(σ↓(K
↑
Ai

⊥⊥α)).
- (δ, Aj) ∈KAi . Then, if (δ, Ak) ∈K↑

Ai
it holds that Aj ≤Ai

Co Ak. By reductio ad absurdum,
suppose that (δ, Ak) ∈ σ↓(K

↑
Ai

⊥⊥α). Then (δ, Ak) ∈ (K↑
Ai
\KAi − α) by the definition of

σ↓ adopted in the hypothesis. Then (δ, Ak) 6∈KAi − α which is absurd due to we sup-
posed that (δ, Aj) ∈KAi − α and (δ, Ak) ∈K↑

Ai
. Therefore, (δ, Ak) 6∈ σ↓(K

↑
Ai

⊥⊥α) and δ 6∈
Sen(σ↓(K

↑
Ai

⊥⊥α)).

Hence, it follows from definition that (δ, Aj) ∈KAi −σ↓ α.

(⊆) Let (δ, Aj) ∈KAi −σ↓ α. By definition (δ, Aj) ∈KAi \X where X = {(ω, Ak) : ω ∈
Sen(σ↓(K

↑
Ai

⊥⊥α)) and (ω, Ak) ∈KAi}. Then, (δ, Aj) ∈KAi and (δ, Aj) 6∈X. Therefore, δ 6∈
Sen(σ↓(K

↑
Ai

⊥⊥α)). Thus, by the definition of σ↓ adopted in the hypothesis, δ 6∈ Sen(K↑
Ai
\ (KAi −

α)). Hence, δ ∈ Sen(KAi − α) and it must be the case in which (δ, Aj) ∈KAi − α.

• Construction to Postulates. Let −σ↓ be an optimal contraction using plausibility for KAi . We
need to show that it satisfies the four conditions of the theorem.

(CP-1) Success: if α 6∈ Cn(∅), then α 6∈ Bel(KAi −σ↓ α).
Proof. Suppose to the contrary that α 6∈ Cn(∅) and α ∈ Bel(KAi −σ↓ α). By compactness, there
is a finite subset K ′ of KAi −σ↓ α such that α ∈ Bel(K ′). There is then an α-kernel K ′′ such
that K ′′ ⊆K ′. Since K ′ ⊆KAi −σ↓ α⊆KAi , K ′′ is also an α-kernel of KAi . We then have K ′′ ∈
K↑

Ai

⊥⊥α and K ′′ ⊆KAi −σ↓ α. However, it follows from α 6∈ Cn(∅) that K ′′ 6= ∅. By clause (2)
of Definition 17, there is some β ∈ Sen(K ′′) such that β ∈ Sen(σ↓(K

↑
Ai

⊥⊥α)). By Definition 20,
β 6∈ Sen(KAi −σ↓ α), contrary to β ∈ Sen(K ′′) with K ′′ ⊆KAi −σ↓ α.

(CP-2) Inclusion: KAi −σ↓ α⊆KAi .
Proof. Straightforward by definition.

(CP-3) Uniformity: If for all K ′ ⊆KAi , α ∈ Bel(K ′) if and only if β ∈ Bel(K ′) then KAi −σ↓ α =
KAi −σ↓ β.
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Proof. Suppose that for all subset K ′ of KAi
, α ∈ Bel(K ′) if and only if β ∈ Bel(K ′). By Lemma 1,

K↑
Ai

⊥⊥α = K↑
Ai

⊥⊥β. Since “σ↓” is a well defined function then σ↓(K
↑
Ai

⊥⊥α) = σ↓(K
↑
Ai

⊥⊥β). There-
fore, by Definition 20 KAi −σ↓ α = KAi −σ↓ β.

(CP-4) Minimal Plausibility Change: If (β, Ap) ∈KAi
and (β, Ap) 6∈KAi

−σ↓ α then there is
K ′ ⊆KAi

where α 6∈ Bel(K ′) but there exists (β, Aj) ∈KAi
such that:

• α ∈ Bel(K ′ ∪ {(β, Aj)}),
• p = j or Ap ≤Ai

Co Aj , and
• for all (δ, Ak) ∈K ′ such that α 6∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}) it holds that Aj ≤Ai

Co Ak.

