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We present a fully relativistic formulation of the energy loss of a charged particle traversing a conductive
monoatomic layer and apply it to the case of graphene in a transmission electron microscope (TEM). We use
two models of conductivity appropriate for different frequency regimes: (a) THz (terahertz) frequency range and
(b) optical range. In each range we distinguish two types of contributions to the electron energy loss: the energy
deposited in graphene in the form of electronic excitations (Ohm losses), and the energy that is emitted in the
form of radiation. We find strong relativistic effects in the electron energy loss spectra, which are manifested,
e.g., in the increased heights of the principal π and σ + π peaks that may be observed in TEM in the optical
range. While the radiative energy losses are suppressed in the optical range in comparison to the Ohmic losses,
we find that these two contributions are comparable in magnitude in the THz range, where the response of doped
graphene is dominated by the Dirac plasmon polariton (DPP). In particular, relative contributions of the Ohmic
and radiative energy losses are strongly affected by the damping of DPP. In the case of a clean graphene with low
damping, the angular distribution of the radiated spectra at the sub-THz frequencies exhibit strong and possibly
observable skewing towards graphene.
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I. INTRODUCTION

In the last twenty years, the field of nanoscience has
vigorously developed, and its importance for technological
applications has increased as miniaturization becomes more
relevant in multiple areas, such as computing, sensors,
biomedicine, etc. [1]. Currently, scientists continue examining
materials with improved physicochemical properties that are
dimensionally more suitable for specific applications.

In this context, the experimental discovery of two-
dimensional graphene by Novoselov et al. [2] was an important
contribution in the area of nanoscience, opening new frontiers
in solid state physics due to its unique properties. As a
one-atom-thick material, graphene attracts both academic and
industrial interest. The two-dimensional (2D) character of
graphene sheets improves many of the remarkable charac-
teristics of carbon materials [3], such as thermal conductivity,
mechanical and electronic properties [4–6]. These open new
possibilities in the development of high speed and radio
frequency logic devices, thermally and electrically conducting
reinforced nanocomposites, electronic circuits, etc. [7–9].
Also, as a nanofiller, graphene may be preferred over other
conventional fillers (Na-MMT, LDH, CNT, etc.) owing to its
characteristics [8–10].

Graphene also shows remarkable optical properties, which
make it stand out among other 2D materials for nanophotonic
and optoelectronic applications [11]. Recent results show
advances for its use in solar cells, light-emitting devices, touch

*segui@cab.cnea.gov.ar
†Also at Consejo Nacional de Investigaciones Cientı́ficas y Técnicas

of Argentina (CONICET).

screens, photodetectors, and ultrafast lasers [12]. In particular,
graphene plasmons (i.e., collective oscillations of its valence
electrons) have been detected and are being analyzed as a
useful tool for fast electronic manipulation of light, giving
place to a vast range of fundamental studies and technological
applications [13]. Particularly promising for applications in
the frequency range from terahertz (THz) to the infrared (IR)
is the so-called Dirac plasmon (or sheet plasmon), which arises
from intraband excitations of the π electrons/holes in heavily
doped graphene [13]. This collective mode is highly tunable by
changing the chemical potential in graphene via external gates,
whereas the corresponding plasmon polariton exhibits strong
field confinement in the direction perpendicular to graphene
with relatively long propagation distances along graphene [14].

As a fundamental technique to study the electronic and
optical properties of nanostructures, electron energy loss
spectroscopy (EELS) has been extensively used to characterize
single- and multilayer graphene [15,16]. This technique is
performed in transmission electron microscopes (TEM) with
high-energy electron beams (∼100 keV), for which relativistic
effects could be important. The EELS-TEM configuration
facilitates high-precision measurements of inelastic energy
losses corresponding to the range of frequencies from visible
to the ultraviolet (UV), which are dominated by the interband
transitions of graphene’s π and σ electrons [15,17,18].
Although nonretarded calculations have reproduced the
experimental energy loss spectra for graphene quite success-
fully [15,19–21], a quantitative assessment of the importance
of the relativistic correction to those spectra is needed for a
broad range of the electron energy losses [15,22].

In recent years there has been a surge of interest in using
electron beams to generate radiation from graphene in a
range of frequencies from THz (terahertz) [23,24] to IR to x
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rays [25] under a variety of the incident electron trajectories,
including aloof scattering [23], cyclotron electron beam [24],
and free electron beam [25]. It should be pointed out that the
setting of a TEM experiment is also suitable for measurements
of the cathodoluminescence (CL) light emission from the
target material [22,26,27]. However, some aspects of the
radiation processes induced by the incident particle in TEM
remain unexplored, such as the transition radiation (TR)
patterns in the presence of plasmon fields in graphene in a
broad range of frequencies.

In this work, we evaluate both the relativistic corrections
to the EELS and the TR spectra in the THz to UV frequency
range, arising from a single layer of free graphene due to
passage of a 100 keV electron under the normal incidence
in TEM. This is achieved by using a relativistic formulation
of the electromagnetic fields [28] and modeling the 2D
conductivity of graphene within the well-known dielectric
response formalism [29] with parameters that provide an
adequate description of the dynamic response of graphene
in a broad range of frequencies [19,30–32]. While this simple
setting is relevant for the EELS-TEM experiments, it enables
us to eliminate other sources of radiation, such as the TR from
dielectric boundaries, Cherenkov radiation, braking radiation,
and the possible CL from graphene. Taking advantage of such
setting, we demonstrate the energy balance in the EELS by
evaluating exact fractions of the electron energy losses that
go into the Joule energy (or Ohmic heating) in graphene
and the electromagnetic energy radiated in the far field
region.

In the THz range, we use the well-known Drude model
of the 2D conductivity in doped graphene, which shows that
the spectra due to heating and radiation are comparable in
magnitude in the THz range of frequencies and that the
relative roles of those two mechanisms of energy loss are
strongly influenced by the damping rate of the Dirac plasmon
polariton (DPP) in graphene. Given that the dispersion of DPP
is completely squeezed out of the light cone, it is surprising
how the energy loss spectra are dominated by the radiated
part as the frequency decreases in the sub-THz domain.
While our prediction of the quite large relativistic effects
in the EELS may be difficult to observe in a TEM in the
THz-frequency range, the effects of damping may be readily
observed in measurements of the angular distribution of the
radiated spectra in that range of frequencies. On the other
hand, in the visible to UV range we use the Drude-Lorentz
model of graphene’s conductivity [19,21] to show that the
relativistic effect in the EELS mostly act to increase the height
of the principal π and σ + π peaks of graphene by some 10%.
At the same time, the radiated energy spectra in that range of
frequencies are heavily suppressed in magnitude with respect
to the Ohmic heating of graphene, while displaying red-shifted
peak structure of the EELS in graphene.

The present paper is organized as follows. In Sec. II, we start
with a thorough description of the theory used. In particular,
we present detailed expressions for the electromagnetic fields
(Sec. II A), the energy loss formulas used to calculate the
spectra (Sec. II B), and the models of conductivity applied in
different frequency regimes (Sec. II C). Section III is devoted
to showing and discussing the principal results obtained for
monolayer graphene. Finally, our concluding remarks are

given in Sec. IV. Note that, unless otherwise explicitly stated,
we use Gaussian units of electrodynamics [33].

