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The Barkas effect in the electronic stopping power for dressed projectiles moving in a free electron gas is
studied for a wide range of velocities v. The interaction of the projectile with the target is described using
screened interaction potentials, which take into account the self screening due to the projectile bound
electrons and the external screening produced by the target electron gas. The Barkas factor is obtained
from a classical simulation of the scattering of the target electrons in the potential of the projectile
and that of its antiparticle, following the transport cross section model. A large set of numerical simula-
tions were made for different projectiles, degrees of ionization and velocities. We find that the Barkas fac-
tor increases at high energies with the number of projectile bound electrons, whereas its velocity
dependence changes from the v�3 behavior for bare projectiles to a v�2 behavior for neutral ones. Inter-
esting effects of curve crossings in the Barkas factor at different degrees of ionization as a function of the
projectile velocity are observed. A simple scaling law for neutral and fully ionized projectiles is also
derived.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

During the last decades many theoretical studies have been
published to explain the deviation of the electronic stopping power
from the quadratic dependence on projectile charge Z1 predicted
by the Bethe theory [1] in the context of the plane wave Born
approximation for bare ions. This deviation, called Barkas effect,
was first experimentally observed in 1956 by Barkas and
co-workers, who found a difference in the penetration ranges of
positive and negative pions in matter [2]. After Barkas measure-
ments, several other experimental studies have confirmed these
deviations. Andersen et al. [3] explained differences between the
stopping cross-sections measured for MeV alpha particles, protons
and deuterons in Al, Cu, Ag and Au targets, considering a Z3

1 contri-
bution to the energy loss. More than a decade later, experiments by
the Aarhus-CERN collaboration [4,5] revealed very large differ-
ences between the stopping of protons and anti-protons in a silicon
target. Detailed comparisons between theoretical predictions and
experimental results have been reported by Bichsel [6,7], who
provided a set of quantitative analyses taking into account the
influence of other relevant contributions to the stopping power,
such as inner-shell and Bloch corrections, which may mask or dis-
tort the analysis of the pure Barkas effect. Further experiments by
the group of Porto Alegre [8,9] have provided valuable data on the
Barkas effect for heavier ions (He, Li, Be and B) in channeling
conditions.

From the theoretical point of view, one of the first descriptions
of the Barkas effect was made by Ashley, Ritchie and Brandt [10],
who extended to second-order terms the analysis of the electronic
stopping power in a classical treatment similar to the Bohr model
[11]. They argued that only distant collisions were relevant for
contributions to higher order in Z1, because in close collisions the
electrons behave as if they were essentially free and their contribu-
tion to the Z3

1 effect becomes small since the Rutherford cross sec-
tion for free electrons is exactly proportional to Z2

1.
Later on, Lindhard [12] showed that the effect of close collisions

was about as important as the part corresponding to distant colli-
sions. He considered a particle moving in a free electron gas and
showed that an additional Z3

1 term appears as a consequence of
the screening of the electron gas around the projectile, which
affects the dynamics of the scattering process.

After Lindhard’s estimation [12], the contribution of close colli-
sions to the Barkas effect was calculated by different approaches:
using second-order quantum scattering theory [13], by a non-
linear response theory for quantum oscillators [14], using binary
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theory with a screening potential [15], by many-body theory [16],
and by a classical scattering treatment for heavy ions interacting
with a free electron gas [17].

In a more general picture, the analysis extended to Z3
1 order has

some limitations since the Bloch expression for the stopping power
[12] produces an additional Z4

1 term that in most cases becomes com-
parable in magnitude to the Z3

1 term. It is also well known that, for
heavy projectiles, the analysis based only on the Z3

1 Barkas term is
not enough to calculate all the non-linear effects in the stopping
power, and a more complete expansion in powers of Z1 is needed
for this purpose. Other methods, such as the quantum scattering cal-
culations based on the extended Friedel sum rule [18–20], the clas-
sical dynamics treatment [17], the binary theory model [15], the
continuum-distorted-wave method [21–23], and the semiclassical
WKB approximation [24] have also been employed to evaluate all
the non-linear contributions to the stopping for heavy projectiles.

