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a b s t r a c t

A geometrically non-linear theory is used to study the dynamic behavior of a thin-walled
composite beam. The model is based on a small strain and large rotation and displacements
theory, which is formulated through the adoption of a higher-order displacement field and
takes into account shear flexibility (bending and warping shear). In the analysis of a weakly
nonlinear continuous system, the Ritz’s method is employed to express the problem in
terms of generalized coordinates. Then, perturbation method of multiple scales is applied
to the reduced system in order to obtain the equations of amplitude and modulation. In
this paper, the non-linear 3D oscillations of a simply-supported beam are examined, con-
sidering a cross-section having one symmetry axis. Composite is assumed to be made of
symmetric balanced laminates and especially orthotropic laminates. The model, which
contains both quadratic and cubic non-linearities, is assumed to be in internal resonance
condition. Steady-state solution and their stability are investigated by means of the eigen-
values of the Jacobian matrix. The equilibrium solution is governed by the modal coupling
and experience a complex behavior composed by saddle noddle, Hopf and double period
bifurcations.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Thin-walled beam structures made of advanced anisotropic composite materials are increasingly found in the design of
the aircraft wing, helicopter blade, axles of vehicles and so on, due to their outstanding engineering properties, such as high
strength/stiffness to weight ratios and favorable fatigue characteristics. The interesting possibilities provided by fiber rein-
forced composite materials can be used to enhance the response characteristics of such structures that operate in complex
environmental conditions. We consider the nonlinear response of a simply supported beam to a primary resonant excitation
of its first mode. The analysis accounts for a lateral load, modal damping and two fiber orientations. The second and third
natural frequencies are approximately two and three times the first natural frequency, respectively. The flexural–torsional
coupling produces a quadratic and cubic nonlinearity in the governing nonlinear partial-differential equation. Because of the
quadratic and cubic nonlinearity and the two-to-one and three-to-one ratio of the second and third with the first natural
frequencies, the beam exhibits an internal (autoparametric) resonance that couples the first, second and third modes, result-
ing in energy exchange between them.
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For a comprehensive review of nonlinear modal interactions, we refer the reader to Refs. [1–3]. In this paper, we present a
brief review of some of the studies of the response of systems exhibiting two-to-one and three-to-one internal resonances to
primary resonant excitations.

Crespo da Silva and Glynn [4,5] developed a non-linear shear-undeformable beam model with a compact cross-section
and derived a set of integro-partial-differential equations governing flexural–flexural–torsional motions of inextensional
beams, including geometric and inertia nonlinearities. They used these equations and the method of multiple scales to ascer-
tain the importance of the geometric terms [5]; they found that they cannot be neglected for the lower modes, especially the
first mode. Luongo et al. [6] and Crespo da Silva and Zaretzky [7] analyzed shear and axially undeformable beams. In the last
reference the flexural–torsional free motions are studied for a cantilever beam, having close bending and torsional frequen-
cies; although beams with non-compact cross-section are considered, the warping effects are neglected. In these articles a
non-linear one-dimensional polar model of compact beam is derived, capable of studying interactions between flexural and
torsional motions occurring in beam-like structures in several internal resonance conditions. The non-linear planar motions
and the non-linear resonance frequencies was recently investigated by Fonseca and Ribeiro [8]. They used a p-version finite
element formulated for geometrically non-linear vibrations. Lopes Alonso and Ribeiro [9] continued this last work [8] for the
free vibrations of clamped–clamped circular cross section beams using hierarchic sets of displacement shape functions and
that simultaneously considers bending, torsion and longitudinal deformation. In this case, they employed the harmonic bal-
ance method to show the variation of the bending and torsional shapes of vibration with the non-linear natural frequency.
The effects of the warping function, longitudinal displacements of second order and shear deformations on the nonlinear
bending-torsion vibrations of rectangular cross section was analyzed in the work of Stoykov and Ribeiro [10]. In relation
to thin-walled beams, Di Egidio et al. [11,12] presented the dynamic response of an open cross-section beam divided in
two works. They developed a shear undeformable thin-walled beam where the effects of non linear in-plane and out-of-
plane warping and torsional elongation were included in the model [11]. The dynamic coupling phenomena in conditions
of internal resonance was analyzed in the second part [12]. Machado and Saravia [13] investigated the effect of shear defor-
mation on the frequency–response curves of a thin-walled composite beam. They showed that the equilibrium solutions are
influenced by the transverse shear effect. The amplitude of vibration is reduced significantly when this effect is ignored,
altering the dynamic response of the beam.

