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In this paper, we present an analytical method to determine the mode I stress intensity factor for thin-
walled beams made of laminated composites. The technique relies on the concept of crack surface wid-
ening energy release rate, which is expressed in terms of the G� integral and thin-walled beam theory. In
the vicinity of the crack tip, a solution of the G� integral is obtained employing stress and displacement
fields derived for materials with general orthotropy. The effect of warping is taken into account. This is a
common feature in thin-walled beams which cannot be neglected, especially when flexural–torsional
loads are present.

The model shows a good agreement with finite element results. It is shown that, although the
approaches developed for isotropic materials may be useful in the treatment of orthotropic problems,
they may not yield good results for some typical lamination sequences.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Slender members made of composite materials are widely em-
ployed in modern engineering structures. As a result, the study of
fracture mechanics in such structural components has become a
topic of recognized importance. A significant parameter of fracture
mechanics is the stress intensity factor (SIF), which plays an impor-
tant role in the evaluation of the structural integrity. In complex
structures, this parameter is usually determined by means of finite
element calculations. This strategy has proven to give good results
[1], but in some cases it can be expensive due to the need of large
models or highly refined meshes. It is known that, in the context of
Structural Health Monitoring, calculations must be performed in
real time. Consequently, it is desirable to obtain simple formulas
in order to save computation time.

Most fracture mechanics approaches for linear elastic materials
are based on stress and displacement fields obtained for isotropic
materials [2–5]. These techniques can be applied directly in a lim-
ited range of orthotropic problems [6]. But if a complex anisotropy
is present or more accuracy is required, a method developed spe-
cifically for composites must be considered. For solid section
beams, some authors studied the fracture mechanics in composites
with orthotropic lamination [7–9]. The proposed techniques rely
on the expression of the energy release rate proposed by Nikpur
and Dimarogonas [10], using the SIFs given by Bao and coworkers
[11,12]. All these latter approaches used the crack tip results de-
rived by Sih et al. [6].

Besides the complexity addressed by the use of non-isotropic
materials, the treatment of thin-walled beams involves additional
complications due to the presence of cross-sectional warping and
flexural–torsional couplings [13–15]. Although some approaches
for isotropic structural profiles have been presented [4,16–18], to
the authors’ knowledge, only one regards the warping effect [19].

In this article we present a simple formula to determine the
mode I SIF for cracked thin-walled beams, made of fiber reinforced
composites. The technique is based on the G� integral concept
[5,20] and thin-walled beam theory, in conjunction with conserva-
tion law and classical lamination theory [15,21,22]. G� integral
solution is obtained regarding stress and displacement fields for
materials with general orthotropy [6]. The influence of cross-sec-
tional warping is taken into account by considering the energetic
contribution of the bimomental force.
2. Crack tip stress and displacement fields for an orthotropic
lamina

Laminate composites consist of an arrangement of orthotropic
laminas as the one sketched in Fig. 1. Each lamina verifies the exis-
tence of two planes of constructive symmetry which are mutually
perpendicular and simultaneously normal to a third plane. The an-
gle U indicates the orientation of the fibers with respect to the
laminate coordinate system.
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Fig. 1. Composite lamina with general orthotropy. Relation among the laminate

Nomenclature

aij elastic constants of a composite lamina
a crack depth (also semi-major axis of the elliptic crack)
~a variable crack depth
A cross-sectional area
A11 laminate plate stiffness coefficient
b dimension of a flange
B bimomental beam force (also point B, origin of the sys-

tem B: x, s, n)
B11 laminate plate stiffness coefficient
c semi-minor axis of the elliptic crack
C center of gravity of the uncracked cross section
Cw warping constant
Ch constant obtained from solving the G� integral in a quar-

ter of circle
D11 laminate plate stiffness coefficient
fi stress field functions
gi displacement field functions
G⁄ crack mouth widening energy release rate
h dimension of the web
Iy, Iz second moments of area
Iyz product moment of area
Iyx, Izx product of warping
J constitutive matrix of the beam
Jij components of the constitutive matrix
KI Mode I stress intensity factor
l distance in n direction from C to a point in the cross-sec-

tion middle line
L length of the beam
n coordinate normal to the cross-section middle line
N axial beam force
My, Mz bending moments
pj complex number
qj complex number
Q vector of generalized forces
r radial coordinate
s circumferential coordinate
S cross-sectional perimeter
Sy, Sz first moments of area