Most of these analyses were made assuming bare projectiles. As
it is well known, the degree of ionization of a projectile moving in a
target depends on its velocity. So at low and intermediate veloci-
ties the effect of the projectile bound electrons in the stopping
power must be considered. In a phenomenological description,
the stopping power may be assumed to be proportional to the
square of an effective charge (in fact, the effective charge is empir-
ically defined in this way). However the treatment based on the
effective charge may be quite misleading [25]. A more systematic
analysis of the effective-charge problem has been performed by
Brandt and Kitagawa (BK) [26] using a dielectric response approx-
imation. Their formulation uses a variational method considering a
statistical model for the projectile in which the charge density is
represented by a simple analytical expression. Other approxima-
tions for the interaction potential of moving ions have been used
in various computer codes, such as the CASP, HISTOP and PASS. A
recent survey and references on these codes can be found in Ref.
[27]. In the present study we describe the electronic structure of
the projectile by means of two different approaches: (i) for heavy
ions we employ the BK model, because it allows the analytical
treatment, in a statistical manner, of the electronic charge density
for ions with many bound electrons, and (ii) for light ions, with few
bound electrons, we use the model developed by Kaneko [28],
which provides useful analytical expressions for the projectile elec-
tronic density taking into account the electronic shell structure by
means of modified hydrogenic orbitals.

The purpose of this paper is to perform a detailed analysis of the
Barkas effect in the stopping power for ions with different ioniza-
tion degrees, at intermediate and high velocities, traversing a free
electron gas corresponding to a metallic Al target. The study is
based on a classical dynamics treatment and the transport cross
section approach [17]. The present energy loss model has also
some features in common with binary theory from Ref. [15]. The
main difference is that our model is based on the hypothesis of col-
lisions with a free electron gas, while the binary theory of Ref. [15]
calculates collisions with bound electrons assuming a uniformly
moving ion interacting with classical harmonic oscillators.

The interaction between the ionized projectiles and the target
electrons is studied by numerical simulations of the electron tra-
jectories, where the projectile is described using two different
models [26,28] and the target is modeled by a free electron gas.
The approach is fully non-perturbative, so that a whole develop-
ment in powers of Z1 is implicitly included. Since the purpose of
this work is to analyse the effects of the projectile’s ionization de-
gree on the Barkas effect, we will not consider hydrogen projectiles
in our study. Low velocities are also excluded from our work, be-
cause our methodology is only applicable to velocities larger than
the Fermi velocity of the target.

The paper is organized as follows. In Section 2 the theoretical
approach of the transport cross section is described and the
simulation procedure is explained. In Section 3 our calculations
of the Barkas factor are presented for projectiles with different de-
gree of ionization and velocities moving in an electron gas, repre-
sented by an aluminum target; a comparison with previous bare-
ion descriptions is made. Finally, in Section 4 the main conclusions
of this work are summarized.

2. Transport cross section and simulation method

We consider an ion with velocity v and nuclear charge Z1e,
carrying N bound electrons, moving through a free electron gas
with a plasmon frequency xp. To describe the charge density of
the ion two different approaches are used: (i) the statistical
Brandt–Kitagawa model [26] for heavy ions, and (ii) the individual
few-electron model from Kaneko [28] for light ions.

The charge density of the projectile qtotðr; tÞ, screened by the
medium, is given by

qtotðr; tÞ ¼ qqðr � vtÞ þ qeðr � vtÞ; ð1Þ

where qq represents the charge density of the projectile with charge
q ¼ ðZ1 � NÞe screened by the electron gas whereas the second term
qe accounts for the N bound electrons of the projectile.

According to the Brand-Kitagawa (BK) model, qe can be ex-
pressed as:

qeðrÞ ¼ �
Ne

4pK3

K
r

expð�r=KÞ ð2Þ

where K is the screening length of the bound electrons, given by [26]

K ¼ 0:48ðN=Z1Þ2=3a0

Z1=3
1 1� 1

7 N=Z1ð Þ
� � ; ð3Þ

where a0 is the Bohr atomic radius.
Considering that the ion charge q ¼ ðZ1 � NÞe is screened by the

electron gas, the following expression for qqðrÞ can be proposed:

qqðrÞ ¼ �
ðZ1 � NÞea2

4pr
expð�arÞ: ð4Þ

Then, the differential equation for the interaction potential VðrÞ, gi-
ven by

r2VðrÞ ¼ 4peqtotðrÞ; ð5Þ

is solved, obtaining a sum of two Yukawa potentials

VðrÞ ¼ � ðZ1 � NÞe2

r
expð�arÞ � Ne2

r
expð�crÞ: ð6Þ

The first term corresponds to the potential of the ion charge
q ¼ ðZ1 � NÞe, screened by the target electrons, with a screening
length k ¼ 1=a, where a ¼ pxp=2v[12], which depends on the pro-
jectile velocity v, and where xp is the plasmon frequency of the tar-
get. The second term in Eq. (6) takes into account the internal
screening due to the bound electrons of the projectile, where the
screening length K ¼ 1=c is given by Eq. (3). Notice that in this
description both terms of the interaction potential are spherically
symmetric. For a bare projectile the expression (6) reduces to the
conventional Yukawa potential with a screening length
k ¼ 2v=pxp; on the other hand, if the projectile is a neutral atom
the potential also reduces to a Yukawa term but with a different
(smaller) screening length, K.

For light projectiles such as He or Li, where the use of the BK
model is not appropriate due to its statistical assumptions, we have
used individual ionic potentials for each projectile charge state,
which were built from hydrogenic-like wavefunctions following
the approach developed by Kaneko [28].

The trajectories of the electrons relative to the moving ion were
calculated by means of a simulation method, where for practical
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purposes, we invert the problem and consider the scattering of
electrons on a fixed screened ion, placing its center of mass at
the position of the nucleus. Since we assume that the electrons
were initially at rest in the target system (note that the present
study is restricted to projectile velocities larger than the Fermi
velocity of the metal target) and the projectile was moving with
a velocity v, in the new frame of reference the electrons will start
moving with an initial velocity �v .

Then, Newton’s equation of motion is numerically integrated
following the algorithm of Euler–Cauchy [29] with a force given
by the negative value of the gradient of the potential VðrÞ. In this
manner, the trajectories of the incident electrons are calculated
at different impact parameters b. Taking into account that the
electron velocity changes appreciably during the collision and its
trajectory becomes very sensitive to small changes in its position
and velocity when it passes close to the (now static) projectile, a
variable time step is used in the simulation which depends on
the electron instantaneous velocity and on the distance to the
projectile nucleus. The simulation of the electron trajectories
allows to obtain the scattering angles hðb; vÞ, through the expres-
sion hðb;vÞ ¼ arccosðux=uf Þ, where uf is the electron final velocity
in the scattering plane and ux is its component along the initial
direction of v.

Next, following the transport cross section method (TCS) of Ref.
[17], we calculate the transport cross section,

rtr ¼
Z

1� cos hðb; vÞ½ �2pbdb: ð7Þ

Despite the fact that the contribution to the above integral from
large values of the impact parameter b becomes almost negligible,
to solve it numerically with accuracy we extend the range of our
simulations to values of b much larger than 10 a.u. for He and Li
projectiles, and to 30 a.u. for Ne and Ar by means of an exponential
extrapolation.

In order to determine the Barkas effect, which measures the
asymmetry in the stopping of particles and their corresponding anti-
particles, the scattering problem for the image ion potential is solved
with the same numerical procedure, where the new potential is
obtained by simply changing the sign of the total potential of the
ion. Finally, using the relation between the mean energy loss per unit
path length S ¼ �dE=dx and the transport cross section for swift ions,
S ¼ nmev2rtr[30] (where n is the electron density of the target and
me is the electron mass), we obtain the Barkas factor from the simu-
lations of the scattering of target electrons in the potential of the
projectile (Z1) and its image (�Z1), namely

RBarkas ¼
rtrðZ1Þ � rtrð�Z1Þ
rtrðZ1Þ þ rtrð�Z1Þ

; ð8Þ

where rtr is calculated according to Eq. (7). Note that the Barkas
factor depends also on the degree of ionization q ¼ ðZ1 � NÞe of
the projectile, which affects the interaction potential, Eq. (6), and
therefore the scattering angle hðb;vÞ.
3. Results

Using the previously described method, we have performed a
large set of simulations for many impact parameters b, assuming
different projectiles velocities v, atomic numbers Z1, and number
of bound electrons N, in a free electron gas target with the plasma
frequency of aluminum (xp ¼ 0:551 a:u: ¼ 14:99 eV), which is
representative of a free electron gas.

