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theory, which is formulated through the adoption of a higher-order displacement field and
takes into account shear flexibility (bending and warping shear). In the analysis of a weakly
nonlinear continuous system, the Ritz’s method is employed to express the problem in
terms of generalized coordinates. Then, perturbation method of multiple scales is applied
Shear flexibility to the reduced system in order to obtain the equations of amplitude and modulation. In
Internal resonance this paper, the non-linear 3D oscillations of a simply-supported beam are examined, con-
Composite material sidering a cross-section having one symmetry axis. Composite is assumed to be made of
Thin-walled beams symmetric balanced laminates and especially orthotropic laminates. The model, which
contains both quadratic and cubic non-linearities, is assumed to be in internal resonance
condition. Steady-state solution and their stability are investigated by means of the eigen-
values of the Jacobian matrix. The equilibrium solution is governed by the modal coupling
and experience a complex behavior composed by saddle noddle, Hopf and double period
bifurcations.
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1. Introduction

Thin-walled beam structures made of advanced anisotropic composite materials are increasingly found in the design of
the aircraft wing, helicopter blade, axles of vehicles and so on, due to their outstanding engineering properties, such as high
strength/stiffness to weight ratios and favorable fatigue characteristics. The interesting possibilities provided by fiber rein-
forced composite materials can be used to enhance the response characteristics of such structures that operate in complex
environmental conditions. We consider the nonlinear response of a simply supported beam to a primary resonant excitation
of its first mode. The analysis accounts for a lateral load, modal damping and two fiber orientations. The second and third
natural frequencies are approximately two and three times the first natural frequency, respectively. The flexural-torsional
coupling produces a quadratic and cubic nonlinearity in the governing nonlinear partial-differential equation. Because of the
quadratic and cubic nonlinearity and the two-to-one and three-to-one ratio of the second and third with the first natural
frequencies, the beam exhibits an internal (autoparametric) resonance that couples the first, second and third modes, result-
ing in energy exchange between them.
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For a comprehensive review of nonlinear modal interactions, we refer the reader to Refs. [1-3]. In this paper, we present a
brief review of some of the studies of the response of systems exhibiting two-to-one and three-to-one internal resonances to
primary resonant excitations.

Crespo da Silva and Glynn [4,5] developed a non-linear shear-undeformable beam model with a compact cross-section
and derived a set of integro-partial-differential equations governing flexural-flexural-torsional motions of inextensional
beams, including geometric and inertia nonlinearities. They used these equations and the method of multiple scales to ascer-
tain the importance of the geometric terms [5]; they found that they cannot be neglected for the lower modes, especially the
first mode. Luongo et al. [6] and Crespo da Silva and Zaretzky [7] analyzed shear and axially undeformable beams. In the last
reference the flexural-torsional free motions are studied for a cantilever beam, having close bending and torsional frequen-
cies; although beams with non-compact cross-section are considered, the warping effects are neglected. In these articles a
non-linear one-dimensional polar model of compact beam is derived, capable of studying interactions between flexural and
torsional motions occurring in beam-like structures in several internal resonance conditions. The non-linear planar motions
and the non-linear resonance frequencies was recently investigated by Fonseca and Ribeiro [8]. They used a p-version finite
element formulated for geometrically non-linear vibrations. Lopes Alonso and Ribeiro [9] continued this last work [8] for the
free vibrations of clamped-clamped circular cross section beams using hierarchic sets of displacement shape functions and
that simultaneously considers bending, torsion and longitudinal deformation. In this case, they employed the harmonic bal-
ance method to show the variation of the bending and torsional shapes of vibration with the non-linear natural frequency.
The effects of the warping function, longitudinal displacements of second order and shear deformations on the nonlinear
bending-torsion vibrations of rectangular cross section was analyzed in the work of Stoykov and Ribeiro [10]. In relation
to thin-walled beams, Di Egidio et al. [11,12] presented the dynamic response of an open cross-section beam divided in
two works. They developed a shear undeformable thin-walled beam where the effects of non linear in-plane and out-of-
plane warping and torsional elongation were included in the model [11]. The dynamic coupling phenomena in conditions
of internal resonance was analyzed in the second part [12]. Machado and Saravia [13] investigated the effect of shear defor-
mation on the frequency-response curves of a thin-walled composite beam. They showed that the equilibrium solutions are
influenced by the transverse shear effect. The amplitude of vibration is reduced significantly when this effect is ignored,
altering the dynamic response of the beam.