II. THEORY

We consider a uniformly moving point charge that traverses
a planar conducting layer with large area and zero thickness
under normal incidence. This corresponds to the configuration
of EELS for a one-atom thick sample such as single-layer
graphene in a scanning transmission microscope (STEM).
With the electron kinetic energy of the order of 100 keV,
it is conceivable that dynamic polarization of the layer will
exhibit strong retardation effects. Assuming that the layer is
placed in vacuum and neglecting the change in momentum
of the incident electron, we discard the Cherenkov radiation
and braking radiation, as well as transition radiation arising
from a boundary between two semi-infinite dielectrics [33,34].
Hence we focus our attention on the electromagnetic radiation
coming from the charge currents induced in the conducting
layer, which may also be called transition radiation (TR). In
addition, we study the retardation effects in the energy loss
spectra of the incident electron, especially in the presence of
plasmon modes in the conducting layer. For simplicity, we
assume that the layer is isotropic and homogeneous in 2D,
so that its dielectric response may be described by a scalar
conductivity σ (k,ω), which generally depends on both the
2D wave number k and frequency ω. In our applications to
graphene, we shall use conductivity in the local approximation
to explore two regimes: one that pertains to the THz plasmonic
applications of doped graphene based on its Dirac (or sheet)
plasmon mode, and the other that is concerned with probing the
π and σ + π spectral features of graphene by means of EELS
in STEM, which occur at around 4 and 14 eV, respectively.

A. Self-consistent solution for the induced fields

We use the Hertz vector �(R,t) [28] to describe the electric
and magnetic fields generated by the external and induced
currents in the system. It is convenient to perform the Fourier
transform with respect to time via

�(R,ω) =
∫ ∞

−∞
dt eiωt�(R,t), (1)

where R = {x,y,z} is a point in a three-dimensional (3D)
Cartesian coordinate system. Then, in an infinite, nonmagnetic
medium described by a frequency dependent relative dielectric
constant ε(ω), the magnetic field and the electric field may be
obtained from

H(R,ω) = −i
ω

c
ε(ω)∇ × �(R,ω), (2)

E(R,ω) = ∇(∇ · �(R,ω)) + ω2

c2
ε(ω)�(R,ω), (3)

respectively, where c is the speed of light in vacuum. Assuming
that the conducting layer is placed in the plane z = 0, it
is also adequate to use Fourier transform with respect to
the in-plane coordinates (r = {x,y} → k = {kx,ky}), leaving
explicit dependence on z. In the presence of a charge current
with density J(k,z,ω) in vacuum (i.e., setting ε = 1), the Hertz
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vector is obtained by solving the equation [28](
∂2

∂z2
− k2 + ω2

c2

)
�(k,z,ω) = −4πi

ω
J(k,z,ω), (4)

where k =
√

k2
x + k2

y . This equation may be solved for arbi-

trary current density J as

�(k,z,ω) = i

ω

∫ ∞

−∞
dz′ G(k,z−z′,ω) J(k,z′,ω), (5)

where G is the retarded Green function (GF) [34] obtained in
Appendix A:

G(k,z,ω) =
{

2πi
κ(k,ω) e

i|z|κ(k,ω), |ω| > ck
2π

α(k,ω) e
−|z|α(k,ω), |ω| < ck

, (6)

with

κ(k,ω) = ω

c

√
1 −

(
ck

ω

)2

, for |ω| > ck, (7)

α(k,ω) = |ω|
c

√(
ck

ω

)2

− 1, for |ω| < ck. (8)

It is clear from Eq. (6) that κ defines the wave number of
waves propagating in the far-field region as |z| → ∞ when
|ω| > ck, whereas α > 0 defines the evanescent solutions of
Eq. (4) in the near-field region that are localized around the
conducting layer when |ω| < ck. In the following, we shall
mostly show steps in our development of the theory that use
the expression for the GF given in the first line of Eq. (6) for
|ω| > ck, but we note that a formal transition to the evanescent
solution for |ω| < ck may be simply achieved in each step by
the replacement κ(k,ω) �→ iα(k,ω).

We further assume that an external point charge Ze, where
e is the charge of a proton, moves along the z axis with constant
velocity v = ẑv, where ẑ is a unit vector in the direction of that
axis. Thus the Fourier transform of the current density due to
the external charge with respect to r and t is given by

Jext(k,z,ω) = Ze eiz ω
v ẑ. (9)

Upon substituting this expression for current in Eq. (5), the
corresponding Hertz vector due to the external charge may be
written in the form

�ext(k,z,ω) = i

ω
A(k,ω) Jext(k,z,ω), (10)

where we have defined an auxiliary amplitude as

A(k,ω) = 4π

ω2

v2 − ω2

c2 + k2
. (11)

As a consequence of the polarization of charge carriers in
the conducting layer by the external charge, there will arise
an in-plane current in that layer with the density j(k,ω). We
allow that the scalar conductivity of the layer, σ (k,ω), may
be a complex valued function and assume that it satisfies the
condition σ (k, − ω) = σ ∗(k,ω), where ∗ indicates a complex
conjugate, which guarantees causality of the layer’s response.
Then, the induced 2D current density in the conducting layer

may be expressed in terms of the tangential component of the
total electric field, E‖(k,z,ω), taken at the plane z = 0 as

j(k,ω) = σ (k,ω) E‖(k,0,ω). (12)

Taking into account that the conducting layer has zero
thickness, the corresponding induced 3D current may be
written in terms of Dirac’s delta function as

Jind(k,z,ω) = δ(z) j(k,ω), (13)

which when inserted into Eq. (5) gives an expression for the
corresponding Hertz vector as

�ind(k,z,ω) = i

ω
G(k,z,ω) σ (k,ω) E‖(k,0,ω). (14)

Now, the total Hertz vector is given by the sum of the
external and induced fields, � = �ext + �ind; on the other
hand, writing it as

�(k,z,ω) = �‖(k,z,ω) + ẑ
z(k,z,ω), (15)

it is clear that its components in the directions parallel to the
conducting layer, �‖(k,z,ω) ≡ �ind(k,z,ω), are only deter-
mined by the induced current via Eqs. (12) and (14), whereas
its component along the z axis, 
z(k,z,ω) ≡ ẑ · �ext(k,z,ω),
is only determined by the external charge via Eqs. (9) and (10).

Using Eq. (3) with ε = 1, we express the total electric field
E in terms of � as

E(k,z,ω) = ω2

c2
[�‖(k,z,ω) + ẑ
z(k,z,ω)] +

(
ik + ẑ

∂

∂z

)

×
[
ik · �‖(k,z,ω) + ∂

∂z

z(k,z,ω)

]
, (16)

wherefrom the tangential component of the total electric field
taken at the plane z = 0 is obtained as

E‖(k,0,ω) =
(

ω2

c2
− k k·

)
�‖(k,0,ω)

+ ik
∂

∂z

z(k,z,ω)

∣∣∣∣
z=0

. (17)

Using Eqs. (6) and (14) at z = 0, we write

�‖(k,0,ω) ≡ �ind(k,0,ω) = −2πσ

ωκ
E‖(k,0,ω), (18)

while using Eqs. (9) and (10), we have

∂

∂z

z(k,z,ω)

∣∣∣∣
z=0

≡ ∂

∂z
[ẑ · �ext(k,z,ω)]

∣∣∣∣
z=0

= −Ze

v
A(k,ω). (19)

Substituting the final expressions from Eqs. (18) and (19) into
the right hand side of Eq. (17), we find a self-consistent solution
for the longitudinal component of the total tangential electric
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field in the plane of the conducting layer as

E‖(k,0,ω) = −ik
Ze

v

A(k,ω)

1 + 2π
ω

κσ
. (20)

Inserting the result from Eq. (20) into Eq. (14) and using
Eq. (6), we finally obtain the induced Hertz vector as [in the
following we simplify the notation by writing A(k,ω) → A]

�ind(k,z,ω) = ik
Ze

v

A

ωκ

2πσ(
1 + 2π

ω
κσ

)ei|z|κ . (21)

We can further obtain an expression for the induced electric
field from Eq. (16) by setting 
z(k,z,ω) = 0 and using the
expression from Eq. (21) in place of �‖(k,z,ω) as follows:

Eind(k,z,ω) = i[kκ − ẑk2 sgn(z)]
Ze

v

A

ω

2πσ

1 + 2π
ω

κσ
ei|z|κ , (22)

where sgn is the standard signum function.
From Eq. (21) and the definition for the magnetic field H in

terms of �, Eq. (2) with ε = 1, we obtain the induced magnetic
field as

Hind(k,z,ω) = −i
ω

c

(
ik + ẑ

∂

∂z

)
× �ind(k,z,ω)