In this paper, a geometrically non-linear beam model is used to study three dimensional large amplitude oscillations. It is
shown that the system exhibits periodic and quasiperiodic responses for a typical range of parameter values. The limit cycles
which born from the Hopf bifurcation are analyzed. A schematic bifurcation diagrams for the orbits of the modulation equa-
tions is presented. The mathematical model is valid for symmetric balanced laminates and incorporates, in a full form, the
effects of shear flexibility. In order to perform the nonlinear dynamic analysis the Galerkin procedure is used to obtain a dis-
crete form of the equations of motion. Multiple time scales method is used to obtain modulation-phase equations [14] and
the reconstitution method proposed in [15] is adopted to return to the true time domain. Steady state solutions and their
stability are studied by using the model proposed. For principal parametric resonance of the first mode, the influence of
internal resonance is illustrated in frequency and amplitude plots.

2. Kinematics

A straight thin-walled composite beam with an arbitrary cross-section is considered (Fig. 1). The points of the structural
member are referred to a Cartesian co-ordinate system ðx; y; zÞ, where the x-axis is parallel to the longitudinal axis of the
beam while y and z are the principal axes of the cross-section. The axes y and z are parallel to the principal ones but having
their origin at the shear center (defined according to Vlasov’s theory of isotropic beams). The co-ordinates corresponding to
points lying on the middle line are denoted as Y and Z (or y and z). In addition, a circumferential co-ordinate s and a normal
co-ordinate n are introduced on the middle contour of the cross-section.
yðs;nÞ ¼ YðsÞ � n
dZ
ds
; zðs;nÞ ¼ ZðsÞ þ n

dY
ds
; ð1Þ

yðs;nÞ ¼ YðsÞ � n
dZ
ds
; zðs;nÞ ¼ ZðsÞ þ n

dY
ds
: ð2Þ
On the other hand, y0 and z0 are the centroidal co-ordinates measured with respect to the shear center.
yðs;nÞ ¼ yðs;nÞ � y0; zðs; nÞ ¼ zðs;nÞ � z0: ð3Þ
The present structural model is based on the following assumptions [16]:

(1) The cross-section contour is rigid in its own plane.
(2) The warping distribution is assumed to be given by the Saint–Venant function for isotropic beams.
(3) Flexural rotations (about the y and z axes) are assumed to be moderate, while the twist / of the cross-section can be

arbitrarily large.
(4) Shell force and moment resultants corresponding to the circumferential stress rss and the force resultant correspond-

ing to cns are neglected.



Fig. 1. Co-ordinate system of the cross-section and notation for displacement measures.
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(5) The curvature at any point of the shell is neglected.
(6) Twisting linear curvature of the shell is expressed according to the classical plate theory.
(7) The laminate stacking sequence is assumed to be symmetric and balanced [17].

According to these hypotheses the displacement field is assumed to be in the following form
ux ¼ uo � yðhz cos /� hy sin /Þ � zðhy cos /� hz sin /Þ þx h� 1
2
ðh0yhz � hyh

0
zÞ

� �
þ ðhzz0 � hyy0Þ sin /;

uy ¼ v � z sin /� yð1� cos /Þ � 1
2
ðh2

z yþ hzhyzÞ;

uz ¼ wþ y sin /� zð1� cos /Þ � 1
2
ðh2

y zþ hzhyyÞ:

ð4Þ
This expression is a generalization of others previously proposed in the literature as explained for Machado and Cortínez
[16]. In the above expressions /, hy and hz are measures of the rotations about the shear center axis, y and z axes, respec-
tively; h represents the warping variable of the cross-section. Furthermore the superscript ‘prime’ denotes derivation with
respect to the variable x.