First of all we check the values of the projectile interaction
potentials obtained from individual ionic potentials from Kaneko’s
model [28] or from the Brandt–Kitagawa model [26] for light
projectiles such as He and Li. We show in Fig. 1 the interaction
potential VðrÞversus the distance r for (a) He0,1+ and (b) Li0,1+,2+,
impinging with velocity v = 2 a.u. on an Al target. Even though
the statistical Brandt–Kitagawa model is suitable only for heavy
projectiles, we find a remarkable similarity between the BK values
(lines) and the individual ionic potentials (symbols) also in the case
of light ions such as He1+, Li1+ and Li2+. However for neutral projec-
tiles (He0 and Li0) the discrepancies between both potential models
are larger and increase with the distance. This may be attributed to
a failure of the statistical BK model for these cases. The dependence
of the interaction potential with the velocity of the projectile is also
analyzed in Fig. 1, where panel (c) corresponds to He+ and (d) to
Li2+ with velocities v = 2 and 6 a.u. We note in these latter panels
that the interaction potential increases with the projectile velocity
(which corresponds actually to weaker screening conditions) due
to the larger values of the dynamical screening length k ¼ 2v=pxp.

In Fig. 2 we show the integrand of the transport cross section,
Eq. (7), f ðbÞ ¼ 2pb½1� cos hðb;vÞ� as a function of the impact
parameter b for He projectiles with velocity v = 2 a.u. moving in
an Al free electron gas. We compare, in panels (a) to (c), the func-
tion f ðbÞ for different degrees of ionization of the He projectiles as
well as its corresponding antiparticles He

�
. These calculations show

that a large contribution to the transport cross section comes from
small impact parameters, which explain why the charge state
effects are important in rtr. Also, it is interesting to notice that
when the projectile loses its bound electrons (panel c) the range
of impact parameters that contribute to rtr increases, as a conse-
quence of the larger spread in the screening produced by the free
electrons (as compared with that of bound electrons). It is also
clear from this comparison that the case of neutral projectiles
(panel a) shows a more compact spatial distribution and a larger
difference in the areas under the solid and the dashed curves
(i.e., a larger Barkas effect).

The Barkas factor RBarkas, obtained from Eq. (8), is shown in Fig. 3
as a function of the projectile velocity for several projectiles (He, Li,
Ne and Ar) with different degrees of ionization moving in an alumi-
num target. The main feature is that the value of Barkas factor in-
creases with the number of bound electrons at intermediate or
high velocities, depending on the ion. The physical reason of this
effect is that the screening of bound electrons occurs at shorter
distances and hence the deviations from the Rutherford scattering
are stronger. This behavior is in agreement with results obtained
using a semiclassical approach [24].

Additionally, we note that for a given projectile, there is a cross-
ing at low or intermediate velocities between the Barkas factor
curves corresponding to different degrees of ionization. This fea-
ture is clear in Fig. 3 for heavy projectiles such as Ne and Ar, and
it also occurs for light projectiles at lower energies (not shown in
the figure). Note that we restrict our analysis here to intermediate
and high energies since the present approach fails at low energies.
The reason of this behavior is that the screening length
k ¼ 2v=pxp in the first term of the interaction potential (see Eq.
(6)) decreases at low velocities, producing a competition between
the two Yukawa terms of the interaction potential.

Hence, whereas at high velocities the first term of the potential
dominates the Barkas effect (since c is constant while k increases),
at lower velocities k decreases significantly and the second Yukawa
term becomes also important. This fact explains why the Barkas
factor curves show different behavior depending on the degree of
ionization of the projectile and a crossing between different curves
may eventually appear. We have additionally confirmed the occur-
rence of such curve crossings using analytical expressions for the
Barkas factor derived from simpler potentials such as the Mensing
potential [17] and considering different screening lengths.

Also, we note that the Barkas factor increases with the atomic
number of the projectile as shown in Fig. 3 (see the different scales
in the panels). For light projectiles (He and Li), we have also



Fig. 1. Interaction potential VðrÞ versus the distance r for (a) He0 and He+, (b) Li0, Li+ and Li2+ moving with v = 2 a.u. in an electron gas of aluminum. The symbols show VðrÞ for
individual ionic potentials for light ions from Kaneko’s model [28] whereas the lines correspond to the Brandt–Kitagawa potential [26]. VðrÞ is shown in panel (c) for He+ and
(d) Li2+ projectiles moving in aluminum with velocities v = 2 and 6 a.u.