Proof. Suppose (β, Ap) ∈KAi and (β, Ap) 6∈KAi −σ↓ α. Then, by Definition 20, (β, Ap) ∈ Y

where Y = {(ω, Aq) : ω ∈ Sen(σ↓(K
↑
Ai

⊥⊥α)) and (ω, Aq) ∈KAi
}. Then β ∈ Sen(σ↓(K

↑
Ai

⊥⊥α)). By
Definition 18 of bottom incision function, σ↓(K

↑
Ai

⊥⊥α)⊆⋃
(K↑

Ai

⊥⊥α), so that there is some
information object (β, Aj) such that (β, Aj) ∈X ∈K↑

Ai

⊥⊥α. It follows from Definition 7 that
(β, Aj) ∈K↑

Ai
. Thus, p = j or Ap ≤Ai

Co Aj . Let K ′ ⊆KAi
such that X \ {(β, Aj)} ⊆K ′. We have

two cases:

- K ′ = X \ {(β, Aj)}. Then, since X is minimal, α 6∈ Bel(K ′) but α ∈ Bel(K ′ ∪ {(β, Aj)}),
and for all (δ, Ak) ∈K ′, α 6∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}). Therefore, by Definition 18,
Aj ≤Ai

Co Ak.
- X \ {(β, Aj)} ⊂K ′ and {(β, Aj)} 6∈K ′. Then there exists (δ, Ak) ∈K ′ such that Ak <Ai

Co Aj

and, by Definition 18, (δ, Ak) 6∈X. Therefore, α ∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}).

Theorem 2. Let KAi ∈ K and let “∗σ↓” be a revision operator. “∗σ↓” is a prioritized revision
using plausibility for KAi if and only if it satisfies RP-1, ..., RP-5, i.e., it satisfies success, inclusion,
consistency, uniformity and minimal plausibility change.

Proof
• Postulates to Construction. We need to show that if an operator (∗) satisfies the enumerated
postulates, then it is possible to build an operator in the way specified in the theorem (∗σ↓). Let
“σ↓” be a function such that, for every base KAi (KAi ∈ K) and for every consistent belief α, it
holds that:

[Hypothesis] σ↓(K
↑
Ai

⊥⊥¬α) = K↑
Ai
\KAi ∗ (α, Aj).

We must show:
− Part A.

1. “σ↓” is a well defined function.
2. σ↓(K

↑
Ai

⊥⊥¬α)⊆⋃
(K↑

Ai

⊥⊥¬α).
3. If X ∈K↑

Ai

⊥⊥¬α, X 6= ∅, then X ∩ σ↓(K
↑
Ai

⊥⊥¬α) 6= ∅.
4. If (β, Aj) ∈ σ↓(K

↑
Ai

⊥⊥¬α) then (β, Aj) ∈X ∈K↑
Ai

⊥⊥¬α and for all (δ, Ak) ∈X it holds that
Aj ≤Ai

Co Ak.

− Part B. “∗σ↓” is equal to “∗”, that is, KAi ∗σ↓ (α, Aj) = KAi ∗ (α, Aj).

Part A.
1. “σ↓” is a well defined function.

Let ¬α and ¬β two sentences such that K↑
Ai

⊥⊥¬α = K↑
Ai

⊥⊥¬β. We need to show that
σ↓(K

↑
Ai

⊥⊥¬α) = σ↓(K
↑
Ai

⊥⊥¬β). It follows from K↑
Ai

⊥⊥¬α = K↑
Ai

⊥⊥¬β, by Lemma 1, for all subset
K ′ of K↑

Ai
, ¬α ∈ Bel(K ′) if and only if ¬β ∈ Bel(K ′). That is, for all subset K ′ of K↑

Ai
,
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Sen(K ′) ` ¬α if and only if Sen(K ′) ` ¬β. Then, for all subset K ′ of K↑
Ai