In this paper, a geometrically non-linear beam model is used to study three dimensional large amplitude oscillations. It is
shown that the system exhibits periodic and quasiperiodic responses for a typical range of parameter values. The limit cycles
which born from the Hopf bifurcation are analyzed. A schematic bifurcation diagrams for the orbits of the modulation equa-
tions is presented. The mathematical model is valid for symmetric balanced laminates and incorporates, in a full form, the
effects of shear flexibility. In order to perform the nonlinear dynamic analysis the Galerkin procedure is used to obtain a dis-
crete form of the equations of motion. Multiple time scales method is used to obtain modulation-phase equations [14] and
the reconstitution method proposed in [15] is adopted to return to the true time domain. Steady state solutions and their
stability are studied by using the model proposed. For principal parametric resonance of the first mode, the influence of
internal resonance is illustrated in frequency and amplitude plots.

2. Kinematics

A straight thin-walled composite beam with an arbitrary cross-section is considered (Fig. 1). The points of the structural
member are referred to a Cartesian co-ordinate system (x,y,Zz), where the x-axis is parallel to the longitudinal axis of the
beam while y and Z are the principal axes of the cross-section. The axes y and z are parallel to the principal ones but having
their origin at the shear center (defined according to Vlasov’s theory of isotropic beams). The co-ordinates corresponding to
points lying on the middle line are denoted as Y and Z (or ¥ and Zz). In addition, a circumferential co-ordinate s and a normal
co-ordinate n are introduced on the middle contour of the cross-section.

- dz = dy

ysn=Y(s)—np, Zs,n)=Z(s)+n ., (1)
dz dy
ysm=Y(s)—ng, zsn)=Z(s)+n . (2)
On the other hand, y, and zy are the centroidal co-ordinates measured with respect to the shear center.
J_/(S»n):.V(ssn)_YW 2(5711):2(53“)_20' (3)

The present structural model is based on the following assumptions [16]:

(1) The cross-section contour is rigid in its own plane.

(2) The warping distribution is assumed to be given by the Saint-Venant function for isotropic beams.

(3) Flexural rotations (about the ¥ and Z axes) are assumed to be moderate, while the twist ¢ of the cross-section can be
arbitrarily large.

(4) Shell force and moment resultants corresponding to the circumferential stress gss and the force resultant correspond-
ing to y,s are neglected.
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Fig. 1. Co-ordinate system of the cross-section and notation for displacement measures.

(5) The curvature at any point of the shell is neglected.
(6) Twisting linear curvature of the shell is expressed according to the classical plate theory.
(7) The laminate stacking sequence is assumed to be symmetric and balanced [17].

According to these hypotheses the displacement field is assumed to be in the following form

Uy = Uy — y(0; cos ¢ — 0, sin $) — Z(0) cos ¢ — 0, sin ¢p) + @ 0—l

P (0,0, — 0,0,) | + (0,20 — Oyy,) Sin ¢,

u, = v —zsin¢ — y(1 — cos ¢) —%(03y+626y2), (4)

u, =w+ysing —z(1 — cos ¢) ! 077+ 0.0,7).

_ j(
This expression is a generalization of others previously proposed in the literature as explained for Machado and Cortinez
[16]. In the above expressions ¢, 0, and 0, are measures of the rotations about the shear center axis, y and Z axes, respec-
tively; 0 represents the warping variable of the cross-section. Furthermore the superscript ‘prime’ denotes derivation with
respect to the variable x.

The components of the Green’s strain tensor which incorporates the large displacement are obtained as explained in
[13,16].