= i
ω

c
(ẑ × k)

Ze

v

A

ω

2πσ

1 + 2π
ω

κσ
ei|z|κ sgn(z). (23)

Notice that the expressions in Eqs. (22) and (23) are strictly
valid inside the light cone, |ω| > ck, that is, in the far-field
region with κ given in Eq. (7). In order to convert those
expressions to evanescent solutions in the near-field region
where |ω| < ck, one has to replace κ �→ iα so that the relevant
factors in Eqs. (22) and (23) transform according to

ei|z|κ

1 + 2π
ω

κσ
�→ e−|z|α

1 + i 2π
ω

ασ
, (24)

with α > 0 given in Eq. (8).
In the following sections, we shall rely on a property that

implies that Eind(−k,z, − ω) = E∗
ind(k,z,ω) and Hind(−k,z, −

ω) = H∗
ind(k,z,ω), where ∗ indicates complex conjugation

of each vector component in the Fourier transforms of the
real valued fields Eind(r,z,t) and Hind(r,z,t). This property is
ensured in the expressions in Eqs. (22) and (23) by considering
the parity of A, σ , κ , and α as functions of ω.

We conclude this subsection by making a comment that
the final expressions for the induced fields in Eqs. (22) and
(23) guarantee that the corresponding total fields, E(k,z,ω)
and H(k,z,ω), satisfy the usual jump boundary conditions at
z = 0. [33] Namely, using Eq. (23) one can show that

ẑ × [H(k,0+,ω) − H(k,0−,ω)] = 4π

c
j(k,ω), (25)

where we have used Eqs. (12) and (20) to reconstruct an
expression for the 2D current density j(k,ω) in the conducting
layer. On the other hand, using Eq. (22), we find

ẑ · [E(k,0+,ω) − E(k,0−,ω)] = 4πρ(k,ω), (26)

where we have used a 2D continuity equation to express the
surface density of charge induced in the conducting layer as
ρ = k · j/ω.

B. Energy loss of the external charge

The energy loss spectrum recorded in an EELS experiment
can be obtained from the total work done by the induced
electric field on the external charge, given by

Wext =
∫ ∞

−∞
dt

∫∫∫
d3R Jext(R,t) · Eind(R,t)

= −i
(Ze)2

v

∫∫
d2k

(2π )2
k2
∫ ∞

−∞

dω

ω

Aσ

1 + 2π
ω

κσ

×
∫ ∞

−∞
dz e−iz ω

v
+i|z|κ sgn(z), (27)

where we have used Eq. (9) and the z component of the induced
field in Eq. (22). The integral over z in the last line of Eq. (27)
is well-defined for |ω| < ck when κ �→ iα with α > 0. In the
case when |ω| > ck and hence κ is real valued, one must insert
a convergence factor e−η|z| in the z integral according to the
change κ �→ κ + iη and eventually take the limit η → 0+.
This formal trick may be justified by assuming a slightly lossy
medium in the far-field regions with �[ε(ω)] → 0+. In either
case, the result of integration over z in the last line of Eq. (27)
is −iωA/(2πv) for arbitrary ω, giving

Wext = − (Ze)2

πv2

∫∫
d2k

(2π )2
k2

∫ ∞

0
dω A2 �

×
[

σ (k,ω)

1 + 2π
ω

κ(k,ω) σ (k,ω)

]
. (28)

Here, we have reduced the integration over frequencies to
positive values by using the parity properties of the functions
σ (k,ω), A(k,ω), κ(k,ω), and α(k,ω).

Note that the integrand in Eq. (28) is related to the
probability density that the external charge will loose an energy
�ω and suffer a change in the momentum �k perpendicular
to its trajectory. To analyze its structure in some detail, we
decompose the integral over ω in Eq. (28) over the near-field
and far-field regions, respectively,∫ ∞

0
dω A2 �

[
σ

1 + 2π
ω

κσ

]

=
∫ ck

0
dω A2 �[σ ]∣∣1 + i 2π

ω
ασ

∣∣2
+

∫ ∞

ck

dω A2 �[σ ] + 2π
ω

κ|σ |2∣∣1 + 2π
ω

κσ
∣∣2 . (29)

Since all terms in this expression are positive, one sees from
Eq. (28) that generally Wext < 0, so it may be written in the
form

Wext =−
∫∫

d2k
∫ ∞

0
dω ω F (k,ω), (30)

which defines the total probability density F (k,ω) > 0.
The total energy change involved in the process is given by

W = Wext + Wohm + Wrad, where Wext is given by Eq. (27),
Wohm is the Joule energy that describes the Ohmic heating of
the conducting layer, and Wrad is the total energy radiated by
the electromagnetic fields at frequencies ω > ck in the far field
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regions above and below the conducting layer. In Appendix B,
we show that when the two terms with �[σ ] in Eq. (29) are
used in Eq. (28), one obtains exactly −Wohm. Also, we show
that when the remaining term in Eq. (29) with |σ |2 is used
in Eq. (28), one obtains exactly −Wrad. Hence the balance of

energy in the system may be expressed as

Wext + Wohm + Wrad = 0 (31)

with

Wohm = (Ze)2

πv2

∫∫
d2k

(2π )2

⎧⎨
⎩
∫ ck

0
dω

(kA)2 �[σ (k,ω)]∣∣1 + i 2π
c

σ (k,ω)
√(

ck
ω

)2 − 1
∣∣2 +

∫ ∞

ck

dω
(kA)2 �[σ (k,ω)]∣∣1 + 2π
c

σ (k,ω)
√

1 − (
ck
ω

)2∣∣2
⎫⎬
⎭ (32)

and

Wrad = 2

c

(Ze)2

v2

∫∫
d2k

(2π )2

∫ ∞

ck

dω (kA)2

√
1 −

(
ck

ω

)2
∣∣∣∣∣∣

σ (k,ω)

1 + 2π
c

σ (k,ω)
√

1 − (
ck
ω

)2

∣∣∣∣∣∣
2

. (33)

Accordingly, the total probability density for the energy loss and momentum transfer of the external charge, defined via
Eq. (30), may be decomposed into two contributions, F = Fohm + Frad, corresponding to the Joule energy spent on Ohmic
heating of the conducting layer,

Fohm(k,ω) = 4

π

(Ze)2

β2ω

(ck)2 �[σ ][
ω2

(
1
β2 − 1

) + (ck)2
]2

⎧⎪⎪⎨
⎪⎪⎩

1∣∣1+ 2π
c

σ

√
1−
(

ck
ω

)2∣∣2
, ω > ck,

1∣∣1+i 2π
c

σ

√(
ck
ω

)2
−1
∣∣2

, ω < ck,
(34)

and the total radiated energy for ω > ck given by

Frad(k,ω) = 8
(Ze)2

β2ω

ck2
√

1 − (
ck
ω

)2

[
ω2

(
1
β2 − 1

) + (ck)2
]2

∣∣∣∣∣∣
σ

1 + 2π
c

σ

√
1 − (

ck
ω

)2

∣∣∣∣∣∣
2

, (35)

where β = v/c.

In EELS, one is often interested in the spectra integrated
over the in-plane momentum transfer up to some critical value
ks = ϑk0, which is defined by the effective scattering semi-
angle of electron beam ϑ and the incident electron momentum
�k0. The angle ϑ is defined by the beam convergence angle
and the aperture collection angle [21]. Then, the corresponding
marginal probability density for energy loss �ω is obtained
from Eq. (30) as

P (ω) = 1

�2

∫∫
‖k‖<ks

d2kF (k,ω) = 2π

�2

∫ ks

0
dk k F (k,ω).