The components of the Green’s strain tensor which incorporates the large displacement are obtained as explained in
[13,16].
3. Variational formulation

Taking into account the adopted assumptions, the principle of virtual work for a composite shell may be expressed in the
form:
 ZZ

ðNxxdeð0Þxx þMxxdjð1Þxx þ Nxsdcð0Þxs þMxsdjð1Þxs þ Nxndcð0Þxn Þdsdx

�
ZZZ

qð€uxdux þ €uyduy þ €uzduzÞdsdndx

�
ZZ
ðqxduy þ qyduy þ qzduzÞdsdx�

ZZ
ðpxdux þ pyduy þ pzduzÞjx¼0 dsdn

�
ZZ
ðpxdux þ pyduy þ pzduzÞjx¼L dsdn�

ZZZ
ðf xdux þ f zduz þ f zduzÞdsdndx ¼ 0;

ð5Þ
where Nxx, Nxs, Mxx, Mxs and Nxn are the shell stress resultants. The beam is subjected to wall surface tractions qx, qy and qz

specified per unit area of the undeformed middle surface and acting along the x, y and z directions, respectively. Similarly, px,
py and pz are the end tractions per unit area of the undeformed cross-section specified at x = 0 and x = L, where L is the
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undeformed length of the beam. Besides f x, f y and f z are the body forces per unit of volume. Finally, denoting ux, uy and uz as
displacements at the middle line.

4. Constitutive equations

The constitutive equations of symmetrically balanced laminates may be expressed in the terms of shell stress resultants
in the following form [17]:
Nxx

Nxs

Nxn

Mxx

Mxs

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

A11 0 0 0 0
0 A66 0 0 0
0 0 AðHÞ55 0 0

0 0 0 D11 0
0 0 0 0 D66

2
6666664

3
7777775

eð0Þxx

cð0Þxs

cð0Þxn

jð1Þxx

jð1Þxs

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð6Þ
with
A11 ¼ A11 �
A2

12

A22
; A66 ¼ A66 �

A2
26

A22
; AðHÞ55 ¼ AðHÞ55 �

ðAðHÞ45 Þ
2

AðHÞ44

; D11 ¼ D11 �
D2

12

D22
; D66 ¼ D66 �

D2
26

D22
; ð7Þ
where Aij, Dij and AðHÞij are plate stiffness coefficients defined according to the lamination theory presented by Barbero [17].
The coefficient D16 has been neglected because of its low value for the considered laminate stacking sequence.

5. Principle of virtual work for thin-walled beams

Substituting the kinematics expressions and the constitutive equations Eq. (6) into Eq. (5) and integrating with respect to
s, one obtains the one-dimensional expression for the virtual work equation given by:
LM þ LK þ LP ¼ 0; ð8Þ
where LM, Lk and Lp represent the virtual work contributions due to the inertial, internal and external forces, respectively.
LM ¼
Z L

0
q A

@2u0

@t2 du0 þ Iz
@2hz

@t2 dhz þ Iy
@2hy

@t2 dhy þ Cw
@2h

@t2 dhþ A
@2

@t2 ðv � z0/Þdv þA
@2

@t2 ðwþ y0/Þdwþ @2

@t2 ð�Az0v þ Ay0wþ Is/Þd/

" #
dx; ð9Þ
where A is the cross-sectional area, Iz and Iy are the principal moments of inertia of the cross-section, Cw is the warping con-
stant, Is is the polar moment with respect to the shear center and q is the mean density of the laminate. The expressions of LK

are Lp are the same as presented by the authors in [13] and [16], respectively; in the same way the 1-D beam forces, in terms
of the shell forces, have been defined in [16].

5.1. Discrete model

The equations of motion are discretized according to the Galerkin procedure. The independent displacements vector is
expressed as a linear combination of given x-function vectors fkðxÞ ¼ ffk1ðxÞ; fk2ðxÞ; fk3ðxÞg and unknown t-function coeffi-
cients qk(t):
uðx; tÞ ¼
Xn