3. Variational formulation

Taking into account the adopted assumptions, the principle of virtual work for a composite shell may be expressed in the
form:

/ / (N8 + My d1¢) + NispQ + Mis Sk + Ny 9Dy ds dx
- /// p(Uduy + ilyouy, + il,0u;) dsdndx
— // (qxdUy + qyoly + q,0U;) dsdx — //(ﬁxo"ux + Dyduy + P,ou,)|,_odsdn
- // (xdUy + DyoUy, + P,oU,)|,_, dsdn — // (Fduy + fou, + f,0u,) dsdndx = 0,
where Nyy, Nys, Myx, Mys and Ny, are the shell stress resultants. The beam is subjected to wall surface tractions g, g, and g,

specified per unit area of the undeformed middle surface and acting along the x, y and z directions, respectively. Similarly, p,
Py and p; are the end tractions per unit area of the undeformed cross-section specified at x=0 and x =L, where L is the
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undeformed length of the beam. Besides f, f, and f are the body forces per unit of volume. Finally, denoting u,, T, and T, as
displacements at the middle line.

4. Constitutive equations

The constitutive equations of symmetrically balanced laminates may be expressed in the terms of shell stress resultants
in the following form [17]:

Nix 211 0 0 0 0 Exx
Nis 0 As O 0 0 |[79
Nep=[0 0 AY 0 o0 3 (6)
Mxx 0 0 0 D]] 0 K)((}()
My, 0 0 0 0 Del|xl
with
2
5 I Ae  qa . (AR) o Di, D3
A117A11—A—22, AGG*AGG_A_ZZ» A55 7A55 - Aﬂ) s D117D11—D—22, DsefDas—D—zz (7)

where Ay, D and Aff’) are plate stiffness coefficients defined according to the lamination theory presented by Barbero [17].
The coefficient D;¢ has been neglected because of its low value for the considered laminate stacking sequence.

5. Principle of virtual work for thin-walled beams

Substituting the kinematics expressions and the constitutive equations Eq. (6) into Eq. (5) and integrating with respect to
s, one obtains the one-dimensional expression for the virtual work equation given by:

Ly +Lg+Lp=0, (8)

where Ly, Ly and L, represent the virtual work contributions due to the inertial, internal and external forces, respectively.

L 2

Ly = / P [Aa 120 ollg +I,_ 50,, +Iyd Oy 00, + Cwaz()60+A dz (v— Zmb)él/-&-Ai(W +y0¢)aw+d—( —Azov+Ayow + ;)0 |dx,  (9)
o ot ot ot ot? ot ot

where A is the cross-sectional area, I, and I, are the principal moments of inertia of the cross-section, G, is the warping con-

stant, I; is the polar moment with respect to the shear center and p is the mean density of the laminate. The expressions of Ly

are L, are the same as presented by the authors in [13] and [16], respectively; in the same way the 1-D beam forces, in terms

of the shell forces, have been defined in [16].

5.1. Discrete model

The equations of motion are discretized according to the Galerkin procedure. The independent displacements vector is
expressed as a linear combination of given x-function vectors fi(x) = {fi1 (%), fia(), fiz(x)} and unknown t-function coeffi-
cients q(t):

t) = ;qk(t)fk(x)~ (10)

The functions fi(x) are chosen as eigenfunctions of the linearized equations and boundary conditions. Since for a generic
cross-section even the linear equations are coupled, all the components of fi(x) are different from zero. By substituting Eq.
(11)into Eq. (8) and vanishing separately terms in 6qy; 3n ordinary differential equations of motion follow. The linear natural
frequencies of the beam depend on the boundary conditions and the sequence of lamination proposed in the analysis. For
specific combinations of system parameters, the lower natural frequencies can be commensurable, leading to internal res-
onance in the system and nonlinear interaction between the associated modes. We analyze the specific case of three mode
interaction corresponding to particular system parameters. Two- and three-to-one internal resonances are considered in this
study (w; = 2w; and ws = 3w1). Since none of these first three modes is in internal resonance with any other mode of the
beam, all other modes except the directly or indirectly excited first, second or third mode decay with time due to the pres-
ence of damping and the first three modes will contribute to the long term system response [3]. Therefore, by limiting the
expansion Eq. (10) to n = 3 terms (e.g. by assuming a group of three modes with similar wave-length), three non-linear equa-
tions of the following type are obtained:
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n