(36)

We note that ϑ is typically on the order of some 10 mrad
in EELS, but in practice the range of integration in Eq. (36)
may be often extended to ks → ∞ [21]. As with the joint
probability density F (k,ω), one may also decompose the total
probability of energy loss into two contributions, P = Pohm +
Prad, corresponding to the Joule energy and the radiated energy,
respectively.

We finally note that, in the nonretarded limit, one lets c →
∞, so that Frad → 0 in Eq. (35) and only the second line in the
definition of Fohm in Eq. (34) survives giving Fohm → Fnonret,
where

Fnonret(k,ω) = 2

π2
(Zev)2 k

(ω2 + k2v2)2
�
[ −1

ε2D(k,ω)

]
. (37)

This expression for the probability density of energy loss and
momentum transfer in the nonretarded limit was derived in
previous works [19,21]. We have introduced in Eq. (37) the
loss function of the conducting layer, �[−1/ε2D], which is
expressed in terms of its 2D dielectric function defined by
ε2D(k,ω) = 1 + i2π k

ω
σ (k,ω).

It is of further interest to find the joint spectral density
and the angular distribution of the TR given in Eq. (33). For
radiation emitted in both the upper and lower half-spaces
at a frequency ω in a direction with the angle θ with
respect to ẑ and with polar angle ϕ, one can write k =
{kx,ky} = ω

c
sin θ{cos ϕ, sin ϕ}, and hence d2k = dkx dky =

ω2

c2 sin θ | cos θ | dθ dϕ in Eq. (33). Thus one obtains from
Eq. (33)

Wrad =
∫∫

d2�̂

∫ ∞

0
dω S(θ,ω), (38)

where S(θ,ω) ≡ ∂3Wrad

∂2�̂ ∂ω
is the total spectral density of radiation

and d2�̂ = sin θ dθ dϕ is the infinitesimal solid angle for 0 �
θ � π and 0 < ϕ < 2π [35]. The function S(θ,ω) is obtained
by substituting k = ω

c
sin θ and κ = ω

c
| cos θ | in the integrand

of Eq. (33). Noticing that the amplitude in Eq.(11) may be then
written as

A = 4π
c2

ω2

β2

1 − β2 cos2 θ
, (39)
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one obtains

S(θ,ω) = Z2 e2

c

[
β sin(2θ )

1 − β2 cos2 θ

]2

×
∣∣∣∣∣ σ

(
ω
c

sin θ,ω
)

c + 2π | cos θ | σ(ω
c

sin θ,ω
)
∣∣∣∣∣
2

. (40)

We note that an alternate derivation of this result may be
obtained from an asymptotic analysis of spherical waves in
the far region due to Weyl [36,37], as outlined at the end of
Appendix B.

C. Models of 2D conductivity

The conductivity of a 2D layer may be expressed in terms
of its polarizability function, or the density-density response
function of noninteracting electrons in that layer, χ0, as

σ (k,ω) ≡ −ie2ω
χ0(k,ω)

k2
. (41)

The formalism developed in the preceding subsections can be
directly applied to any 2D material described by a nonlocal
scalar conductivity [11], and it may be readily generalized to
anisotropic 2D materials [38]. In order to explore the leading
effects due to retardation in the EELS and the properties of
TR in the presence of plasmon mode(s) in a 2D material,
we we shall further focus our attention on the optical limit
where conductivity of the layer only depends on frequency,
σ (ω). While this regime is of primary interest in photonic
applications of layered structures, it is also expected that
the retardation effects in EELS will be most pronounced in
the optical limit. In that limit, several empirical models for
σ (ω) are available in various frequency ranges for different
2D materials [38] including graphene [19], whereas ab initio
methods may also be utilized to obtain σ (ω) by taking the limit
k → 0 in Eq. (41) [20,21,39].

For a quasifree, 2D electron gas (2DEG) at low frequencies,
one may use the Drude model for conductivity [40,41]

σD(ω) = i
vB

π

ωF

ω + iγ
, (42)

where vB = e2/� ≈ c/137 is the Bohr velocity, ωF = εF /�

is the frequency related to the Fermi energy εF , and γ is the
damping rate. For a 2DEG with single parabolic energy band,
one has ωF = π�n0/m∗, where n0 is the equilibrium electron
areal density and m∗ the effective electron mass [40], whereas
for the Dirac electrons in a heavily doped graphene one has
ωF = vF kF , where vF ≈ c/300 is the Fermi speed in graphene
and kF = √

π |n| its Fermi wave number [41].
In the case of doped graphene, the Drude conductivity

model in Eq. (42) describes the collective, intraband excitation
mode of graphene’s π electron bands considered in the Dirac
cone approximation. This mode is commonly described as the
Dirac (or sheet) plasmon, which has an appealing property of
tunability of its dispersion relation by controlling the doping
density of charge carriers in graphene, n, using external means
[42]. It turns out that the validity of Eq. (42) is limited by the
relations kvF � ω � ωF , so that for typical doping densities
of |n| � 1013 cm−2, the corresponding Fermi energy of εF =
�vF kF � 0.4 eV guarantees that this model is suitable for

studying the Dirac plasmon for applications in the THz to mid-
infrared (MIR) range of frequencies [43]. Besides its tunability,
the Dirac plasmon in graphene is expected to be relatively long
lived: one may estimate its damping rate to be �γ ∼ 1 meV
by equating the static limit of the Drude conductivity, σD(0) =
vBωF /(πγ ), with the dc conductivity, σdc = e|n|μ. This gives
an estimate for the damping as γ = vBvF /(eμkF ), where μ

is the mobility of charge carriers, which may take rather large
values, well in excess of 105 cm2/(V s) in clean graphene [42].

In order to extend the applicability of the Drude model in
Eq. (42) for doped graphene in the optical limit to frequencies
beyond 2ωF , it is necessary to use the sum of conductivities,
σD + σDirac, where contribution from the interband electron
transitions in the Dirac cone approximation is given at zero
temperature by

σDirac(ω) = vB

4

[
�(ω − 2ωF ) + i

π
ln

∣∣∣∣ω − 2ωF

ω + 2ωF

∣∣∣∣
]
, (43)

with � being the Heaviside unit step function. The above
model is valid for frequencies up to about �ω ∼ 2 eV. In
the case of neutral, or intrinsic graphene, when n = 0 and
hence ωF = 0, one has σD = 0, so the only contribution to
the low-frequency conductivity of undoped graphene follows
from Eq. (43) to be σDirac = vB/4 [43].

In the range of high frequencies, �ω � 2 eV, when the
optical response of graphene is dominated by the π → π∗ and
σ → σ ∗ interband transitions at high-symmetry points of the
Brillouin zone [44,45], one may use a Drude-Lorentz model
of conductivity in the optical limit, given by [19,21]

σDL(ω) = ie2ω

[
n0

π/m∗
π

ω(ω + iγπ ) − ω2
πr

+ n0
σ /m∗

σ

ω(ω + iγσ ) − ω2
σr

]
.

(44)

The above model may be derived from a 2D, two-fluid
hydrodynamic model of graphene’s π and σ electron bands,
where n0

ν , m∗
ν , ωνr , and γν are the equilibrium surface

number density of electrons, effective electron mass, restoring
frequency, and the damping rate in the νth fluid (where
ν = π,σ ), respectively. By using the model in Eq. (44) with the
following parameters: n0

π = 38 nm−2, n0
σ = 114 nm−2, ωπr =

4.08 eV, ωσr = 13.6 eV, γπ = 1.958 eV, γσ = 2.176 eV,
along with m∗

σ = m∗
π = m0 (free electron mass), several sets

of experimental data for EELS on single layered graphene
for �ω � 2 eV could be reproduced at the qualitative and
semi-quantitative levels [15,19,21].

We finally note that it may be possible to extend the domains
of applicability for the above models for neutral graphene
by combining the expressions in Eqs. (43) and (44) [46].
Alternatively, instead of analytical models one may use the
results of ab initio calculations, which were recently obtained
by Novko et al. [39] for the conductivity of neutral graphene
in the optical limit.

