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Whenever users engage in gathering and organizing new information, searching and browsing activities

emerge at the core of the exploration process. As the process unfolds and new knowledge is acquired, interest

drifts occur inevitably and need to be accounted for. Despite the advances in retrieval and recommender al-

gorithms, real-world interfaces have remained largely unchanged: results are delivered in a relevance-ranked

list. However, it quickly becomes cumbersome to reorganize resources along new interests, as any new search

brings new results. We introduce an interactive user-driven tool that aims at supporting users in understand-

ing, refining, and reorganizing documents on the fly as information needs evolve. Decisions regarding visual

and interactive design aspects are tightly grounded on a conceptual model for exploratory search. In other

words, the different views in the user interface address stages of awareness, exploration, and explanation un-

folding along the discovery process, supported by a set of text-mining methods. A formal evaluation showed

that gathering items relevant to a particular topic of interest with our tool incurs in a lower cognitive load

compared to a traditional ranked list. A second study reports on usage patterns and usability of the various

interaction techniques within a free, unsupervised setting.
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1 INTRODUCTION

With the advent of electronic archival, the skill to find and organize the right information has
become paramount, as searching for and collecting information occupy a large portion of our daily
productive time. Information seeking is a widely studied phenomenon [19, 54, 57]. We consider
the problem beyond lookup search (where the information need of the user is assumed static [19]),
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in a context where finding and organizing information is a dynamic process with sudden changes
in information needs occurring as the user learns [19, 32].

Advanced search engines and recommender systems (RSs) have grown as the preferred solution
for contextualized search by narrowing down the number of entries that need to be explored at
a time. Traditional information retrieval (IR) systems strongly depend on precise user-generated
queries that should be iteratively reformulated to express evolving information needs. Arguably,
a user constructs knowledge throughout this iterative process, but IR interfaces hardly support
this process.

In addition, formulating queries has proven to be more complicated for humans than plainly
recognizing information in a visual manner [19], which is why the combination of IR with ma-
chine learning and HCI techniques has led to a shift toward—mostly web based—browsing search
strategies that rely on on-the-fly selections, navigation, and trial and error [32].

In the case of RSs, trust issues may hinder user engagement during exploration. As Swearingen
et al. [58] pointed out in their seminal work, the RS has to persuade the user to try the recom-
mended items. Thus, not only does the recommendation algorithm have to fetch items effectively,
but also the user interfaces must deliver recommendations in a way that they can be compared and
explained [47]. User-centric interfaces aim to boost trust in recommended items by explaining how
the system works and makes decisions (transparency) [21, 59] or by allowing users to tell the sys-
tem when it is wrong (scrutability) [26]. Hence, to warrant increased user involvement, the RS has
to justify recommendations and let the user personalize their generation. Explanatory interfaces
help establish a connection between the workings of the RS, needs, and recommendations.

Exploratory search is actually part of a discovery process in which the user often becomes famil-
iar with new terminology in order to filter out irrelevant content and spot potentially interesting
items. Such process requires careful inspection of at least a few titles and abstracts, when not full
documents, before becoming familiar with the underlying topic.

Along the way, users build knowledge as cognitive constructs of topics related by resources. In
Hearst terms, “users learn about the topic as they scan retrieval results and term suggestions, and
formulate new sub-questions as previously posed sub-questions are answered” [19]. For example,
after inspecting a few documents related to “robots,” subtopics like “human-robot interaction” or
“virtual environments” could attract the user’s attention.

Our work tackles exploration and production tasks that involve gathering and organizing large
collections in preparatory steps, for example, for writing or preparing a lecture or a presentation.
We investigate the discovery process and associated strategies by deploying an interface empha-
sizing transparency, controllability, and predictability as key features to support (1) exploration of
textual document recommendations and (2) refinement of evolving information needs. uRank is
a visual analytics approach that automatically generates an interactive keyword-based overview
of the document collection. It provides visual hints that allow the user to preview the effect
of selecting a keyword (in terms of bearing documents) and discover frequently co-occurring
keywords (that can be used to build key phrases). Users can refine their interests through a
drag-and-drop mechanism that updates a document ranking, representing document relevance
scores and query term contribution as stacked bars. We delineate the motivation behind our ap-
proach and present the results of two user studies analyzing behavior and strategies in exploratory
search.