, {α} ∪ Sen(K ′) ` ⊥
if and only if {β} ∪ Sen(K ′) ` ⊥. Since, K↑

Ai
⊆KAi

(I) and Sen(K↑
Ai

) = Sen(KAi
), then for

all subset K ′′ of KAi
, {α} ∪ Sen(K ′′) ` ⊥ if and only if {β} ∪ Sen(K ′′) ` ⊥. Thus, by uni-

formity, KAi ∩ (KAi ∗ (α, Aj)) = KAi ∩ (KAi ∗ (β, Ak)). Then, KAi \ (KAi ∗ (α, Aj)) = KAi \
(KAi ∗ (β, Ak)) (II). Therefore, by definition of σ↓ adopted in the hypothesis, (I) and (II), then
σ↓(K

↑
Ai

⊥⊥¬α) = σ↓(K
↑
Ai

⊥⊥¬β).

2. σ↓(K
↑
Ai

⊥⊥¬α)⊆⋃
(K↑

Ai

⊥⊥¬α).

Let (β, Aj) ∈ σ↓(K
↑
Ai

⊥⊥¬α). By the definition of σ↓ adopted in the hypothesis (β, Aj) ∈
(K↑

Ai
\KAi ∗ (α, Ak)). Thus, (β, Aj) ∈K↑

Ai
and (β, Aj) 6∈KAi

∗ (α, Ak). It follows by minimal
plausibility change that there is some K ′ ⊆K↑

Ai
such that ¬α 6∈ Bel(K ′) and ¬α ∈ Bel(K ′ ∪

{(β, Aj)}). By compactness, there is some finite subset K ′′ of K ′ such that ¬α ∈ Bel(K ′′ ∪
{(β, Aj)}). Since ¬α 6∈ Bel(K ′) we have ¬α 6∈ Bel(K ′′). It follows from ¬α 6∈ Bel(K ′′) and
¬α ∈ Bel(K ′′ ∪ {(β, Aj)}) that there is some ¬α-kernel that contains (β, Aj). Hence (β, Aj) ∈⋃

(K↑
Ai

⊥⊥¬α).

3. If X ∈K↑
Ai

⊥⊥¬α, X 6= ∅, then X ∩ σ↓(K
↑
Ai

⊥⊥¬α) 6= ∅.
Let ∅ 6= X ∈K↑

Ai

⊥⊥¬α, we need to show that X ∩ σ↓(K
↑
Ai

⊥⊥¬α) 6= ∅. We should prove that,
there exists (β, Aj) ∈X such that (β, Aj) ∈ σ↓(K

↑
Ai

⊥⊥¬α). Suppose that α is consistent. Since
we have assumed that KAi is consistent, by consistency, KAi ∗ (α, Ak) is consistent. Since
X 6= ∅ and X is inconsistent with α then X *KAi ∗ (α, Ak) by success. This means that there
is some (β, Aj) ∈X and (β, Aj) 6∈KAi ∗ (α, Ak). Since X ⊆K↑

Ai
it follows that (β, Aj) ∈ (K↑

Ai
\

KAi ∗ (α, Ak)); i.e., by the definition of σ↓ adopted in the hypothesis (β, Aj) ∈ σ↓(K
↑
Ai

⊥⊥¬α).
Therefore, X ∩ σ↓(K

↑
Ai

⊥⊥¬α) 6= ∅.

4. If (β, Aj) ∈ σ↓(K
↑
Ai

⊥⊥¬α) then (β, Aj) ∈X ∈K↑
Ai

⊥⊥¬α and for all (δ, Ak) ∈X it holds that
Aj ≤Ai

Co Ak.
Suppose that (β, Aj) ∈ σ↓(K

↑
Ai

⊥⊥¬α). Then, by the definition of σ↓ adopted in the hypothesis
(β, Aj) ∈ (K↑

Ai
\KAi ∗ (α, Ap)). Thus, (β, Aj) ∈K↑

Ai
and (β, Aj) 6∈KAi ∗ (α, Ap). It follows by

minimal plausibility change that there is some K ′ ⊆K↑
Ai

such that ¬α 6∈ Bel(K ′), but ¬α ∈
Bel(K ′ ∪ {(β, Aj)}) and for all (δ, Ak) ∈K ′ such that ¬α 6∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}) it
holds that Aj ≤Ai