III. RESULTS AND DISCUSSION

In this section, we present calculations corresponding to
the energy loss of electrons impinging on 2D graphene, using
the conductivity models described in the previous section for
different frequency regimes. It is interesting to note that, when
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FIG. 1. Total probability density F , obtained from Eqs. (34) and (35), for energy loss �ω and momentum transfer �k of a 100 keV electron
passing through a layer of doped graphene described by the Drude conductivity, Eq. (42), with damping rates (a) γ = 0.1ωc, (b) 0.5ωc, and
(c) ωc. Level curves (thin solid black lines) are shown for the reduced probability density F = F/Fc in the range 0 < F � 1 with the steps of
0.2 versus reduced frequency ω = ω/ωc and the reduced wave number k = k/kc, where Fc = 4e2/(πω2

ckc), ωc = ckc, and kc = kF vBvF /c2.

Also shown are the dispersion of light, ω = k (solid green line), the dispersion of the Dirac plasmon in nonretarded limit, ω =
√

2k (dotted

blue line), and the dispersion of the Dirac plasmon polariton, ω =
√

2(−1 +
√

1 + k
2
) (dashed red line).

one uses a local model of conductivity, σ (ω), in Fohm(k,ω) and
Frad(k,ω), Eqs. (34) and (35), it is possible to compute the k

integral in Eq. (36), and hence obtain analytical expressions
for the marginal probability density P (ω) for both the Joule
and radiative energy losses, respectively.

A. Terahertz frequencies

Let us first examine the low-frequency regime dominated
by the Dirac plasmon mode, using the Drude conductivity
expression (42). It is instructive to show the effects of
retardation on the dispersion of Dirac plasmon in graphene
by considering possible resonances in Eq. (29) with damping
set to γ = 0. While the denominator in the second term

of that expression has no real zeros for ω > ck, we find
a resonant plasmon-polariton mode by solving the equation
1 + 2πiασD/ω = 0 for 0 < ω < ck. This gives a dispersion
relation for Dirac plasmon-polariton (DPP) defined by

ω2 = 2ω2
F

⎡
⎣−

(vB

c

)2
+
√(vB

c

)4
+
(

vB

vF

k

kF

)2
⎤
⎦. (45)

One can show that for very long wavelengths, k � kF vBvF /c2,
the dispersion relation in Eq. (45) approaches the light
line, ω = ck, whereas when an opposite inequality holds,
then the dispersion approaches the typical relation of the
Dirac plasmon in the nonretarded limit at long wavelengths,
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FIG. 2. Contributions to the probability density F for energy loss �ω and momentum transfer �k of a 100 keV electron passing through a
layer of doped graphene described by the Drude conductivity, Eq. (42), with damping rates (a) γ = 0.01ωc, (b) 0.1ωc, and (c) 0.5ωc. Vertical
cross sections are shown for the reduced probability density F = F/Fc multiplied by the square of the reduced wave number k = k/kc for
k = 0.2 (blue lines), 1 (green lines), and 2 (red lines) as functions of the reduced frequency ω = ω/ωc, where Fc = 4e2/(πω2

ckc), ωc = ckc,

and kc = kF vBvF /c2. Solid lines show the contributions to k
2
F from the radiated energy given in Eq. (35), whereas the dashed lines show the

contributions from the Joule energy given in Eq. (34).

ω = √
2vBvF kF k. Therefore a transition between the two

limits occurs for wave numbers k in the neighborhood of the
characteristic wave number kc = vBvF kF /c2, which attains
values kc � 1.36 × 10−5 nm−1 for doping densities |n| �
1013 cm−2. If one defines the corresponding characteristic
angular frequency as ωc = ckc = vBvF kF /c, so that �ωc �
2.69 meV or νc = ωc/(2π ) � 0.65 THz, then the dispersion
relation in Eq. (45) may be written in a dimensionless form

as ω =
√

2(−1 +
√

1 + k
2
), where k = k/kc and ω = ω/ωc

are the reduced wave number and frequency, respectively.
This relation is shown in all three panels of Fig. 1 along
with the dispersion of light, ω = k, and the dispersion of

the Dirac plasmon in nonretarded limit, ω =
√

2k, in the

reduced units. Clearly, the dispersion of the DPP given via
Eq. (45) is completely “squeezed out” of the light line in the
limit γ → 0. In practice, however, a well-defined DPP may
only exist if γ � ωc in the THz range, that is, for graphene
doping densities |n| � c/(πeμ). This relation amounts to
|n| � 6.6 × 1016/μ, given in the units of cm−2 when the
mobility μ is expressed in the units cm2/(V s). Thus, the DPP
damping may only be neglected in clean samples of graphene
with large densities of charge carriers, e.g., |n| ∼ 1013 cm−2

when μ ∼ 105 cm2/(V s).
We further show in Fig. 1 several level curves of

the normalized total probability density F = F/Fc, with
Fc = 4e2/(πω2

ckc), in the plane of reduced frequency and
reduced wave number, (ω,k), for the incident electron energy
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FIG. 3. Contributions to the integrated probability density P for energy loss �ω obtained from Eq. (36) with ks → ∞ for an electron with
energy E0 passing through a graphene layer described by the conductivity in Eq. (42). Results are shown for the reduced density P = πεF P/4,
where εF = �vF kF , vs reduced frequency ω = ω/ωc, where ωc = kF vBvF /c, for contributions Pohm due to the Joule energy (solid lines) using
Eq. (34) and Prad due to the radiated energy (dotted lines) using Eq. (35). In (a), three cases are shown for E0 = 50 (thick red lines), 100
(medium blue lines), and 200 keV (thin black lines) with fixed γ = 0.1ωc, whereas in (b), three cases are shown for γ = 0.01ωc (thin black
lines), γ = 0.1ωc (medium blue lines) and 0.5ωc (thick red lines) with fixed E0 = 100 keV. In (c) and (d), besides the Joule contribution Pohm

(solid blue line) and the radiative contribution Prad (dotted blue line) for E0 = 100 keV, also shown are their sum Ptotal = Pohm + Prad (dashed
green line) and the probability density Pnonret in the nonretarded limit (dash-dotted red line) from Eq. (36) using Eq. (37) for (c) γ = 0.1ωc and
(d) 0.

E0 = 100 keV and for three values of the damping rate in
the range γ � ωc. One notices that the probability density
spreads around the DPP dispersion curve, Eq. (45) in reduced
units, most noticeably in the low k region. The spreading in
the region below the light line, ω < ck, is seen in Fig. 1 to
increase with increasing γ , in accordance with the findings
of Ref. [47]. However, unlike Ref. [47], we also observe in
Fig. 1 a comparably large spreading in the region above the
light line, ω > ck, which seems to be rather independent
from γ .

In order to elucidate the origins of this spreading, we
plot in Fig. 2 the contributions of the Joule energy, Fohm

from Eq. (34), and the radiated energy, Frad from Eq. (35),
to the total probability density F , shown as a function of
frequency for several cross sections with fixed values of the
wave number k. One notices that, for a sufficiently small
damping rate, say γ = 0.01 ωc, the Joule energy is represented
by a resonant peak that follows closely the DPP dispersion
relation in Eq. (45), which is quite narrow and produces
negligible contribution above the light line. As the damping
rate increases, the width of the DPP peak also increases in a
rather asymmetric manner, with its high-energy tail extending
well above the light dispersion ω = ck. On the other hand, the
contribution from radiation energy is always located above the
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FIG. 4. Spectral density of the radiated energy S, Eq. (40), from a layer of doped graphene described by the Drude conductivity, Eq. (42),
with damping rates (a) γ = 0.01ωc and (b) 0.5ωc due to the passage of a 100 keV electron on a perpendicular trajectory. (c) same as (a) for
the highly relativistic case with β = 0.9 (electron kinetic energy ≈660 keV). Results are shown for the reduced spectral density S/Sc where
Sc = e2/c as a function of the emission angle θ relative to the electron trajectory in polar representation, and various values of the reduced
frequency ω = ω/ωc, where ωc = kF vBvF /c.

light line and is represented by a rather broad tail at frequencies
ω > ck, which is most pronounced for the vanishing damping,
γ = 0, and only weakly decreases in magnitude, but not in the
range, with increasing γ . Notice that the radiation contribution
is particularly pronounced at lower values of k (and hence,
lower ω), while it quickly becomes negligible as k increases.