Sx first moment of warping
t beam thickness
T stress vector
Tx, Ts elements of the stress vector
u axial displacement of the uncracked beam centroid
ux axial displacement of any point of the beam
us circumferential displacement of any point of the beam
u displacement vector
U strain energy
U0 strain energy density
x, y, z Cartesian coordinates
xi Cartesian coordinates of the intrinsic system of a lamina
Y, Z coordinates of a point located in the middle line of the

cross-section
C integration path
cij angular strain in a composite lamina
eij normal strain in a composite lamina
D vector of generalized strains
g unit outward normal vector
gx, gs components of the unit outward normal vector
h angular coordinate
hx warping variable
hy, hz bending twists
k auxiliary integration variable
li complex number
m Poisson’s ratio
n crack location (axial coordinate)
P total potential energy
rij stresses in a composite lamina
xp primary warping function
U orientation angle of the fibers
ð�Þ0 subscript associated to the uncracked cross-section
ð�Þ~a subscript associated to the cracked cross-section (with x

integration variable)
ð�Þk subscript associated to the cracked cross-section (with k

integration variable)
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Considering a plain stress condition, the constitutive law for
such orthotropic lamina can be expressed as
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where aij (i = 1, 2, 6) are constants which depend on the elastic
properties of the composite and the orientation angle U of the lam-
ina [15].

For mode I loading, Sih et al. [6] derived the stress and displace-
ment fields near the crack tip in a rectilinearly anisotropic body as

rxx ¼ 2prð Þ�
1
2 KIf1ðhÞ; ð2Þ

rss ¼ 2prð Þ�
1
2 KIf2ðhÞ; ð3Þ

rxs ¼ 2prð Þ�
1
2 KIf3ðhÞ; ð4Þ

and

ux ¼ 2rð Þ
1
2p�1

2 KIg1ðhÞ; ð5Þ

us ¼ 2rð Þ
1
2p�1

2 KIg2ðhÞ; ð6Þ
respectively. These fields are expressed in terms of a polar coordi-
nate system of variables r and h, whose origin is located at the crack
tip, as in Fig. 2. The functions fi(h) and gi(h), involving material prop-
erties, are given by

f1ðhÞ ¼ Re
1

l1 � l2

l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p � l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p
 !" #

; ð7Þ

f2ðhÞ ¼ Re
l1l2

l1 � l2

l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p � l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p
 !" #

; ð8Þ
coordinate system (B: x, s, n) and the intrinsic system of the lamina (B: x1, x2, x3).



Fig. 2. Two-dimensional simplification of a three-dimensional edge-crack.

Fig. 3. Generic thin-walled beam with a crack regarded as an elliptical hole (c ? 0).
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f3ðhÞ ¼ Re
l1l2

l1 � l2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

p
 !" #

; ð9Þ

g1ðhÞ ¼ Re
1

l1 � l2
l1q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

q
� l2q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

q� �� �
;

ð10Þ

g2ðhÞ ¼ Re
1

l1 � l2
l1p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l2 sin h

q
� l2p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ l1 sin h

q� �� �
;

ð11Þ

where pj ¼ a22l2
j þ a12 � a26lj and qj ¼ a12lj þ a11=lj � a16. In order

to find the complex numbers lj, the characteristic equation

a22l4 � 2a26l3 þ ð2a12 þ a66Þl2 � 2a16lþ a11 ¼ 0; ð12Þ

must be solved for each lamina.

3. G� integral and mode I SIF for an orthotropic lamina

Let the crack sketched in Fig. 2 be a two-dimensional simplifica-
tion of a three-dimensional edge-crack in a composite lamina.
From the conservation law, the two-dimensional G� integral can
be defined per unit thickness as [5,20]

G� ¼
Z

C
U0gx � T

@u
@x

� �
dC; ð13Þ

where U0 is the strain energy density, g = {gx, gs} is the unit outward
normal and T = {Tx, Ts} is the stress vector applied on the outer side
of the path C. The vector u = {u, v} contains the displacements from
the Sih–Paris–Irwin field [6], given in (5), (6). When G� is solved for
the path Cdfg, it represents the energy release rate due to the mov-
ing crack boundary dfg in the x direction. As the crack mouth opens,
G� can be regarded as the crack mouth widening energy release rate
[5].