Co Ak. By compactness, there is some finite subset K ′′ of K ′ such that ¬α ∈
Bel(K ′′ ∪ {(β, Aj)}). Since ¬α 6∈ Bel(K ′) we have ¬α 6∈ Bel(K ′′). It follows from ¬α 6∈ Bel(K ′′)
and ¬α ∈ Bel(K ′′ ∪ {(β, Aj)}) that there is some ¬α-kernel X that contains (β, Aj). Then, for
all (δ, Ak) ∈X, ¬α 6∈ Bel(X \ {(δ, Ak)}). Since X ⊆K ′, it follows that Aj ≤Ai

Co Ak.

Part B. “∗σ↓” is equal to “∗”, that is, KAi ∗σ↓ (α, Aj) = KAi ∗ (α, Aj).

Let “∗σ↓” a revision operator defined as KAi ∗σ↓ (α, Aj) = (KAi \X) ∪ {(α, Aj)} where: X =
{(ω, Ap) : ω ∈ Sen(σ↓(K

↑
Ai

⊥⊥¬α)) and (ω, Ap) ∈KAi} and σ↓ defined as in the hypothesis.

(⊇) Let (δ, Ak) ∈KAi ∗ (α, Aj). It follows by inclusion that KAi ∗ (α, Aj)⊆KAi ∪ {(α, Aj)}
and (δ, Ak) ∈KAi ∪ {(α, Aj)}. If (δ, Ak) = (α, Aj) then (δ, Ak) ∈KAi ∗σ↓ (α, Aj) by definition.
Suppose that (δ, Ak) 6= (α, Aj). Since (δ, Ak) ∈KAi ∪ {(α, Aj)} then (δ, Ak) ∈KAi . Thus, it
follows from (δ, Ak) ∈KAi ∗ (α, Aj) and (δ, Ak) ∈KAi that (δ, Ak) 6∈ (KAi \KAi ∗ (α, Aj)). Since
K↑

Ai
⊆KAi then (δ, Ak) 6∈ (K↑

Ai
\KAi ∗ (α, Aj)). Therefore, by the definition of σ↓ adopted in the

hypothesis, (δ, Ak) 6∈ σ↓(K
↑
Ai

⊥⊥¬α). We have two cases:

- (δ, Ak) ∈K↑
Ai

. Then δ 6∈ Sen(σ↓(K
↑
Ai

⊥⊥¬α)).
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- (δ, Ak) ∈KAi
. Then, if (δ, Ap) ∈K↑

Ai
it holds that Ak ≤Ai

Co Ap. By reductio ad absurdum,
suppose that (δ, Ap) ∈ σ↓(K

↑
Ai

⊥⊥¬α) then (δ, Ap) ∈ (K↑
Ai
\KAi

∗ (α, Aj)) by the definition
of σ↓ adopted in the hypothesis. Then (δ, Ap) 6∈KAi

∗ (α, Aj) which is absurd due to we
supposed that (δ, Ak) ∈KAi ∗ (α, Aj) and (δ, Ap) ∈K↑

Ai
. Therefore (δ, Ap) 6∈ σ↓(K

↑
Ai

⊥⊥¬α).
Thus δ 6∈ Sen(σ↓(K

↑
Ai

⊥⊥¬α)).

Therefore, it follows from definition that (δ, Ak) ∈KAi
∗σ↓ (α, Aj).

(⊆) Let (δ, Ak) ∈KAi
∗σ↓ (α, Aj). It follows from definition that KAi

∗σ↓ (α, Aj)⊆KAi
∪

{(α, Aj)} and (δ, Ak) ∈KAi ∪ {(α, Aj)}. Then (δ, Ak) ∈KAi or (δ, Ak) = (α, Aj). We have two
cases:

- (δ, Ak) = (α, Aj). Then, by success, (δ, Ak) ∈KAi
∗ (α, Aj).