1.1 Exploratory Search

The ability to analyze and organize large collections, to draw relations between pieces of evidence,
and to build knowledge are all part of an information discovery process. As a result of the discov-
ery process, one builds a body of knowledge, a collection of resources related, for example, by
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topics or other aspects that is mostly a cognitive construction. Exploratory search, as proposed by
Marchionini, entails lookup, learn, and investigate. But standard search and retrieval hide most of
its mechanisms and hardly support the user in building relations and knowledge in itself [32]. It
is clear that for an exploratory engine it is not enough to know just what we previously searched
for; it also needs to know what we did with what we found. Was it categorized, was it good, and
did it lead to another topic and another search?

Indeed, collecting information about a new topic is rarely solved with a single query [34]. It
is instead a discovery process involving several queries intermingled with extensive reading of
retrieved resources. Query terms are refined and reformulated as results are explored. Interesting
results are collected along each step, but the connections between them exist only at a cognitive
level in the user. The effort and time are mostly spent in careful reading and acquiring information
from search results (often reading titles, abstracts, and text summaries) and in formulating new
concepts to continue exploring. Discovery can be seen as a result of sensemaking—an iterative
process of formulating a conceptual representation from a large volume of information [39].

Exploration can be studied as a berry-picking model, based on the assumption that the informa-
tion need of the user continually shifts in the process of reading and learning from the information
encountered [5]. Hence, the searcher’s information need is satisfied by a series of selections and
bits of information found along the way.

Information foraging theory models people’s navigation in information structures as a reflec-
tion of evolutionary behavior learned for exploring the environment in search of food [38, 40]. In
a nutshell, for animals that forage in patches, the longer they stay in a single patch, the less energy
they consume (diminishing return). Much like animals, information seekers must decide whether
it is more profitable to find a new patch or continue exploring the current one. Information scents
are cues leading to information, for example, summarizing what can be found in an outlink [40].
For instance, when collecting scientific information, strong scent can come from references, key-
words and phrases for unknown terms, and so forth. In light of the information foraging theory,
information scents are called cues in visual representations. Visual representations are in turn
also grounded in evolutionary cognitive models, such as saliency, a mechanism that guides the
deployment of visual attention [24].

To search, a user must know his or her information need and be able to express it in a query.
When browsing, users consume information of a resource and, when their information need shifts,
navigate by following links. In cognitive terms, searching (querying) is demanding: it involves
identifying a need, planning, executing queries, evaluating results, and refining, while browsing
requires the user to identify promising links [4]. It is usually easier for a person to recognize
something when looking for it than it is to figure out how to describe it. New principles such as
interactive intent modeling have emerged, with a focus on deciphering user interests in order to
narrow down the information space [48].

In our goal to personalize the discovery of scientific information, we built a user interface using
visual attention principles to guide information scent and provide automatic mechanisms for users
to explore document collections along their needs, pick interesting items, and build knowledge.

1.2 Requirements

Our solution intends to reduce the effort spent in the discovery process. In a nutshell, it aims to
assist the user in quickly scanning a set of documents and in collecting those that meet his or
her needs, before having to thoroughly read every title and/or abstract. To meet these goals, we
established three major requirements as design guidelines:

RI. Recognition over recall: whenever possible, encourage the user to browse and navigate
instead of requesting to reformulate queries.
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RII. Sudden shifts in information needs: allow the user to reorganize the collection on the
fly according to the new interests.

RIII. Transparent logic: give the user visual evidence as to why a document ranks better than
another, and provide information scent to promising information; that is, the visual representation
should be self-explanatory.

2 BACKGROUND

2.1 Search Result Visualization

Modern search interfaces assist user exploration in a variety of ways. For example, query expansion
techniques [46] address the query formulation problem by leveraging stored related concepts to
help the user extend the initial query. Recent trends lead toward a personalization of the retrieval
process by modeling the underlying task [2] or user intents [13, 49].

As for document relevance explanations, tile-based visualizations like TileBars [18] and HotMap

[22] became very popular because they make efficient use of space by encoding the relative fre-
quency of query terms with shaded blocks. In the case of the former, it also conveys query term
distribution within documents and relative document length. This paradigm aims to foster ana-
lytical understanding of Boolean-type queries, and hence they do not yield any rank or relevance
score. All these approaches rely on the user being able to express precise information needs and
do not support browsing-based discovery within the already available results.