k¼1

qkðtÞfkðxÞ: ð10Þ
The functions fk(x) are chosen as eigenfunctions of the linearized equations and boundary conditions. Since for a generic
cross-section even the linear equations are coupled, all the components of fk(x) are different from zero. By substituting Eq.
(11) into Eq. (8) and vanishing separately terms in dqk; 3n ordinary differential equations of motion follow. The linear natural
frequencies of the beam depend on the boundary conditions and the sequence of lamination proposed in the analysis. For
specific combinations of system parameters, the lower natural frequencies can be commensurable, leading to internal res-
onance in the system and nonlinear interaction between the associated modes. We analyze the specific case of three mode
interaction corresponding to particular system parameters. Two- and three-to-one internal resonances are considered in this
study (x2 ffi 2x1 and x3 ffi 3x1). Since none of these first three modes is in internal resonance with any other mode of the
beam, all other modes except the directly or indirectly excited first, second or third mode decay with time due to the pres-
ence of damping and the first three modes will contribute to the long term system response [3]. Therefore, by limiting the
expansion Eq. (10) to n = 3 terms (e.g. by assuming a group of three modes with similar wave-length), three non-linear equa-
tions of the following type are obtained:
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€qk þx2
k qk ¼

Xn

i¼1

Xn

j¼1

ckijqiqj þ
Xn

i¼1

Xn

j¼1

Xn

m¼1

ckijmqiqjqm þ fk ðk ¼ 1;2;3; . . . ;nÞ; ð11Þ
where xk is the kth linear frequency, fk the kth modal force, and ckij and ckijm are coefficients depending on eigenfunctions. In
the general case all quadratic and cubic terms appear in each equation of motion.

5.2. Amplitude and phase equations for the discrete model

A simply-supported beam with a monosymmetric cross-section, loaded by a concentrated harmonic force applied to the
beam’s centroid axis acting along the vertical section is considered, see Fig. 2. Using a three-mode discretization, the non-
linear flexural–flexural–torsional oscillations are governed by the following three ordinary differential equations:
€q1 þ d1 _q1 þx2
1q1 ¼ c1q1q2 þ c2q2q3 þ c3q3

1 þ c4q3
3 þ c5q1q2

2 þ c6q1q2
3 þ c7q3q2

1 þ c8q3q2
2 þ c19P;

€q2 þ d2 _q2 þx2
2q2 ¼ c9q2

1 þ c10q2
2 þ c11q2

3 þ c2q1q3 þ c12q1q2q3 þ c13q3
2 þ c5q2q2

1 þ c14q2q2
3;

€q3 þ d3 _q3 þx2
3q3 ¼ c2q1q2 þ c15q2q3 þ c16q3

1 þ c17q3
3 þ c8q1q2

2 þ c18q1q2
3 þ c6q3q2

1 þ c14q3q2
2 þ c20P;

ð12Þ
where qi is the ith mode amplitude, di are the modal damping coefficients and P(t) = p eiXt is the load, of frequency X as-
sumed to be in primary resonance with the q1-mode. Moreover, the beam is assumed to be in internal resonance conditions
of the kind 2:3:1, so that quadratic, cubic and combination resonances occur.

Eq. (12) is similar to those obtained by Di Egidio et al. [13]; the main difference is in the coefficients ci because as it is cited
in the introduction, their formulation corresponds to a shear undeformable model valid for isotropic beams. The method of
multiple time scales is employed to study the non-linear equation (12). Since non-linear terms are quadratic and cubic, a
second-order expansion is developed. A small parameter e is introduced by ordering the linear damping and load amplitude
as di ¼ e2~di, p ¼ e3~p. Moreover, the displacements qi are expanded as:
qiðT0; T1; T2; eÞ ¼ eqð0Þi ðT0; T1; T2; eÞ þ e2qð1Þi ðT0; T1; T2; eÞ þ e3qð2Þi ðT0; T1; T2; eÞ; ð13Þ
where, T0 = t, T1 = e t, T2 = e2 t. T0 is a fast scale, on which motions with frequencies of the order of X occur, while T1 and T2 are
the slow scales, on which modulations of the amplitudes and phases take place.