n n n n
Qe+ OFGc = D> Ci@idj+ Y>> Cim@ilidm + i (k=1,2,3,....n), (11)

i=1 j=1 i=1 j=1m=1

where wy is the kth linear frequency, fi the kth modal force, and cy; and cy;;m are coefficients depending on eigenfunctions. In
the general case all quadratic and cubic terms appear in each equation of motion.

5.2. Amplitude and phase equations for the discrete model

A simply-supported beam with a monosymmetric cross-section, loaded by a concentrated harmonic force applied to the
beam’s centroid axis acting along the vertical section is considered, see Fig. 2. Using a three-mode discretization, the non-
linear flexural-flexural-torsional oscillations are governed by the following three ordinary differential equations:

41 +diG1 + W7q; = €14,G; + 2023 + €33 + Caq3 + C541G5 + C6q1G5 + C73G7 + CsG3q5 + CoP,
G2 + daG2 + W5q; = CoG + C1005 + €115 + €201G3 + C12G102G3 + C13G5 + C502G7 + C14G2G3, (12)
Gs + d3G3 + W3q3 = C24,q; + C15G2G3 + C1643 + C1743 + 841 G5 + C18G1 G5 + C6030; + C1a43q5 + C20P,

where g; is the ith mode amplitude, d; are the modal damping coefficients and P(t) = p €**' is the load, of frequency € as-
sumed to be in primary resonance with the g;-mode. Moreover, the beam is assumed to be in internal resonance conditions
of the kind 2:3:1, so that quadratic, cubic and combination resonances occur.

Eq. (12)is similar to those obtained by Di Egidio et al. [13]; the main difference is in the coefficients c; because as it is cited
in the introduction, their formulation corresponds to a shear undeformable model valid for isotropic beams. The method of
multiple time scales is employed to study the non-linear equation (12). Since non-linear terms are quadratic and cubic, a
second-order expansion is developed. A small parameter € is introduced by ordering the linear damping and load amplitude
as d; = &2d;, p = &3p. Moreover, the displacements g; are expanded as:

qi(To, T1, T2, ) = £9% (To, T1, T2, &) + £2q\" (To, T1, T2, &) + &3> (To, T1, T2, &), (13)

where, To=t, T; = t, T, = £2t. Tg is a fast scale, on which motions with frequencies of the order of Q occur, while T; and T, are
the slow scales, on which modulations of the amplitudes and phases take place.

Substituting Eq. (13) into Eq. (12) and equating coefficients of like powers of ¢, the following perturbation equations are
obtained:
Order &:

D + w?q® =0 (i=1,2,3). (14)
Orden &2

2 (1 1 0 0) (0 0) (0
D3qy + wiq)" = —2DeDig” + 141" 4" + 20545,

2 2 2
D3ay” + 0345 = —2DoD1qs” + coqy” + 100y + 20" + c1ag (15)
2 (1 1 0 0) (0 0) (0
D3qs” + @3qy” = —2DeD1gy) + c201"q5" + c1545 g
Orden &

2 2 0 1 0 0 0)® 1) (0 0) . (0) 0) (1
D3q? + wiq? = — diDoq” — 2DoD1q" — D1q\” — 2DeDaq” + c3q" + 101" gy + csqqy) +c1qqy’
0)2 (0 1% _(0 1) (0 0) (0)% 0)3 0) (1 i
+ 607" a8 + o0y 45" + 20505 + 60y a5 + cads” + 205745 + crope ™,

2 3
D35’ + 3qy” = — daDogy” — 2DoDiqy” — D1y’ — 2DoDaqy” + 2¢0qyqy” + ¢4y 4y + Cr3qy 16)