Faceted search interfaces allow for organizing or filtering items throughout orthogonal
categories, proving their usefulness for inspecting enriched multimedia catalogs [51, 64]. More
recently, interfaces supporting rather natural facet-type visual filtering (e.g., geographic or
temporal) have also been proposed [45]. However, faceted search relies on structured information
(i.e., metadata categories), and thus it hardly supports topic-wise exploration of unstructured
data.

Rankings conveying document relevance have been discouraged as opaque and underinforma-
tive [18]. However, the advantage of ranked lists is that users know where to start their search for
potentially relevant documents and that they employ a familiar format of presentation. A study
[53] suggests that (1) users prefer bars over numbers or the absence of graphical explanations of
relevance scores, and (2) relevance scores encourage users to explore beyond the first two results.
As a drawback, lists imply a sequential search through consecutive items and only a small subset
is visible at a given time [55]; thus, a list alone is mostly apt for sets no larger than a few tens
of documents. Focus+Context and Overview+Detail techniques [22, 44] sometimes help overcome
this limitation, while alternative layouts like RankSpiral’s rolled list can scale up to hundreds and
perhaps thousands of documents [55].

Other approaches complement ordered lists with visual metaphors [33], similarity-preserving
layouts [14], or POI-based visualizations [1, 36]. Yet an unintuitive context switching is a potential
problem when analyzing different aspects of the same document.

Although ranked lists are not a novelty, our approach attempts to leverage the advantages they
provide (i.e., user familiarity). We augment them by adding a transparent stacked-bar-based rep-
resentation for document relevance and query term contribution. Insyder’s bar graph [46] is an
example of augmented ranked lists that displays document and keyword relevance with disjoint
horizontal bars aligned to separate baselines. Although layered bar dispositions are appropriate for
visualizing distribution of values in each category across items, comparison of overall quantities
and the contribution of each category to the totals is better supported by stacked-bar configu-
rations [56]. Additionally, we rely on interaction as the key to provide controllability over the
ranking criteria and hence support browsing-based methods.
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LineUp [15] has proven the simplicity and usefulness of stacked bars to represent multiattribute
rankings. Despite targeting data of a different nature—uRanks’s domain is rather unstructured with
no measurable attributes—the visual technique itself served as inspiration for our work.

2.2 Recommending Interfaces

In recent years, considerable efforts have been invested into leveraging the power of social RS
through visual interfaces [28, 35]. As for textual content, TalkExplorer [60] and SetFusion [37] are
examples of interfaces for exploration of conference talk recommendations. The former is mostly
focused on depicting relationships among recommendations, users, and tags in a transparent man-
ner, while SetFusion emphasizes controllability over a hybrid RS. Rankings are not transparent
though, as there is no explanation as to how they were obtained. Kangasraasio et al. [25] high-
lighted that allowing the user to influence the RS is important, as is adding predictability features
that produce an effect of causality for user actions.

With uRank, we intend to enhance predictability through document hint previews, allow the
user to control the ranking by choosing keywords as parameters, and support understanding by
means of a transparent graphic representation for scores.

2.3 Topic Analysis

In addition to methods for visualizing item relevance or distribution of query terms along search
results, we consider it appropriate to also include in this section another group of methods that
support exploration by providing a topical overview of a document set.

Tag clouds have been proposed for browsing document collections [52]. Besides providing a
topical overview, such representations are used for keyword-based filtering but do not provide
possibilities to influence a ranking.

Clustering approaches like Scatter/Gather [10] are able to handle very large pools by building
hierarchical structures for top-down exploration. IN-SPIRE [29] and InfoSky [3] provide cluster
browsing interfaces based on spatial metaphors: a landscape and the outer space, respectively.
Hierarchical cluster exploration is not a trivial task; therefore, it is rarely adopted by real-world
systems.

Another alternative is topic models, which perform a generative approach (e.g., latent Dirichlet
allocation) to capture themes inherent to a document collection [6]. Typical UIs present a topic
overview of a collection and allow for further exploration at multiple levels via zooming with key-
word search [12] or by navigating a network of interconnected documents, as in TopicNets [16].
Topic models owe their flexibility to the fact that they do not correspond to any predefined taxon-
omy. The model generation process does not infer any semantic information; instead, it discovers
patterns based on term co-occurrence. This flexibility could also turn into a weakness, as the top-
ics generated are often not interesting or relevant to users [23]. Moreover, topic models are costly
to compute and the exploration and discovery process only works on a pre-existing collection.
Although it is possible to interactively change a topic model by joining or splitting topics, these
methods aim at improving the model rather than supporting exploratory search [23]. We seek a
solution that is not only flexible but also personalizable. Users should be able to construct their
own topics as their interests evolve.