Being the paths Cde and Cef a straight line and a quarter of circle
respectively, Eq. (13) can be solved to yieldZ

Cde

U0gx � T
@u
@x

� �
dC ¼ K2

I log r
4p

f1ðp=2Þ þ g1ðp=2Þ½

þf3ðp=2Þðg2ðp=2Þ þ 2g01ðp=2ÞÞ þ 2f 2ðp=2Þg02ðp=2Þ
�
¼ 0; ð14Þ

and
Z
Cef

U0gx � T
@u
@x

� �
dC ¼ K2

I Ch

4p
; ð15Þ

where KI is the mode I SIF and Ch is a constant inherent to the lam-
ina and given by

Ch ¼
Z p

p=2
f1ðhÞ sin hðg1ðhÞ sin hþ 2g01ðhÞ cos hÞ
�

þf2ðhÞ g2ðhÞ cos h sin hþ g02ðhÞð3þ cos 2hÞ
	 �

þf3ðhÞ g1ðhÞ cos h sin hþ g2ðhÞ sin2 hþ g01ðhÞð3þ cos 2hÞ
h

þg02ðhÞ sin 2h
�


dh: ð16Þ

The integral in Eq. (16) can be easily solved numerically.
From the conservation law, Eq. (13) vanishes for all closed

paths, therefore solving it for Cdefd = Cde + Cef � Cdf must produceH
Cdefd
ðU0gx � T@xÞdC ¼ 0. Employing Eqs. (14) and (15), it follows

that

I
Cdefd

U0gx � T
@u
@x

� �
dC ¼

Z
Cdef

U0gx � T
@u
@x

� �
dC

�
Z

Cdf

U0gx � T
@u
@x

� �
dC

¼ K2
I Ch

4p
�
Z

Cdf

U0gx � T
@u
@x

� �
dC ¼ 0: ð17Þ

Now, considering Eq. (17), G� can be expressed as

G� ¼
Z

Cdfg

U0gx � T
@u
@x

� �
dC ¼ K2

I Ch

4p
þ
Z

Cfg

U0 dC: ð18Þ

Eq. (18) must be interpreted as the energy release rate per unit
moving of boundary Cdfg in x direction. The material properties and
the orientation of the lamina are condensed in Ch, within the func-
tions fi(h) and gi(h).

4. Energy release rate for cracked thin-walled composite beams

4.1. A cracked thin-walled composite beam

Fig. 3 shows a sketch of a generic thin-walled beam with an
edge crack. The points of the beam are referred to a Cartesian coor-
dinate system (C: x, y, z), which origin C is located at the centroid of
the uncracked cross-section. A circumferential coordinate s and a
normal coordinate n are also defined in the middle line of the
cross-section. A point on this middle line has coordinates Y and
Z. The system (B: x, s, n) is consistent with the laminate system de-
fined in Fig 1.The crack is located at x = n and regarded as an ellip-
tical hole under the condition of c ? 0 [20]. Hence, the crack depth
is variable with x as
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~aðxÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� nð Þ2

c2

s
: ð19Þ
t
t

y

z

y

z

4.2. Constitutive law

The constitutive equation associated to a thin-walled composite
beam can be written as [15]

Q ¼ JD; ð20Þ

where Q is the vector of generalized beam forces, J the constitutive
matrix and D the vector of generalized strains. Since only the appli-
cation of mode I loads are considered, the energy contributions of
shear and torque are small and can be neglected. Hence, the expres-
sions of Q and D can be expressed are

Q ¼ fN;My;Mz;BgT
; ð21Þ

D ¼ @u
@x
;� @hy

@x
;� @hz

@x
;� @hx

@x

� �T

: ð22Þ

The following generalized beam forces have been defined in Eq.
(21): N as the axial force, My and Mz as the bending moments and B
as the bimoment. Since mode I loading is considered, the couplings
associated to shear and torsion are neglected. The generalized
strains in vector D are defined in terms of the generalized displace-
ments: u as the axial displacement, hy and hz as the bending rota-
tions and hx as the warping variable. The constitutive matrix J,
defined in Eq. (20), is a symmetric matrix containing the cross-sec-
tional magnitudes and the laminate properties. The components of
J are given by