As mentioned above, the EELS experiments often probe
integrated probability density P (ω), Eq. (36), where one may
take ks → ∞. In the case of radiated energy losses, this
amounts to collecting the radiation emitted at fixed frequency
ω over all directions,

Prad(ω) = 1

ω

∫∫
d2�̂S(θ,ω). (46)

In Fig. 3, we show calculations of the Joule, Pohm, and
radiation, Prad, contributions to the total density considering
different values of γ and the incident electron energy E0.

We notice in panel (a) that both contributions increase with
increasing E0 for reduced frequencies ω � 5, while the reverse
is true for the Joule contribution at higher frequencies. Panel
(b) shows remarkably opposing trends, with the radiation
contribution decreasing and the Joule contribution increasing
with increasing γ . As a result, one notices surprisingly
strong dependence of relative contributions of the Ohmic
and radiation losses on the DPP damping. This is particularly
important knowing that graphene samples may exhibit great
range of variability in their mobility due to the presence of
impurities and defects [32].

In panels (c) and (d), we further analyze the Ohmic and
radiation contributions to energy losses and compare their sum,
Ptotal = Pohm + Prad, with the integrated probability density in
nonretarded limit, Pnonret. Given that the radiation contribution
is absent in Pnonret, the large differences seen between Pohm

and Pnonret show that relativistic effects are important for the

125414-10



ENERGY LOSSES AND TRANSITION RADIATION . . . PHYSICAL REVIEW B 94, 125414 (2016)

FIG. 5. Probability densities of the Joule energy loss Fohm (left column) and the radiative energy loss Frad (right column) obtained from
Eqs. (34) and (35), respectively, using the Drude-Lorentz conductivity model of Eq. (44) with the π - and σ -electron density parameters given
in the text. Results are shown as function of energy loss �ω (in eV) and the relative momentum transfer k/kmax (with kmax = 0.1 nm−1) for an
electron with different energies E0 passing through a layer of graphene. The F -values are in units of Å2/eV, and the radiative contribution is
multiplied by a factor of 10 in order to make it visible at low incident energies. Also shown are the dispersion of light, �ω = ck (dashed red
line), as well as the nonrelativistic dispersion relations of the π (continuous yellow line) and π + σ (dotted green line) plasmons for single
layered graphene.

Joule energy losses at reduced frequencies ω � 10. This may
be traced back, at least in the limit of weak damping, to large
changes in the dispersion relation due to retardation effects
seen in Fig. 1 (similar behavior has been observed also for

surface plasmons in metallic slabs [48]). To illustrate this point,
we show in Fig. 3(d) analytical results for various contributions
to the integrated density of energy losses in the case of γ = 0,
which we label by a superscript (0). Specifically, one obtains
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for Ohmic losses with retardation

P
(0)
ohm(ω) = 8β2

εF

ω2 + 4

(β2ω2 + 4)2
, (47)

which levels off at a constant value of P
(0)
ohm ≈ 2β2/εF when

ω � 1. On the other hand, energy losses in nonretarded limit
for the case γ = 0, P

(0)
nonret(ω), are given by same expression

as in Eq. (47), but with the numerator ω2 + 4 replaced by ω2,
indicating a quadratic dependence P

(0)
nonret(ω) ≈ ω2β2/(2εF )

when ω � 1. At the same time, the contribution of the radiative
energy losses in the case γ = 0 prevails at frequencies ω �
0.5, and is given by

P
(0)
rad (ω) = 4

πεF

1

βω(β2ω2 + 4)2

[
(4 + 3β2ω2 + 4β2 − β4ω2)

× ln

(
1 + β

1 − β

)
− 2β(β2ω2 + 4)

− 2β3ω(β2ω2 + 4) arctan

(
2

ω

)]
. (48)

Even though the case γ = 0 is a theoretical idealization of an
undamped DPP, one may conclude from the above analysis that
sufficiently clean samples of graphene irradiated by the keV
electrons under normal incidence may radiate quite effectively
at the sub-THz frequencies.

While the features observed in Fig. 3 for Pohm in the
THz-frequency range are likely inaccessible in typical EEL
spectra, the remarkable dependencies of the radiative energy
loss Prad on both the incident electron energy E0 and the
damping rate γ can possibly give rise to readily observable
features in the angular distribution of the spectral density,
S(θ,ω), of the energy radiated in that range of frequencies.
Using the Drude conductivity from Eq. (42) in Eq. (40) we
evaluate S resulting from the passage of a 100 keV electron on
a perpendicular trajectory through a layer of doped graphene
with two damping rates γ . Figure 4 shows the angle-resolved
distribution of the radiated energy in a polar plot in the form
of level curves for several values of ω = ω/ωc. We observe
that, for the higher value of γ , the angular distributions are
narrowly peaked around the directions π/4 and 3π/4 for any
value of ω considered, while, for the smaller γ , the radiation
emitted at lower frequencies presents a marked spread towards
the graphene plane. Also, we observe that the smaller the
value of γ , the higher the density of radiated energy is, in
agreement with what was observed in Fig. 3. In either case,
the radiation is practically zero along the electron trajectory
(θ = 0, π ). Nevertheless, when the kinetic energy of the
electron is increased to highly-relativistic velocities [panel (c)
in Fig. 4], the distribution spreads towards the direction of the
incident electron’s trajectory, though maintaining the emission
pattern with respect to the surface (i.e., for small γ there is still
a strong component parallel to the surface at low ω).

The narrow focusing of the angular distribution of radiated
energy about the directions π/4 and 3π/4 seen in Fig. 4(b)
for the larger γ value may be ascribed to the first θ -dependent
factor in Eq. (40). On the other hand, the distortion of the
radiation lobes seen in Fig. 4(a) for a smaller γ value is clearly
a signature of an increasingly well-defined DPP, which appears
particularly strongly skewed towards the plane of graphene as

FIG. 6. Integrated probability density P from Eq. (36) vs energy
loss �ω of electrons with the kinetic energy E0, which are collected
with their scattering angles up to ϑ = 20 mrad after passing through
a layer of graphene described by the Drude-Lorentz conductivity,
Eq. (44). (a) shows results for the total P when the retardation effects
are included (solid lines) by using Eqs. (34) and (35) and when they
are neglected (dotted lines) by using Eq. (37) for E0 = 50 (thick
red lines), 100 (medium blue lines), and 200 (thin black lines). (b)
reproduces the total probability density Ptotal from (a) in the case of
E0 = 100 keV (solid black line) and compares it with the contribution
from the radiated energy Prad (dashed black line), which is calculated
from Eq. (36) by using Eq. (35) and is multiplied by a factor of 103.

the frequency decreases. This feature may be accessible in an
angle-resolved THz spectroscopy of the light radiated from
graphene in a TEM.
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FIG. 7. Spectral density of the radiated energy S, Eq. (40), from a layer of graphene described by the Drude-Lorentz conductivity, Eq. (44),
due to the passage of an electron on a perpendicular trajectory with various velocities v = βc. Results are shown for the reduced spectral
density S/Sc where Sc = e2/c vs the emission angle θ relative to the electron trajectory and the frequency ω expressed in the units of electron
energy loss [eV].