0 1 1 0 0 0 0 0 0)3 0 1 0 1
+20100Y°¢" + 2074 + 12670y qY + c14qqY" + 207y + 2c119q,

2 (2 2.(2 0 1 240 _ 9 0 0)° 1) ,(0 0) ,(0)? 0) (1
Do‘]g( "+ (1)3(](3 = d3D0q<3 ) - 2DoDy q(3 : D1Q3< ) DOD2q3( )+ Cls‘]% "+ Cng )qZ( = qu(1 )%( "+ CZQ% )q(z )
Cﬁqg : q(3) C]4q2( ) q3( ) ClSq(Z )q3( ) ClsQS )qg) C1 7q(3> C15q2( )q3( ) Czopelg [],

where

Z A P(t) z z
1 1
777777 _— 1 Y |
P L - [ - &

Fig. 2. Simply-supported C-beam and midspan section displacements of the fundamentals eigenfunctions.
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Di() = 0()/a(Ty),  Dy() = 8*()/a(THa(T)) (i.j=0.1,2), (17)

and the tilde has been omitted for simplicity.
The solution to the first-order perturbation Eq. (15) is:

g% = Ai(Ty, Tp)e™ 4 cc. i=1,2,3, (18)

where c.c. stands for the complex conjugate of the preceding terms and A; are the unknown complex-valued functions. In
order to investigate the system response under internal and external resonance conditions, three detuning parameters o;
are introduced:

Q:CL)1+820'1, 602:2(1)1+80'2, w3 :3(,01-‘1-8203. (19)
Replacing the first-order solution Eq. (18) into Eq. (15), eliminating the secular terms

je-iT102 (AzC] el JZE] + A3C2€iT263E2)

D1A1 = —

2 7
3 p—iT1 0 2 N
DA, = _le z(A1C-°’ZZ)A362(3 2 3A1)7 (20)
2
DiA; = _w

23

The solution considering the quadratic terms are the same as presented by the authors in [13]. Finally, substituting the
solution into the &3-order perturbation equations Eq. (16), eliminating again the secular terms and taking into account Eq.
(19), leads to

A iT102 7, A o _ _
w + A3b,e3 A2 + A1AybsA; + A1AshsAs

1 ) . _
D)A| = — (Clgpe‘“"‘ — lA]d](L)] +A%b1A1 - @
1

2iw1

AxC,ei(1203-T102) 5 A . _
Rl Yy A

20)1
1 A%Cg€7iT102 (o) . — i(T,03-2T102) A — 2, A3C2€“T20_37T102>O—2Z1
D,A; = = A "% iAydyw;, + A1AybgA 1 +A1Asbge!'273721102) A, +A2A3bgA3+A2b7A2 +—,
2im, 2m; 2m;

D2A3 - 21(,03

i(T10,-T,03) 3 _ _ _ i _
1 (W — iA3d3(,O3 “rA?bm(?isza3 +A1A3b12A] +A§b14A3 +A2A3b13A2 +A§b“el(2T1027T2(rg)Al>’
3

21)

where the b; values are presented in Appendix A.
Finally, using a reconstitution method [15] to return to true time ¢, see Eq. (22), the amplitude and phase equations ob-
tained are the same presented by the authors in [13].

Ay = eDi A + EDrAL + - (22)

6. Numerical results

Non-linear coupling and resonant motions are investigated for a beam simply supported. In the numerical investigation
the following geometrical and material characteristic are used: L=6 m, h=0.6 m, b =0.6 m, e = 0.03 m. The analyzed mate-
rial is graphite-epoxy whose properties are E; =144 GPa, E; =9.65 GPa, Gy, =4.14 GPa, G;3=4.14 GPa, G,3=3.45GPa,
v12 = 0.3, v13=0.3, vo3 = 0.5, for a sequence of lamination {0/0/0/0}.

The solution of the linear free dynamic problem furnishes the following first three eigenvalues:

wy; =213.86rad/s, w, =44436rad/s, w;=666.85rad/s.

The coefficients of the discretized equations of motion Eq. (12) are listed in Table 1.