Substituting Eq. (13) into Eq. (12) and equating coefficients of like powers of e, the following perturbation equations are
obtained:
Order e:
D2
0qð0Þi þx2

i qð0Þi ¼ 0 ði ¼ 1;2;3Þ: ð14Þ
Orden e2:
D2
0qð1Þ1 þx2

1qð1Þ1 ¼ �2D0D1qð0Þ1 þ c1qð0Þ1 qð0Þ2 þ c2qð0Þ2 qð0Þ3 ;

D2
0qð1Þ2 þx2

2qð1Þ2 ¼ �2D0D1qð0Þ2 þ c9qð0Þ
2

1 þ c10qð0Þ
2

2 þ c2qð0Þ1 qð0Þ3 þ c11qð0Þ
2

3 ;

D2
0qð1Þ3 þx2

3qð1Þ3 ¼ �2D0D1qð0Þ3 þ c2qð0Þ1 qð0Þ2 þ c15qð0Þ2 qð0Þ3 :

ð15Þ
Orden e3:
D2
0qð2Þ1 þx2

1qð2Þ1 ¼� d1D0qð0Þ1 � 2D0D1qð1Þ1 � D2
1qð0Þ1 � 2D0D2qð0Þ1 þ c3qð0Þ

3

1 þ c1qð1Þ1 qð0Þ2 þ c5qð0Þ1 qð0Þ
2

2 þ c1qð0Þ1 qð1Þ2

þ c7qð0Þ
2

1 qð0Þ3 þ c8qð1Þ
2

2 qð0Þ3 þ c2qð1Þ2 qð0Þ3 þ c6qð0Þ1 qð0Þ
2

3 þ c4qð0Þ
3

3 þ c2qð0Þ2 qð1Þ3 þ c19peiXT0 ;

D2
0qð2Þ2 þx2

2qð2Þ2 ¼� d2D0qð0Þ2 � 2D0D1qð1Þ2 � D2
1qð0Þ2 � 2D0D2qð0Þ2 þ 2c9qð0Þ1 qð1Þ1 þ c5qð0Þ

2

1 qð0Þ2 þ c13qð0Þ
3

2

þ 2c10qð0Þ2 qð1Þ2 þ c2qð1Þ1 qð0Þ3 þ c12qð0Þ1 qð0Þ2 qð0Þ3 þ c14qð0Þ2 qð0Þ
3

3 þ c2qð0Þ1 qð1Þ3 þ 2c11qð0Þ3 qð1Þ3 ;

D2
0qð2Þ3 þx2

3qð2Þ3 ¼� d3D0qð0Þ3 � 2D0D1qð1Þ3 � D2
1qð0Þ3 � 2D0D2qð0Þ3 þ c16qð0Þ

3

1 þ c2qð1Þ1 qð0Þ2 þ c8qð0Þ1 qð0Þ
2

2 þ c2qð0Þ1 qð1Þ2

þ c6qð0Þ
2

1 qð0Þ3 þ c14qð1Þ
2

2 qð0Þ3 þ c15qð1Þ2 qð0Þ3 þ c18qð0Þ1 qð0Þ
2

3 þ c17qð0Þ
3

3 þ c15qð0Þ2 qð1Þ3 þ c20peiXT0 ;

ð16Þ
where
L

z P(t) z

y y

z

Fig. 2. Simply-supported C-beam and midspan section displacements of the fundamentals eigenfunctions.



Table 1
Coeffici

c1

2313
c8

3375
c15

6266
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DiðÞ ¼ @ðÞ=@ðTiÞ; DijðÞ ¼ @2ðÞ=@ðTiÞ@ðTjÞ ði; j ¼ 0;1;2Þ; ð17Þ
and the tilde has been omitted for simplicity.
The solution to the first-order perturbation Eq. (15) is:
qð0Þi ¼ AiðT1; T2ÞeixiT0 þ c:c: i ¼ 1;2;3; ð18Þ
where c.c. stands for the complex conjugate of the preceding terms and Ai are the unknown complex-valued functions. In
order to investigate the system response under internal and external resonance conditions, three detuning parameters ri

are introduced:
X ¼ x1 þ e2r1; x2 ¼ 2x1 þ er2; x3 ¼ 3x1 þ e2r3: ð19Þ
Replacing the first-order solution Eq. (18) into Eq. (15), eliminating the secular terms
D1A1 ¼ �
ie�iT1r2 ðA2c1e2iT1r2 A1 þ A3c2eiT2r3 A2Þ

2x1
;

D1A2 ¼ �
ie�iT1r2 ðA2

1c9 þ A3c2eiT2r3 A1Þ
2x2

;