J11 ¼ E�A; J12 ¼ E�Sy þ B11
R

S
dY
ds ds; J13 ¼ E�Sz � B11

R
S

dZ
ds ds;

J14 ¼ E�Sx � B11
R

S lds; J22 ¼ E�Iy þ 2B11
R

S Z dY
ds dsþ D11

R
S

dY
ds


 �2
ds;

J23 ¼ E�Iyz � B11
R

S Z dZ
ds � Y dY

ds


 �
ds� D11

R
S

dY
ds

dZ
ds ds;

J24 ¼ E�Iyx þ B11
R

S
dY
ds xp � lZ

 �

ds� D11
R

S l dY
ds ds;

J33 ¼ E�Iz � 2B11
R

S Y dZ
ds dsþ D11

R
S

dZ
ds


 �2
ds;

J34 ¼ E�Izx � B11
R

S
dZ
ds xp þ lY

 �

dsþ D11
R

S l dZ
ds ds;

J44 ¼ E�Cw � 2B11
R

S lxp dsþ D11
R

S l2 ds;

ð23Þ

where l = Y dY/ds + Z dZ/ds and

A ¼ t
R

S ds; Sy ¼ t
R

S Z ds; Sz ¼ t
R

S Y ds; Sx ¼ t
R

S xp ds;

Iy ¼ t
R

S Z2 ds; Iz ¼ t
R

S Y2 ds; Iyz ¼ t
R

S YZ ds;

Iyx ¼ t
R

S Zxp ds; Izx ¼ t
R

S Yxp ds; Cw ¼ t
R

S x2
p ds:

ð24Þ

In Eqs. (23) and (24), S denotes the contour perimeter of the
cross-section, t is the wall thickness, xp is the primary warping
function [15], E� = A11=t and A11, B11, D11 are laminate plate stiffness
coefficients [15,21,22]. No change in the warping function is con-
sidered due to the presence of the crack. Eqs. (23) and (24) are va-
lid at any cross section of the beam. If it is an intact cross-section,
perimeter S takes the constant value S0. If the elliptical crack as de-
fined in (19) is present, S becomes S~a, which depends on ~a.

4.3. Energy release rate

The strain energy related to the generic beam in Fig. 3 can be
expressed as

U ¼ 1
2

Z n�c

0
Q T J�1

0 Q dxþ
Z nþc

n�c
Q T J�1

~a Q dxþ
Z L

nþc
Q T J�1

0 Q dx
� �

; ð25Þ
where J~a and J0 are the constitutive matrices associated to the
cracked and uncracked cross-section, respectively. J~a depend on x
through expression (19).

Now, neglecting the small alterations generated in the beam
forces by the presence of the crack, the expression (25) can be
reformulated as

U ¼ 1
2

Z n�c

0
Q T J�1

0 Q dxþ cQ T
���

x¼n

Z 1

�1
J�1
k dkQ jx¼n þ

Z L

nþc
Q T J�1

0 Q dx
� �

;

ð26Þ

where an additional integration variable has been defined as
k = (x � n)/c.

From Clapeyron’s theorem, the work of external loads is V = 2 U.
The potential energy is given by P = U � V, therefore P = �U. Then
the crack surface widening energy release rate can be expressed as

G� ¼ lim
c!0

@U
@c
¼ 1

2
@

@c

Z n�c

0
Q T J�1

0 Q dxþ
Z L

nþc
Q T J�1

0 Q dx
� �

þ Q T
���

x¼n

Z 1

0
J�1
k dkQ jx¼n ð27Þ

This expression can be rearranged by applying the fundamental
theorem of calculus to give

G� ¼ Q T
���
x¼n

Z 1

0
J�1
k dk� J�1

0

� �
Q jx¼n: ð28Þ
5. Mode I SIF

Eqs. (18) and (28) are obtained by different paths, but they both
represent the crack mouth widening energy release rate G�. Fol-
lowing the ideas of Xie et al. [5,16,18], these expressions can be
equated to obtain