B. Visible-to-ultraviolet frequencies

We now focus on the higher-frequency range, in which the
Drude-Lorentz conductivity model of Eq. (44) is more suitable
for describing the dynamic polarization of both the π and
σ electrons in graphene. In Fig. 5, we show the probability
density F as a function of energy loss �ω and the reduced
momentum k/kmax for electrons moving at different incident
energies E0. The double-pole model of Eq. (44) gives rise to the
features in F observed around 4 and 14 eV, corresponding to
the well known π and π + σ peaks [15,19,21]. It is remarkable
that those peak structures in the probability density due to the
Joule energy, Fohm, extend well inside the light cone, ω > ck,
for increasing incident electron energy. This is a consequence
of the relatively large peak widths γπ and γσ of the π and σ

electrons, which are fixed parameters of the model in Eq. (44).
At the same time, the probability density due to the radiated
energy Frad also shows features corresponding to the π and π +
σ peaks, which are localized inside the light cone, ω > ck, but

appear to have a magnitude that is suppressed in comparison
to the same features in the Joule energy loss.

In Fig. 6, we show the integrated probability density for
energy loss P using the electron scattering angle of ϑ =
20 mrad, which corresponds to a EELS experiment [15]. With
the model in Eq. (44), the experimental π and π + σ peaks at
around 4 and 14 eV are satisfactorily reproduced [15,19]. In
Fig. 6(a), we compare the total integrated density Ptotal with
its nonretarded limit for several incident electron energies E0,
while in Fig. 6(b), we compare Ptotal with the integrated density
Prad due to the radiated energy for E0 = 100 keV. The most
remarkable fact shown here is the relevance of including the
retardation effects in the calculation of energy loss spectra
when the incident electron energy in EELS increases. This is
especially true in the regions around the main peaks in Ptotal,
with their heights being increased by more than 10% when the
retardation effects are included, as shown in Fig. 6(a). On the
other hand, in contrast to the low-frequency regime (Fig. 3),
Fig. 6(b) shows that the radiative term Prad yields a very low
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FIG. 8. The total integrated energy loss Wtotal = Wohm + Wrad from Eqs. (32) and (33) for an electron on a perpendicular trajectory as a
function of its speed v (in atomic units). Two values are considered for the k integration limit: ks = k0 (red, continuous line) and the restricted
case ks = ϑk0 (red, dash-dotted line) with ϑ = 20 mrad. Also included are calculations for the nonretarded limit, Eq. (37), with ks = k0 (blue,
dash-double dotted line) and ks = ϑk0 (blue, dash-dotted line). Inset: radiative contribution Wrad.

overall contribution to the total probability density, which is
accordingly dominated by the Joule energy losses, Pohm, in
the range of visible to UV frequencies. Interestingly, the peak
positions in Prad in Fig. 6(b) are seen to be red shifted compared
to those in Ptotal.

The angular distribution of the radiated energy S(θ,ω)
[Eq. (40)] for the visible to UV range of frequencies presents
the same general trend than that for the THz range, but
now with the two characteristic peaks at ≈4 and ≈14 eV
instead of the monotonic decrease of S with ω; for the fixed
values of γν used here, it presents a preferential direction
around π/4 at the moderately relativistic energies typical
in a TEM, E0 ≈ 100 keV. Again, when the incident energy
increases to ultrarelativistic velocities, the peaks of emitted
radiation pattern skew towards the direction of incidence while
increasing the intensity. These features are illustrated in Fig. 7
for increasing values of β, from β = 0.5 (corresponding to
an energy E0 ≈ 80 keV) to β = 0.9 (E0 ≈ 660 keV). (We
do not show distribution in the half-space below graphene,
with π/2 < θ < π , which is equal but symmetrically placed
relative to graphene.) As mentioned for the low-frequency
range, the spectral density is dominated by the first-angle
dependent factor in Eq. (40). Notice that in the present range
of frequencies there is very little dispersion in angle. This
may be related to the fact that, unlike the Dirac plasmon at
low frequencies, the peaks in the high-frequency response of
graphene do not show a collective, or resonant, character in
the optical limit, but are rather found to be pure interband
single-particle transitions of the type π → π∗ and σ → σ ∗
[21,44,45]. Thus no significant dispersion with angle is
observed in Fig. 7 using the local model of Eq. (44). However,
this picture may be changed if nonlocal effects are included in
the form of a wave number dependent conductivity, σ (k,ω),

because the π → π∗ and σ → σ ∗ transitions were shown to
suddenly acquire a collective character as k increases. With
k = ω

c
sin θ this could result in an observable skewing of the

angular distribution in S(θ,ω) towards the plane of graphene
at high frequencies, similar to that seen in Fig. 4(a) for the
THz frequencies [45].

Finally, it is interesting to study the total energy lost by a
charged particle due to the Joule and radiation contributions,
obtained from Eqs. (32) and (33), respectively. In Fig. 8, we
show the energy lost by an electron crossing the graphene layer
as a function of its speed. In particular, we consider the results
for ks = k0, corresponding to the case of an hemispherical
detector collecting the electrons scattered between 0 and π/2
(red, continuous line), and a restricted case with ks = θk0,
where θ = 20 mrad (red, dash-dotted line). This restriction is
seen in Fig. 8 to only affect the Joule contribution. We also
include in Fig. 8 results in the nonretarded limit from Eq. (37),
which only display noticeable effects at very large electron
speeds. On the other hand, the radiative contribution (shown
in the inset) is almost negligible except for very large speeds,
close to the limit v → c. This feature points to a possibility
to design detectors for relativistic particles based on TR from
multilayer graphene, or graphite [49].

The results in Fig. 8 show that the total energy loss of a 100
keV electron is on the order of 1 eV, whereas its deflection
angle is well below ∼10 mrad, thereby justifying our initial
assumption that the incident electron velocity is constant.

IV. CONCLUSIONS

We present a completely relativistic formulation for the
energy loss of a charged particle traversing a conductive
monoatomic layer. The theory is applied to the case of
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graphene in a transmission electron microscope (TEM) using
two models of conductivity appropriate for different frequency
regimes: (a) THz-frequency range and (b) optical range. We
concentrated in these two specific ranges because graphene
shows remarkable properties in both regimes, making it
suitable for applications in devices, nanocomposites, and elec-
tronic nanofillers. We distinguish two types of contributions to
the electron energy loss: the energy deposited in the graphene
sheet in the form of electronic excitations (Ohm losses), and the
energy that is emitted in the form of radiation. The properties of
each contribution are described in terms of analytical methods.
For both contributions we apply them to illustrative examples,
showing the angular distribution of the emitted radiation,
as well as the spectral distribution in the (k,ω) plane. We
also discuss the energy loss densities for both contributions
considering the cases of a detector with a restricted angular
acceptance, as well as the integration over all the electron
momentum transfers to graphene.

In the THz-frequency range, where the dynamic response
of doped graphene is dominated by its Dirac plasmon polariton
(DPP), we find that the Ohmic and radiative contributions are
comparable in magnitude, while showing distinctive features
in both their momentum (angular) and energy distributions. We
find that interplay between the two contributions is strongly
affected by the damping rate of the DPP. For a well defined
DPP, when the damping is low, we find a localized peak
in the Ohmic energy loss that is located outside the light
cone, whereas the radiated energy is broadly distributed and
it extends always within the light cone. Moreover, the angular
distribution of the emitted radiation in the THz range gets
skewed towards the plane of graphene when the damping
rate decreases. This effect of damping in graphene may be
experimentally observable in angle-resolved measurements of
the radiated spectra at the sub-THz range in TEM. On the
other hand, the momentum integrated energy loss density
due to Ohmic contribution shows strong relativistic effects
when compared to the results obtained with retardation
effects neglected. Overall, our analysis shows that incident
electrons with energies ∼100 keV can excite the DPP in
doped graphene quite effectively, while providing an efficient
source of sub-THz radiation with a broad energy spectrum and
characteristically skewed angular distribution.