- (δ, Ak) ∈KAi
and (δ, Ak) 6= (α, Aj). Then, by definition, δ 6∈ Sen(σ↓(K

↑
Ai

⊥⊥¬α)). By the
definition of σ↓ adopted in the hypothesis, then δ 6∈ Sen(K↑

Ai
\ (KAi

∗ (α, Aj)). From
(δ, Ak) ∈KAi

then δ ∈ Sen(KAi
). Since Sen(KAi

) = Sen(K↑
Ai

) then δ ∈ Sen(KAi
∗ (α, Aj)).

Therefore, it must be the case in which (δ, Ak) ∈KAi
∗ (α, Aj).

• Construction to Postulates. Let ∗σ↓ be an prioritized revision using plausibility for KAi . We
need to show that it satisfies the five conditions of the theorem.

(RP-1) Success: (α, Aj) ∈KAi ∗σ↓ (α, Aj).
Proof. Straightforward by definition.

(RP-2) Inclusion: KAi ∗σ↓ (α, Aj)⊆KAi ∪ {(α, Aj)}.
Proof. Straightforward by definition.

(RP-3) Consistency : if α is consistent then KAi ∗σ↓ (α, Aj) is consistent.
Proof. Straightforward by definition.

(RP-4) Uniformity: If for all K ′ ⊆KAi , {α} ∪ Sen(K ′) `⊥ if and only if {β} ∪ Sen(K ′) `⊥ then
KAi ∩ (KAi ∗σ↓ (α, Aj)) = KAi ∩ (KAi ∗σ↓ (β, Ak)).
Proof. Suppose that for all subset K ′ of KAi , {α} ∪ Sen(K ′) `⊥ if and only if {β} ∪ Sen(K ′) `⊥.
Then, it follows that Sen(K ′) ` ¬α if and only if Sen(K ′) ` ¬β; i.e., ¬α ∈ Bel(K ′) if and only if
¬β ∈ Bel(K ′). Hence, by Lemma 1, K↑

Ai

⊥⊥¬α = K↑
Ai

⊥⊥¬β. Since “σ↓” is a well defined function
then σ↓(K

↑
Ai

⊥⊥¬α) = σ↓(K
↑
Ai

⊥⊥¬β). Therefore, by Definition 20, KAi −σ↓ ¬α = KAi −σ↓ ¬β.
Then, by Definition 21, KAi ∩ (KAi ∗σ↓ (α, Aj)) = KAi ∩ (KAi ∗σ↓ (β, Ak)).

(RP-5) Minimal Plausibility Change: If (β, Ap) ∈KAi and (β, Ap) 6∈KAi ∗σ↓ (α, Ak) then there
is K ′ ⊆KAi where ¬α 6∈ Bel(K ′) but there exists (β, Aj) ∈KAi such that:

• ¬α ∈ Bel(K ′ ∪ {(β, Aj)}),
• p = j or Ap ≤Ai

Co Aj , and
• for all (δ, Ak) ∈K ′ such that ¬α 6∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}) it holds that Aj ≤Ai

Co Ak.

Proof. Suppose (β, Ap) ∈KAi and (β, Ap) 6∈KAi ∗σ↓ (α, Ak). Then, by Definition 21,
(β, Ap) 6∈ (KAi −σ↓ ¬α) + (α, Ak). Thus, by Definition 20, (β, Ap) ∈ {(ω, Aq) : ω ∈
Sen(σ↓(K

↑
Ai

⊥⊥¬α)) and (ω, Aq) ∈KAi}. Then β ∈ Sen(σ↓(K
↑
Ai

⊥⊥¬α)). By Definition 18 of
bottom incision function, σ↓(K

↑
Ai

⊥⊥¬α)⊆⋃
(K↑

Ai

⊥⊥¬α), so that there is some information object
(β, Aj) such that (β, Aj) ∈X ∈K↑

Ai

⊥⊥¬α. It follows from Definition 7 that (β, Aj) ∈K↑
Ai

. Thus,
p = j or Ap ≤Ai

Co Aj . Let K ′ ⊆KAi such that X \ {(β, Aj)} ⊆K ′. We have two cases:
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- K ′ = X \ {(β, Aj)}. Then, since X is minimal, ¬α 6∈ Bel(K ′) but ¬α ∈ Bel(K ′ ∪ {(β, Aj)}),
and for all (δ, Ak) ∈K ′, ¬α 6∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}). Hence, by Definition 18,
Aj ≤Ai

Co Ak.
- X \ {(β, Aj)} ⊂K ′ and {(β, Aj)} 6∈K ′. Then, there exists (δ, Ak) ∈K ′ such that Ak <Ai

Co Aj

and, by Definition 18, (δ, Ak) 6∈X. Therefore, ¬α ∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}).