K2
I Ch

4p
þ
Z

Cfg

U0 dC ¼ 1
t

Q T
���
x¼n

Z 1

0
J�1
k dk� J�1

0

� �
Q jx¼n

� �
: ð29Þ

Now, due to free action of crack surface, the contribution of the
integral on Cfg is a small quantity which can be disregarded. Thus,
the mode I SIF is given by

KI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p
tCh

Q T
���
x¼n

Z 1

0
J�1
k dk� J�1

0

� �
Q jx¼n

� �s
: ð30Þ

Eq. (30) shows that the SIF depends on crack depth a, general-
ized beam forces in cracked cross-sectional area Q jx¼n, material
properties, laminate properties and orientation of the lamina
through Ch, beam thickness t and properties of cracked and un-
cracked cross-section condensed in J~a and J0, respectively. Expres-
sion (30) is generic and can be applied to edge-cracked thin-walled
Fig. 4. Cross-sectional shapes used and its corresponding crack dispositions.
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(a) (b)

Fig. 5. (a) SIF for a cracked thin-walled T-beam under bending (My = 1 kN m, no warping). Laminate: {0}4. (b) Percentage difference with respect to FEM results.

a b/ a b/

(a) (b)

Fig. 6. (a) SIF for a cracked thin-walled U-beam under bending (Mz = 3 kN m, no warping). Laminate: {0}4. (b) Percentage difference with respect to FEM results.
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beams of any cross-section, made of fiber reinforced composite
materials with any fiber orientation, for mode I loading.

6. Results and discussion

We present comparisons of the results obtained by Eq. (30)
against the results by finite element method (FEM) and by other
authors when available. In FEM analysis, we employed ABAQUS
6.7 package [23,24], meshing with 20-node quadratic brick ele-
ments (C3D20R). Quarter point singularity elements were assigned
to the neighborhood of crack tip. Each mesh consisted of about
120000 elements.

The analyzed cross-sectional shapes are shown in Fig. 4: a U-
profile with a crack at one of its flanges and a T-profile with a crack
in the web. For both cases, the dimensions considered were
h = 0.2 m, b = 0.1 m, t = 0.01 m and L = 2 m. Crack location was set
to n/L = 0.5. Graphite–epoxy (AS4/3501) with different laminate
schemes was considered in the calculations. Material properties
are: E1 = 1.44 GPa, E2 = 9.65 GPa, m12 = 0.3, G12 = 4.14 GPa,
G23 = 3.45 GPa, q = 1389 kg/m3.

In their seminal paper [6], Sih, Paris and Irwin noted that the
classic approach for isotropic materials may be directly applied
to orthotropic problems for individual examples. This scenario
was represented by the example of Fig. 5, corresponding to a T-
beam with a 0� lamination. Results from Eq. (30) were compared
with FEM and results by other authors [16,4,19]. A rearrangement
of classical KI formulas [2] was included, by considering the
cracked web as an independent plate with statically equivalent
loading (indicated in figures as Tada et al.). Considering FEM re-
sults as reference, the method presented in this paper showed an
acceptable performance for a wide range of crack depths, with er-
rors in the order of 15% for moderate depths. The approach of
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(a) (b)

Fig. 7. (a) SIF for a cracked thin-walled U-beam under bending (Mz = 3 kN m, B = �2.30 N m2). Laminate: {45/�45}s. (b) Percentage difference with respect to FEM results.

a b/ a b/

(a) (b)

Fig. 8. (a) SIF for a cracked thin-walled U-beam under bending (Mz = 3 kN m, no warping). Laminate: {0/90}s, curves corresponding to 0� laminas. (b) Percentage difference
with respect to FEM results.
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Cortínez and Dotti, developed for isotropic thin-walled beams [19],
and Xie and Wang’s formula for T-beams [16] gave also similar re-
sults, as can be expected since they all derive from G� integral con-
cept. Classical formula errors were in the order of 30% while Ricci
and Viola’s formula [4] failed to 40% difference for very small
cracks. In any case, these results should not be considered as bad
if one takes into account the simplicity of the aforementioned
approaches.