Fig. 2. Function f ðbÞ ¼ 2pb½1� cos hðb; vÞ� of Eq. (7) versus the impact parameter b
for He projectiles with velocity v = 2 a.u. moving in an Al free electron gas for the
three charge states of He. The curves of f ðbÞ for particles are shown by solid lines
and those of the corresponding antiparticles by dashed lines.
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included in Fig. 3 the Barkas factor obtained from individual ionic
potentials from Kaneko’s model (dashed lines) and from the
Brandt–Kitagawa model (solid lines). Another remarkable differ-
ence observed in Fig. 3 is the change in the slope of the various
curves at high energies. In particular, we find a dependence of
the Barkas factor of the type / v�2 for neutral projectiles, quite dif-
ferent from the / v�3 behavior characteristic of bare ions [12].

For bare ions, the basic parameter in the Lindhard formulation
[12] is the scaling parameter 1 ¼ pZ1e2xp=mev3 which is obtained
as the ratio between the collision radius (Z1e2=mev2) and the
screening length (k ¼ 1=a). In the case of neutral projectiles
(N ¼ Z1), the interaction potential given by Eq. (6) also reduces to
a standard Yukawa potential, hence the scaling parameter should
be replaced (following the arguments proposed by Lindhard [12])
by 10 ¼ 2Nc=mev2, as explained in the Appendix A. Notice that both
scaling parameters are dimensionless but they have different char-
acteristics; for bare projectiles, the dependence of 1 on Z1 is linear,
while for neutral projectiles the scaling parameter 10 is not linear
on the number of bound electrons N, since the screening parameter
c ¼ 1=K, given by Eq. (3), also depends on N. The dependence of the
scaling parameter with the projectile velocity is also different for
bare or neutral projectiles: for bare ions 1 / v�3 whereas for neu-
trals 10 / v�2.

To illustrate the scaling property, the Barkas factor RBarkas is
shown in Fig. 4 as a function of the parameter Z1=bv2 for bare pro-
jectiles He2+, Li3+, Ne10+, and for neutrals He0, Li0, Ne0, where
b ¼ 1=2a for bare projectiles and b ¼ 1=2c for neutral ones. We ob-
tain a close coincidence of the Barkas factor for all the projectiles,
in agreement with the scaling prediction. However, at intermediate
degrees of ionization (0 < N < Z1) no such simple scaling law was
found. Notice that for all projectiles there is a saturation effect in
the Barkas factor for Z1=bv2 � 5, so that an additional increase in
the value of Z1 produces a decrease of the Barkas effect. This effect,
not predicted by the usual Z3

1 term analysis, has also been observed
in previous calculations and measurements [8,9,20] and is due to
the contribution of higher order terms of the expansion in powers
of Z1. Since the present method includes all order terms in the
interaction strength, the saturation effect is clearly observed. Final-
ly, we note that in particular this analysis also explains the change
from the / v�3 to the / v�2 behavior at high energies (for bare and
neutral projectiles) discussed in the previous paragraph.

In a more realistic analysis, the effective number of bound
electrons N depends on the nature and velocity of the projectile
and on the target. Experimentally the mean ion charge q in all
materials increases with the projectile velocity, and at high veloc-
ities tends to the atomic number Z1. Therefore, we define the
velocity dependent average Barkas factor hRBarkasi as

hRBarkasiðvÞ ¼
XZ1

q¼0

/qðvÞRBarkasðq;vÞ; ð9Þ



Fig. 5. The average Barkas factor for He, Li, Ne and Ar projectiles impinging on an
aluminum target as a function of energy is depicted by solid lines. For comparison
purposes, dotted lines represent the Barkas factor for bare projectiles.

Fig. 3. Velocity dependence of the Barkas factor RBarkas for (a) He, (b) Li, (c) Ne and (d) Ar projectiles impinging on an electron gas of aluminum at different degrees of
ionization. Solid lines represent the results for the Brandt–Kitagawa potential [26], whereas dashed lines correspond to individual ionic potentials for light ions from Kaneko’s
model [28].

Fig. 4. Calculations of the Barkas factor RBarkas versus Z1=bv2 for He, Li, Ne bare
projectiles (lines) and for neutral projectiles (symbols) impinging on an aluminum
target. See the text for more details.
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where RBarkasðq; vÞ represents the value of the Barkas factor (see Eq.
(8)) for a projectile with a degree of ionization q and velocity v, and
/qðvÞ are the charge-state fractions of the projectile, which depend
on the target, the projectile and its velocity. Here we used the equi-
librium charge-state fractions obtained by a parameterization of
experimental data [31]. The results corresponding to the average
Barkas factor are presented in Fig. 5 by solid lines for He, Li, Ne
and Ar projectiles moving in an aluminum target, as a function of
the projectile energy. For comparison purposes, results correspond-
ing to bare projectiles are also depicted by dotted lines. We observe
that hRBarkasi diminishes with the projectile energy for intermediate
and high energies. This behavior has two reasons: the first is the
‘‘normal behavior’’ predicted by the Lindhard analysis for bare pro-
jectiles, which predicts the approach to the Rutherford (Z2

1) limit at
high energies; the second reason is that as the energy increases the
effective number of bound electrons decreases, and, as it was shown
before, the weakening of the screening by bound electrons also pro-
duces a decrease of the Barkas effect. At high energies, the results
for hRBarkasi approach those for bare ions.