Proposition 6. If “+” satisfies EP-1,...,EP-5 and “−σ↓” satisfies CP-1,...,CP-4 then “∗σ↓”
satisfies RP-1,...,RP-5.

Proof
Let “∗σ↓” be a prioritized revision using plausibility for KAi , defined as KAi ∗σ↓ (α, Aj) =

(KAi
−σ↓ ¬α) + (α, Aj). We need to show that it satisfies RP-1,...,RP-5 from the postulates of

expansion using plausibility and from the postulates of optimal contraction using plausibility.

(RP-1) Success: (α, Aj) ∈KAi ∗σ↓ (α, Aj).
Proof. Straightforward by Definition 21 and EP-1.

(RP-2) Inclusion: KAi
∗σ↓ (α, Aj)⊆KAi

∪ {(α, Aj)}.
Proof. It follows from CP-2 that KAi −σ↓ ¬α⊆KAi . Then, (KAi −σ↓ ¬α) ∪ {(α, Aj)} ⊆KAi ∪
{(α, Aj)}. Thus, by Definition 16 (KAi −σ↓ ¬α) + (α, Aj)⊆KAi ∪ {(α, Aj)}. Hence, by Defini-
tion 21, KAi ∗σ↓ (α, Aj)⊆KAi ∪ {(α, Aj)}.

(RP-3) Consistency : if α is consistent then KAi ∗σ↓ (α, Aj) is consistent.
Proof. By Definition 21, KAi ∗σ↓ (α, Aj) = (KAi −σ↓ ¬α) + (α, Aj). From EP-1 and CP-1 it
follows that KAi ∗σ↓ (α, Aj) is consistent.

(RP-4) Uniformity: If for all K ′ ⊆KAi , {α} ∪ Sen(K ′) `⊥ if and only if {β} ∪ Sen(K ′) `⊥ then
KAi ∩ (KAi ∗σ↓ (α, Aj)) = KAi ∩ (KAi ∗σ↓ (β, Ak)).
Proof. Suppose that for all subset K ′ of KAi , {α} ∪ Sen(K ′) `⊥ if and only if {β} ∪ Sen(K ′) `⊥.
Then, it follows that Sen(K ′) ` ¬α if and only if Sen(K ′) ` ¬β; i.e., ¬α ∈ Bel(K ′) if and only if
¬β ∈ Bel(K ′). Thus, it follows from CP-3 that KAi −σ↓ ¬α = KAi −σ↓ ¬β. Hence, by Definition
21, KAi ∩ (KAi ∗σ↓ (α, Aj)) = KAi ∩ (KAi ∗σ↓ (β, Ak)).

(RP-5) Minimal Plausibility Change: If (β, Ap) ∈KAi and (β, Ap) 6∈KAi ∗σ↓ (α, Ak) then there
is K ′ ⊆KAi where ¬α 6∈ Bel(K ′) but there exists (β, Aj) ∈KAi such that:

• ¬α ∈ Bel(K ′ ∪ {(β, Aj)}),
• p = j or Ap ≤Ai

Co Aj , and
• for all (δ, Ak) ∈K ′ such that ¬α 6∈ Bel((K ′ ∪ {(β, Aj)}) \ {(δ, Ak)}) it holds that Aj ≤Ai

Co Ak.

Proof. Suppose (β, Ap) ∈KAi and (β, Ap) 6∈KAi ∗σ↓ (α, Ak). Then, by Definition 21, (β, Ap) 6∈
KAi −σ↓ ¬α. Thus, it follows by CP-4 that all conditions of the postulate are satisfied.
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