For isotropic U-beams, some authors [4,16] presented SIF’s for-
mulas which consider the presence of two symmetrical cracks at
the flanges. With the exception of method from Ref. [19], there
are no approaches addressed in the literature for a U-beam having
a single crack at one flange. Predictions become more difficult in
the latter case since the crack introduces an asymmetry, which in-
creases with depth, resulting in a strong three-dimensional behav-
ior of the beam. The U-beam studied in the example of Fig. 6 had a
0� lamination. Present method showed acceptable agreement with
FEM results, as well as the approach for isotropic thin-walled
beams by Cortínez and Dotti [19]. While approaches from Refs.
[4,16] are not applicable, adapted classical formula gave good re-
sults for small to moderate cracks.

Sih, Paris and Irwin claims were also satisfied for the case of a
composite U-beam made with a symmetric and balanced laminate,
as can be seen in the results of Fig. 7. Isotropic approaches give
good results, and also similar results to the present approach.

A very common stacking sequence employed in composites is
symmetric cross-ply lamination. For 0� and 90� laminas in a {0/
90}s laminate, results are presented in Figs. 8 and 9, respectively.



a b/ a b/

(a) (b)

Fig. 9. (a) SIF for a cracked thin-walled U-beam under bending (Mz = 3 kN m, no warping). Laminate: {0/90}s, curves corresponding to 90� laminas. (b) Percentage difference
with respect to FEM results.

a b/ a b/

(a) (b)

Fig. 10. (a) SIF for a cracked thin-walled U-beam under bending (My = 1 kN m, B = �62.44 N m2; ‘‘no warping’’ implies considering B = 0). Laminate: {0/90}s, curves
corresponding to 0� laminas. (b) Percentage difference with respect to FEM results.
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For this example, FEM calculations showed a SIF highly dependent
on the angle of lamination. For moderate cracks, present approach
yielded acceptable results for both, 0� and 90� laminas. Isotropic
approaches worked well for 0� laminas but failed for 90� laminas,
as can be seen in Fig. 9. Results from classical formula were the
same for both laminas, since it do not consider the influence of
material properties. Method from Ref. [19] gave a better approxi-
mation, but still failed up to 50% for some moderate cracks.

Also for symmetric cross-ply laminate, we present the results of
Figs. 10 and 11. In this example, we considered a load which gen-
erates a very strong flexural–torsional coupling in order to quantify
the influence of warping. Results of present method with and with-
out the influence of bimomental force were compared against FEM
results. It can be seen that the fact of neglecting the influence of
cross-sectional warping leads to important errors in SIF prediction.
7. Conclusions

A new formula to determine the mode I SIF for cracked thin-
walled composite beams is presented. It represents an extension
to composite materials with respect to the method previously pre-
sented by the authors for isotropic materials [19].

The accuracy of the formula was tested against results by finite
element method (FEM) and other authors when available, for some
common lamination sequences. Considering FEM results as refer-
ence, the method presented in this paper showed an acceptable
performance for practical engineering applications (errors in the
order of 15% for moderate crack depths). For very small or very
large cracks, errors in estimating the SIF are inevitable for simpli-
fied approaches, which are derived from a one-dimensional
standpoint.



a b/ a b/

(a) (b)

Fig. 11. (a) SIF for a cracked thin-walled U-beam under bending (My = 1 kN m, B = �62.44 N m2; ‘‘no warping’’ implies considering B = 0). Laminate: {0/90}s, curves
corresponding to 90� laminas. (b) Percentage difference with respect to FEM results.
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For orthotropic laminates, although in general terms the pres-
ent method yields better results, it is shown that approaches de-
rived for isotropic materials can be used without major
problems. This also seems to be applicable to some balanced sym-
metric laminates. But for a common lamination sequence as sym-
metric cross-ply, methods developed for isotropic materials can
produce wrong results, requiring the use of models derived specif-
ically for composites, as the one presented in this article.

This method takes into account a very common feature in thin-
walled beams: the warping effect. This is performed by considering
the energetic contribution of the bimomental force. It is shown
that neglecting the influence of warping leads to errors in predict-
ing the SIF, especially if strong flexural–torsional couplings are
present.

The proposed formula represents a contribution in health mon-
itoring and failure analysis of slender structures.
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