D1A3 ¼ �
iA1A2c2eiT1r2�iT2r3

2x3
:

ð20Þ
The solution considering the quadratic terms are the same as presented by the authors in [13]. Finally, substituting the
solution into the e3-order perturbation equations Eq. (16), eliminating again the secular terms and taking into account Eq.
(19), leads to
D2A1 ¼
1

2ix1
c19peiT2r1 � iA1d1x1 þ A2

1b1A1 �
A2c1eiT1r2r2A1

2x1
þ A3b2eiT2r3 A2

1 þ A1A2b3A2 þ A1A3b5A3

 

þA3c2eiðT2r3�T1r2Þr2A2

2x1
þ A2

2b4eið2T1r2�T2r3ÞA3

!
;

D2A2 ¼
1

2ix2

A2
1c9e�iT1r2r2

2x2
� iA2d2x2 þ A1A2b6A1þ

 
A1A3b9eiðT2r3�2T1r2ÞA2 þ A2A3b8A3þA2

2b7A2 þ
A3c2eiðT2r3�T1r2Þr2A1

2x2

!
;

D2A3 ¼
1

2ix3

A1A2c2eiðT1r2�T2r3Þr2

2x3
� iA3d3x3 þ A3

1b10e�iT2r3 þ A1A3b12A1 þ A2
3b14A3 þ A2A3b13A2 þ A2

2b11eið2T1r2�T2r3ÞA1

� �
;

ð21Þ
where the bj values are presented in Appendix A.
Finally, using a reconstitution method [15] to return to true time t, see Eq. (22), the amplitude and phase equations ob-

tained are the same presented by the authors in [13].
A0k ¼ eD1Ak þ e2D2Ak þ � � � : ð22Þ
6. Numerical results

Non-linear coupling and resonant motions are investigated for a beam simply supported. In the numerical investigation
the following geometrical and material characteristic are used: L = 6 m, h = 0.6 m, b = 0.6 m, e = 0.03 m. The analyzed mate-
rial is graphite-epoxy whose properties are E1 = 144 GPa, E2 = 9.65 GPa, G12 = 4.14 GPa, G13 = 4.14 GPa, G23 = 3.45 GPa,
m12 = 0.3, m13 = 0.3, m23 = 0.5, for a sequence of lamination {0/0/0/0}.

The solution of the linear free dynamic problem furnishes the following first three eigenvalues:
x1 ¼ 213:86 rad=s; x2 ¼ 444:36 rad=s; x3 ¼ 666:85 rad=s:
The coefficients of the discretized equations of motion Eq. (12) are listed in Table 1.
ents of the non-dimensional discretized equations of motion.

c2 c3 c4 c5 c6 c7

4.1 �38059.0 �12549.1 51358.0 �2057.39 �93052.5 58212.7
c9 c10 c11 c12 c13 c14

.58 11569.2 322.56 31345.8 6752.41 �0.61 0.0
c16 c17 c18 c19 c20

0.6 19398.2 �87918.5 154026.0 �0.00517 �0.00651



i

Fig. 3. Amplitude-load curves: (a) perfect external resonance r1 = 0; and (b) external detuning parameter r1 = 0.1. Thick line: stable solutions; dashed line:
unstable solutions.

Fig. 4. Frequency–response curves for: (a) first, (b) second and (c) third modes, when p = 250, r2 = r3 = 0.04 and di = 0.1. Solid (dotted) lines denote stable
(unstable) equilibrium solutions and thin solid lines denote unstable foci.
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6.1. Steady-state motions and stability

The equilibrium solutions correspond to periodic motions of the beam. Steady-state solutions are determined by zeroing
p0i ¼ q0i ¼ 0 the right-hand members of the modulation equations [13] and solving the non-linear system. Stability analysis is
then performed by analyzing the eigenvalues of the Jacobian matrix of the non-linear equations calculated at the fixed
points. Amplitude-load curves are reported in Fig. 3(a) and (b), for external forces in a perfect resonance condition
(r1 = 0) and for a small value of the external detuning parameter r1 = 0.1, respectively, considering damping
d1 = d2 = d3 = 0.1 and internal detuning parameters r2 = r3 = 0.04. The amplitudes a1, a2 and a3 are obtained by means of
the following expression:
Fig. 5.
(unstab
ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

i þ q2
i

q
i ¼ 1;2;3: ð23Þ
In the case of r1 = 0.1 (Fig. 3(b)), the modal solution branch alternatively loses and regains stability due to the presence of
some saddle-nodes and Hopf bifurcations. In spite of that only the amplitude a1 is presented in Fig. 3(b), the same behavior is
obtained for the other amplitudes.