Table 1

Coefficients of the non-dimensional discretized equations of motion.
[ Cy C3 Cq Cs Ce C7
23134.1 —38059.0 —12549.1 51358.0 —2057.39 —93052.5 58212.7
Cg Co C10 Ci1 Ci2 C13 Ci4
3375.58 11569.2 322.56 31345.8 6752.41 -0.61 0.0
Ci5 Ci6 C17 C18 C19 C20

62660.6 19398.2 —87918.5 154026.0 —0.00517 —0.00651
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Fig. 3. Amplitude-load curves: (a) perfect external resonance ¢, = 0; and (b) external detuning parameter ¢ = 0.1. Thick line: stable solutions; dashed line:

unstable solutions.
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6.1. Steady-state motions and stability

The equilibrium solutions correspond to periodic motions of the beam. Steady-state solutions are determined by zeroing
pi = q; = 0 the right-hand members of the modulation equations [13] and solving the non-linear system. Stability analysis is
then performed by analyzing the eigenvalues of the Jacobian matrix of the non-linear equations calculated at the fixed
points. Amplitude-load curves are reported in Fig. 3(a) and (b), for external forces in a perfect resonance condition
(61=0) and for a small value of the external detuning parameter o¢;=0.1, respectively, considering damping
di=dy=d3=0.1 and internal detuning parameters ¢, = o3 = 0.04. The amplitudes a;, a; and as are obtained by means of
the following expression:

ai=+/p}+q i=1,2,3. (23)

In the case of o1 = 0.1 (Fig. 3(b)), the modal solution branch alternatively loses and regains stability due to the presence of
some saddle-nodes and Hopf bifurcations. In spite of that only the amplitude a, is presented in Fig. 3(b), the same behavior is
obtained for the other amplitudes.

The frequency-response curves are show in Fig. 4(a)-(c), for an internal and external resonance condition. The modal
amplitude a; curves are obtained in function of the external detuning parameter ;. In this case, the forcing amplitude is
p =250, modal damping d; = d, = d3 = 0.1 and internal detuning parameters o, = g3 = 0.04. In this way, near to g; = 0.1 the
dynamic behavior will be complex as can be observed from Fig. 3(b). In Fig. 4, solid (dotted) lines denote stable (unstable)
equilibrium solutions and thin solid lines denote unstable foci.
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Fig. 5. Frequency-response curves for d; = 0.05: (a) first, (b) second and (c) third modes, when p = 250 and ¢, = g3 = 0.04. Solid (dotted) lines denote stable
(unstable) equilibrium solutions and thin solid lines denote unstable foci.
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The response curves exhibit a complex behavior due to saddle-node bifurcations (where one of the corresponding eigen-
values crosses the imaginary axis along the real axis from the left- to the right-half plane) and Hopf bifurcations (where one
pair of complex conjugate eigenvalues crosses the imaginary axis transversely from the left to the right-half plane). As o,
increases from a small value, the solution increases in amplitude and is stable until a saddle-node bifurcation occurs
o1 =-0.3938 (SN;). Then, the response jumps to another branches of stable equilibrium solutions (jump effect), depending
on the initial conditions. Increasing o1, the amplitude decreases until the stable equilibrium solution loses stability via a
Hopf bifurcation at H; (61 = —0.1307). Then, the solution is unstable happening two saddle-node bifurcations SN3 and SN,
(o1=-0.0763 and o;=-0.0961) and regains its stability via a reverse Hopf bifurcation at H, (¢; = —0.0724). Then, an
approximated symmetric solution is observed for ¢, larger than the perfect external resonant condition. Therefore, the solu-
tion loses stability via a Hopf bifurcation Hs (o7 =0.1094), and regains its stability via a reverse Hopf bifurcation at H,
(01 =0.1530), happening two saddle-node bifurcations SN5 and SNg, (1 = 0.1238 and ¢ = 0.0946). The stable solution grows
again in amplitude until arriving to a saddle-node bifurcation SN, (¢ = 0.9718), resulting in a jump of the response to an-
other branches of solutions. The new stable branch is left bounded by a saddle-node bifurcation SNg (o1 = 0.4102). On the
other hand, comparing the three modal amplitude q; curves, the highest values correspond to the first mode which is directly
excited by the external load.