In the optical range of frequencies, where graphene’s
dynamic response is dominated by the π → π∗ and σ → σ ∗
interband electron transitions, we find that the contribution due
to emitted radiation is heavily suppressed when compared to
the Ohmic losses. For the latter type of losses, we observe a
displacement of the characteristic π and π + σ peaks in the
spectra towards the lower k values (i.e., longer wavelengths) as
the energy of the incident particle increases, falling inside the
light cone at relativistic electron energies. As a consequence,
the momentum integrated energy loss density, which is
dominated by the Ohmic losses, is found to exhibit a 10%
increase in the characteristic peak heights due to relativistic
effects. This role of relativistic effects may be experimentally
observable in the TEM energy loss spectra. At the same time,
the integrated energy loss density due to emitted radiation
also displays the π and π + σ peaks, which are red shifted in
comparison to those in the Ohmic losses. The total radiative
losses turn out to be several orders of magnitude lower than

the nonradiative ones, showing a very steep increase when
the speed of the incident particle approaches the speed of
light. This increase may be of interest for designing graphene
based detectors for measuring the Lorentz factors of energetic
particles with transition radiation [50].
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APPENDIX A: RETARDED GREEN’S FUNCTION FOR
LAYERED STRUCTURE

We consider Eq. (4) of the main text and write it in the time
domain as scalar wave equation for each component ψ(R,t)
of the Hertz vector �(R,t),(

∇2 − 1

c2

∂2

∂t2

)
ψ(R,t) = −4πf (R,t), (A1)

where f (R,t) is a nonhomogeneous term due to the corre-
sponding component of the current density J(R,t). A solution
of the above equation due to the nonhomogeneous term is
given by

ψ(R,t) =
∫∫∫

d3R′
∫ ∞

−∞
dt ′ G(R − R′,t − t ′) f (R′,t ′),

(A2)

where the retarded Green’s function is given by [33]

G(R,t) = 1

R
δ

(
R

c
− t

)
=

∫ ∞

−∞

dω

2π
e−iωt 1

R
ei ω

c
R, (A3)

with R = ‖R‖ = √
r2 + z2 and r = ‖r‖. Hence performing

the Fourier transform of G(R,t) with respect to time and
the coordinates r = {x,y} gives an expression for the Green’s
function as

G(k,z,ω) =
∫∫

d2r
∫ ∞

−∞
dt e−ik·r+iωt G(R,t)

= 2π

∫ ∞

0

dr r√
r2 + z2

J0(kr) ei ω
c

√
r2+z2

, (A4)

where k = ‖k‖ and J0 is the Bessel function of the first kind
of zeroth order. It is important to notice that the real and
imaginary parts of the last expression in Eq. (A4) are even
and odd functions of ω, respectively. Using the table integrals
8 and 9 from section 2.12.23 in Ref. [51] gives a result for
the retarded Green’s function listed in Eqs. (6), (7), and (8)
of the main text, which is valid for both positive and negative
frequencies.

APPENDIX B: JOULE ENERGY AND TRANSITION
RADIATION

We first evaluate the Joule energy as the work done by the
total electric field on the induced charge current density in the
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conducting layer,

Wohm =
∫ ∞

−∞
dt

∫∫∫
d3R Jind(R,t) · E(R,t)

=
∫∫

d2r
∫ ∞

−∞
dt j(r,t) · E‖(r,0,t)

=
∫∫

d2k
(2π )2

∫ ∞

−∞

dω

2π
j(k,ω) · E‖(−k,0, − ω)

=
∫∫

d2k
(2π )2

∫ ∞

−∞

dω

2π
σ (k,ω)

∣∣E‖(k,0,ω)
∣∣2

= (Ze)2

πv2

∫∫
d2k

(2π )2

∫ ∞

0
dω

(kA)2∣∣1 + 2π
ω

κσ (k,ω)
∣∣2

×�[σ (k,ω)], (B1)

where we have used Eqs. (12), (13), and (20). The ω integral
in the last line of Eq. (B1) may be decomposed to give
Eq. (32) of the main text, which proves that when the two
terms with �[σ ] in Eq. (29) are used in Eq. (28) for Wext,
one indeed obtains −Wohm. Moreover, the result in Eq. (32)
demonstrates that the Ohmic heating of the conducting layer
may occur both inside and outside the light cone, defined by
ω = ck, as long as various scattering processes undergone
by the charge carriers in that layer give rise to finite �[σ ]
in those domains of the (ω,k) plane. We note that Eq. (B1)
describes the energy that remains localized in the graphene
layer and eventually dissipates in the form of Ohmic heat
owing to various decay mechanisms for electronic excitations
brought up by the incident particle.

We next evaluate the total electromagnetic energy radiated
in the far field from the flux of Poynting vector due to induced
electric and magnetic fields taken over a large surface S

enclosing the conducing layer,

Wrad = c

4π

∫ ∞

−∞
dt

∫∮
S

dS n̂ · [Eind(R,t) × Hind(R,t)]

= c

4π

∫∮
S

dS n̂ ·
∫ ∞

−∞

dω

2π
[Eind(R,ω) × Hind(R, − ω)]

= c

(2π )2

∫ ∞

0
dω �

∫∮
S

dS n̂ · [Eind(R,ω) × H∗
ind(R,ω)],

(B2)

where n̂ is a unit outer normal vector on S. One possibility
for the choice of the surface S is to take two planes at large
distances from the conducting layer, z = ±∞ [35]. Then,

dS = d2r and n̂ = ±ẑ on the two planes, so that there are
two contributions to the surface integral in Eq. (B2), giving
Wrad = W>

rad + W<
rad, with

W
≷
rad = ± c

(2π )2
lim

z→±∞

∫ ∞

0
dω �

∫∫
d2k

(2π )2
ẑ ·

× [Eind(k,z,ω) × H∗
ind(k,z,ω)]. (B3)

Using Eqs. (22) and (23) one finds that, when ω > ck, the
Poynting vector is given for arbitrary z by

Eind(k,z,ω) × H∗
ind(k,z,ω)

= [k + ẑκ sign(z)]
ω

c

∣∣∣∣∣kZe

v

A

ω

2πσ

1 + 2π
ω

κσ

∣∣∣∣∣
2

, (B4)

whereas when ω < ck, the Poynting vector vanishes for z →
±∞ owing to the transformation of the exponential functions
indicated in Eq. (24). Hence, using Eq. (B4) in Eq. (B3)
gives W>

rad = W<
rad, so that the total radiated energy is given

in Eq. (33) of the main text. This result proves that when the
term with |σ |2 in Eq. (29) is used in Eq. (28) for Wext, one
indeed obtains −Wrad.

We finally note that the expression in Eq. (40) of the main
text for spectral density and angular distribution of the radiated
energy may be obtained from an expression for the Poynting
vector in terms of spherical waves in the far region based
on asymptotic analysis due to Weyl [36,37]. Namely, it may
be shown that, when the radial distance from the coordinate
origin R → ∞, the asymptotic form of the induced electric
and magnetic fields in spherical coordinates are given by

E∞(R,ω) ∼ κ

2πi
Eind(k,0,ω)

ei ω
c
R

R
, (B5)

H∞(R,ω) ∼ κ

2πi
Hind(k,0,ω)

ei ω
c
R

R
, (B6)

where the in-plane Fourier transforms of the electric and

magnetic fields, Eind(k,0,ω) and Hind(k,0,ω), are to be taken
in the plane of graphene, z = 0. By replacing k = {kx,ky} =
ω
c

sin θ{cos ϕ, sin ϕ} and κ = ω
c
| cos θ |, one can see that the

factor [k + ẑκ sgn(z)] in Eq. (B4) becomes ω
c

n̂, where n̂ =
R/R is a unit normal vector on the surface of a large sphere
S of radius R. Using Eqs. (B5) and (B6) in the last line of
Eq. (B2) and writing dS = R2 d2�̂, immediately shows that
the radiated energy in the upper hemisphere is given by Eq. (40)
with a similar expression for the energy radiated in the lower
hemisphere.
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