The frequency–response curves are show in Fig. 4(a)–(c), for an internal and external resonance condition. The modal
amplitude ai curves are obtained in function of the external detuning parameter r1. In this case, the forcing amplitude is
p = 250, modal damping d1 = d2 = d3 = 0.1 and internal detuning parameters r2 = r3 = 0.04. In this way, near to r1 = 0.1 the
dynamic behavior will be complex as can be observed from Fig. 3(b). In Fig. 4, solid (dotted) lines denote stable (unstable)
equilibrium solutions and thin solid lines denote unstable foci.
(a) (b)

(c)

Frequency–response curves for di = 0.05: (a) first, (b) second and (c) third modes, when p = 250 and r2 = r3 = 0.04. Solid (dotted) lines denote stable
le) equilibrium solutions and thin solid lines denote unstable foci.



S.P. Machado et al. / Applied Mathematical Modelling 38 (2014) 1523–1533 1531
The response curves exhibit a complex behavior due to saddle-node bifurcations (where one of the corresponding eigen-
values crosses the imaginary axis along the real axis from the left- to the right-half plane) and Hopf bifurcations (where one
pair of complex conjugate eigenvalues crosses the imaginary axis transversely from the left to the right-half plane). As r1

increases from a small value, the solution increases in amplitude and is stable until a saddle-node bifurcation occurs
r1 = �0.3938 (SN1). Then, the response jumps to another branches of stable equilibrium solutions (jump effect), depending
on the initial conditions. Increasing r1, the amplitude decreases until the stable equilibrium solution loses stability via a
Hopf bifurcation at H1 (r1 = �0.1307). Then, the solution is unstable happening two saddle-node bifurcations SN3 and SN4

(r1 = �0.0763 and r1 = �0.0961) and regains its stability via a reverse Hopf bifurcation at H2 (r1 = �0.0724). Then, an
approximated symmetric solution is observed for r1 larger than the perfect external resonant condition. Therefore, the solu-
tion loses stability via a Hopf bifurcation H3 (r1 = 0.1094), and regains its stability via a reverse Hopf bifurcation at H4

(r1 = 0.1530), happening two saddle-node bifurcations SN5 and SN6, (r1 = 0.1238 and r1 = 0.0946). The stable solution grows
again in amplitude until arriving to a saddle-node bifurcation SN7 (r1 = 0.9718), resulting in a jump of the response to an-
other branches of solutions. The new stable branch is left bounded by a saddle-node bifurcation SN8 (r1 = 0.4102). On the
other hand, comparing the three modal amplitude ai curves, the highest values correspond to the first mode which is directly
excited by the external load.

In Fig. 5 we show the influence of damping when the modal damping value is reduced to di = 0.05, conserving the same
forcing amplitude and internal detuning parameter values. The frequency–response curves are similar to the previous case,
and as expected the modal amplitudes result to be larger. It can be seen in the first mode that the central peak is slightly
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curved to the right (r1 � 0), giving rise to a new unstable branch bounded by two saddle-node bifurcations (SN5, r1 = 0.2437
and SN6, r1 = 0.1035).
6.2. Dynamic solutions

According to the Hopf bifurcation theorem, small limit cycles are born as a result of the Hopf bifurcation. It is very
complex to reduce our six-dimensional system [13] to obtain the normal form of the modulation equations in the vicinity
of the bifurcations. Therefore, the software AUTO [18] is used to obtain dynamic solutions that emerge from the Hopf
bifurcations. The Hopf bifurcation is supercritical or subcritical depending on whether the born limit cycle is stable or
unstable, respectively. Cycle-limit of the modulation equations correspond to aperiodic responses of the beam. In the pre-
vious example (d3 = 0.1, r2 = r3 = 0.04 and p = 250), there are four Hopf bifurcations. Where H1 (r1 = �0.1307) and H4