In Fig. 5 we show the influence of damping when the modal damping value is reduced to d; = 0.05, conserving the same
forcing amplitude and internal detuning parameter values. The frequency-response curves are similar to the previous case,
and as expected the modal amplitudes result to be larger. It can be seen in the first mode that the central peak is slightly
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Fig. 6. (a) Schematic of the dynamic solutions found on one branch for the first mode. (——) Stable limit cycle, (o 0 0) unstable limit cycle, DPn = nth period-
doubling bifurcation. Two-dimensional projections of the phase portraits onto the a;-a, plane, (b) 6, = —0.0734455, (¢) 6, = —0.07358, (d) 6; = —0.073695,
and (e) 1 = —0.073715.
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curved to the right (61 ~ 0), giving rise to a new unstable branch bounded by two saddle-node bifurcations (SNs, g = 0.2437
and SN5, g1 = 01035)

6.2. Dynamic solutions

According to the Hopf bifurcation theorem, small limit cycles are born as a result of the Hopf bifurcation. It is very
complex to reduce our six-dimensional system [13] to obtain the normal form of the modulation equations in the vicinity
of the bifurcations. Therefore, the software AUTO [18] is used to obtain dynamic solutions that emerge from the Hopf
bifurcations. The Hopf bifurcation is supercritical or subcritical depending on whether the born limit cycle is stable or
unstable, respectively. Cycle-limit of the modulation equations correspond to aperiodic responses of the beam. In the pre-
vious example (d3=0.1, g, =03=0.04 and p =250), there are four Hopf bifurcations. Where H; (o;=-0.1307) and H,4
(01 =0.1530) represent subcritical Hopf bifurcation, while H, (61 = —0.0724) and Hs (o1 = 0.1094) correspond to supercrit-
ical Hopf bifurcation. As ¢, increases, a small limit cycle born as a result of the supercritical Hopf bifurcation point H,, see
Fig. 6(a). The period-one limit cycle (Fig. 6(b)) grows and deforms and remains stable until another period-doubling bifur-
cation occurs DP, (o1 = —0.07353). Then it undergoes a sequence of period-doubling bifurcations DP4 (61 = —0.07368), DPs
(61 =-0.07371), DP;s (01 = —0.073721), culminating in a chaotic attractor as shown in Fig. 7. In Fig. 6(c)-(e), two-dimen-
sional projections of the phase portraits onto the a;-a, plane at various pre and post-period-doubling bifurcation points
are shown.

7. Summary and conclusions

In this paper a geometrically non-linear theory for thin-walled composite beams is used to present the nonlinear dynamic
response of a thin-walled composite beam. The theory is formulated in the context of large displacements and rotations,
adopting a shear deformable displacement field and valid for bisymmetric cross-sections either open or closed. The internal
resonance is present in the beam dynamic behavior. With the method of multiple scales six first-order nonlinear ordinary-
differential equations describing the modulation of the amplitudes and phases were obtained and numerically analyzed. The
resonant behavior is illustrated by frequency-response and amplitude-load curves for a sequence of lamination of {0/0/0/0}.
Due to the coupling existing, the composite thin-walled beam exhibit a complex dynamic behavior. The frequency-response
curves are characterized by saddle-node and Hopf bifurcations and multiple jumps effects. Supercritical and subcritical Hopf
bifurcations of the three-mode equilibrium solutions are found. The limit cycle solutions which born from the Hopf bifurca-
tion may undergo a sequence of period-doubling bifurcations, culminating in an chaotic attractor. There are new periodic
solutions in the frequency-response curves when the damping value decreases.
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Appendix A.

The coefficients used in the Eq. (21) are:

C1Cy (S1%] C2C9
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! 3ttt gy 2T i, dwnawy’
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where
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