Finally, we note that for heavier projectiles such as Ne and Ar,
the average Barkas factor hRBarkasi shows a crossing with the curves
corresponding to bare projectiles at intermediate energies. These
crossings are a consequence of the behavior observed in Fig. 3 for
these projectiles, since the values of hRBarkasi were calculated using
the corresponding percentages of the results for ionized projectiles
shown in that figure. Hence, the reason for these crossings is also a
consequence of the competition between the two terms with dif-
ferent screening lengths in the potential of Eq. (6). This shows that
the normal behavior observed at high energies may be reversed for
heavy projectiles at lower energies.
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4. Conclusions

We have performed a large series of classical simulations of elec-
tron scattering by ions moving through a free electron gas considering
various cases of light and heavy ions with different charge states and
for a wide range of velocities. From these numerical simulations we
have obtained a set of new results that provide useful information
on the form of the Barkas factor at intermediate and high velocities.

As a general conclusion, the analysis of our results shows that at
large projectile velocities, the Barkas factor increases with the
number of bound electrons (for the same element), in agreement
with previous results obtained with a semiclassical treatment
[24]. We show that this effect is due to the more effective screen-
ing produced by bound electrons.

The velocity dependence of the Barkas factor at high velocities
shows a significant change, decreasing as v�3 in the case of bare
ions and as v�2 in the case of neutral projectiles.

In addition, we find a change of behavior of the Barkas factor for
heavy ions at intermediate velocities, where a crossing of curves
corresponding to different ionization degrees is obtained. This ef-
fect is due to changes in the screening conditions represented by
two different screening lengths, one of short range which accounts
for the projectile core, and another of long range corresponding to
the collective screening by the target electrons, which depends on
the projectile velocity.

Finally, the scaling analysis performed here (see Appendix A)
reveals a unified behavior of bare and neutral projectiles when the
Barkas factors are represented in terms of the appropriate scaling
parameters.

Because of the simplifying free-electron-gas assumption we did
not include here comparisons with experimental results, which
may be the subject of a much more extended study.
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Appendix A. Lindhard’s scaling argument

The interaction potential for bare projectiles with atomic num-
ber Z1 and velocity v, moving through a free electron gas with
plasma frequency xp, can be approximated by the well known
Yukawa potential for a screened point charge, that is

VbareðrÞ ¼ �
Z1e2

r
expð�arÞ; ð10Þ

where a ¼ pxp=2v . Applying Lindhard’s argument [12], an expan-
sion for r ! 0 is made, giving

VbareðrÞ ffi �
Z1e2

r
ð1� arÞ ¼ � Z1e2

r
þ V1; ð11Þ

where V1 ¼ Z1e2a. This correspond to the following shift in the elec-
tron kinetic energy

1
2

mev�2 ¼
1
2

mev2 � V1 ¼
1
2

mev2 1� 2V1

mev2

� �

¼ 1
2

mev2ð1� 1Þ; ð12Þ

where 1 ¼ 2V1=mev2 = pZ1e2xp=mev3 is Lindhard’s scaling factor.
On the other hand, for neutral projectiles the interaction poten-
tial VðrÞ, given by Eq. (6), reduces to another Yukawa potential
with the following form

VneutralðrÞ ¼ �
Ne2

r
expð�crÞ; ð13Þ

where

c ¼ N1=3

0:48
6
7

1
a0
; ð14Þ

where a0 ¼ 0:529 Å is the Bohr radius. The shift in the electron ki-
netic energy is now given by

1
2

mev�2 ¼
1
2

mev2 � V2 ¼
1
2

mev2ð1� 10Þ; ð15Þ

where V2 ¼ Ne2c and with 10 ¼ 2V2=mev2 ¼ 2Nc=mev2 being the
new scaling factor for neutral projectiles.
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