(r1 = 0.1530) represent subcritical Hopf bifurcation, while H2 (r1 = �0.0724) and H3 (r1 = 0.1094) correspond to supercrit-
ical Hopf bifurcation. As r1 increases, a small limit cycle born as a result of the supercritical Hopf bifurcation point H2, see
Fig. 6(a). The period-one limit cycle (Fig. 6(b)) grows and deforms and remains stable until another period-doubling bifur-
cation occurs DP2 (r1 = �0.07353). Then it undergoes a sequence of period-doubling bifurcations DP4 (r1 = �0.07368), DP8

(r1 = �0.07371), DP16 (r1 = �0.073721), culminating in a chaotic attractor as shown in Fig. 7. In Fig. 6(c)–(e), two-dimen-
sional projections of the phase portraits onto the a1–a2 plane at various pre and post-period-doubling bifurcation points
are shown.
7. Summary and conclusions

In this paper a geometrically non-linear theory for thin-walled composite beams is used to present the nonlinear dynamic
response of a thin-walled composite beam. The theory is formulated in the context of large displacements and rotations,
adopting a shear deformable displacement field and valid for bisymmetric cross-sections either open or closed. The internal
resonance is present in the beam dynamic behavior. With the method of multiple scales six first-order nonlinear ordinary-
differential equations describing the modulation of the amplitudes and phases were obtained and numerically analyzed. The
resonant behavior is illustrated by frequency–response and amplitude-load curves for a sequence of lamination of {0/0/0/0}.
Due to the coupling existing, the composite thin-walled beam exhibit a complex dynamic behavior. The frequency–response
curves are characterized by saddle-node and Hopf bifurcations and multiple jumps effects. Supercritical and subcritical Hopf
bifurcations of the three-mode equilibrium solutions are found. The limit cycle solutions which born from the Hopf bifurca-
tion may undergo a sequence of period-doubling bifurcations, culminating in an chaotic attractor. There are new periodic
solutions in the frequency–response curves when the damping value decreases.
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Appendix A.

The coefficients used in the Eq. (21) are:
b1 ¼ 3c3 þ 2c1c9K8 þ
c1c9

4x1x2
; b2 ¼ c7 þ

c1c2

4x1x2
� c2c9

4x1x2
;

b3 ¼ 2c5 þ c2
1K2 þ c2

2K4 þ 2c1c10K8 �
c2

1

4x2
1

þ c2
2

4x1x3
; b4 ¼ c8 � c15c2K5 �

c10c2K8

3
� c1c2

4x2
1

;

b5 ¼ 2c6 � c2
2K6 þ 2c1c11K8 �

c2
2

4x1x2
; b6 ¼ 2c5 þ 2c1c9K2 þ c2

2K4 þ 4c10c9K8 þ
c1c9

2x1x2
þ c2

2

4x2x3
;

b7 ¼ 3c13 þ
10c2

10K8

3
; b8 ¼ 2c14 � c2

2K1 � 2c11c15ðK3 þ K5Þ þ 4c10c11K8 �
c2

2

4x1x2
;

b9 ¼ c12 þ 2c11c2K4 � c15c2K5 � 2c10c2K6 �
c1c2

4x1x2
þ c2c9

2x1x2
; b10 ¼ c16 þ

c2c9

4x2x3
;

b11 ¼ c8 þ c15c2K4 �
c10c2K8

3
þ c1c2

4x1x3
; b12 ¼ 2c6 � c2

2K6 þ 2c15c9K8 þ
c2

2

4x2x3
;

b13 ¼ 2c14 � c2
2K1 � c2

15K3 � c2
15K5 þ 2c10c15K8 þ

c2
2

4x1x3
; b14 ¼ 3c17 þ c11c15K7 þ 2c11c15K8;

ðA:1Þ
where
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K1 ¼
1

ðx2 þx3Þ2 �x2
1

; K2 ¼ �
1

2x1x2 þx2
2

; K3 ¼
1

2x2x3 þx2
2

;

K4 ¼
1

x2
3 � ðx1 �x2Þ2
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x2
2 � 2x2x3
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x2
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ðA:2Þ
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