3 THE URANK APPROACH

uRank is an interactive user-driven approach that combines lightweight text analytics and an aug-
mented ranked list to assist in exploratory search of textual documents. It aims at supporting the
sense-making process by adapting to frequent shifts in user information needs and maximizing
the principle of recognition over recall [19].
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Fig. 1. Conceptual cycle of exploration and discovery. A continuous process entailing awareness, exploration,
and explanation bridging Marchionini’s exploratory search model [32]. As a user consumes information, he
or she becomes aware of tracks to other pieces of information. Tracks add up until their information value
is greater than that of the current source and the user turns to explore them.

3.1 Conceptual Cycle of Exploratory Search

Our approach focuses on building knowledge sustained in a cognitive model of exploratory search.
The abstract model in Figure 1 describes Marchionini’s model for exploratory search with its con-
necting parts: lookup, investigate, learn overlaid with the principles of awareness, exploration, and
explanation interlocked in a continuous discovery process. When the user becomes aware that
he or she needs more evidence, he or she chooses a path and starts a focused exploration. While
exploring, the user follows different tracks, discovers relationships, and collects facts, in order to
start building hypotheses. As hypotheses mature, the user turns to test them, seeking explanation

in the facts collected. Each of these stages contributes knowledge, as tracks that the user becomes
aware of, as relationships elicited through exploration, and as facts acquired via explanation. In
terms of information foraging [40], awareness is guided by information scent, which sustains the
choice of tracks to follow and patches to explore. In our case, patches are documents or subcollec-
tions thereof. Foraging is the process of building one’s own topic structure along with perceived
relationships in the data collection.

Figure 2 depicts the workflow between automatic and interactive mechanisms in uRank. Com-
bining these mechanisms enables users to explore a document collection and refine information
needs in terms of topic keywords. The workflow is summarized as follows:

(1) uRank receives a set of textual document surrogates, that is, titles and abstracts. The web-
based implementation is currently fed by an RS connected to several data sources [27].

(2) The keyword extraction module analyzes all titles and abstracts and returns: (i) a list of
weighted representative terms for each document and (ii) a set of keywords that describe
the whole collection.

(3) The UI displays a list of documents along with the extracted collection keywords.
(4) The user explores the documents and keywords. During this process, the user can discover

possible key phrases or relations between documents and keywords at a glance.
(5) When the user finds interesting terms, they can be interactively selected either individu-

ally or as group via drag and drop.
(6) The document list is re-sorted according to the specified keywords and augmented with

colored stacked bars denoting document scores.
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Fig. 2. uRank’s workflow showing automatic (black arrows) and interactive mechanisms (red arrows).

(7) The user can select a single document to access more detailed information.
(8) Once the user finds a document that suits his or her search interest, he or she can add it

to his or her own collection.

User-driven actions (4, 5, 7, and 8) align to the exploration and discovery cycle in Figure 1 and
strongly depend on the user’s search strategy. Thus, they are likely to unfold in an iterative and
interchangeable manner.

3.2 The User Interface: Interactions and Visual Design

uRank’s UI is arranged in a multiview fashion that displays different levels of abstraction
of a document collection. The spatially separated disposition of the views entails a semantic
Overview+Detail scheme [9] that aims at supporting the different stages in our information dis-
covery cycle:

Collection overview (awareness). The Tag Box (Figure 3(A)) summarizes the entire collection
through augmented keyword tags and provides additional hints about relationships within the
data.

Documents overview (exploration). The Document List shows titles along with ranking in-
formation, and the Ranking View displays stacked bar charts depicting document relevance scores
(Figures 3(C) and 3(D), respectively). Together they represent minimal document views. The list
and ranking visualization are updated as the user manipulates keyword tags in the Query Box

(Figure 3(B)).
Document detailed view (explanation). For a document selected in the list, the Document

Viewer displays the title, snippet, and available metadata. Color-augmented keywords spotlight
the distribution (and proximity) of selected keywords.

We paid close attention to Baldonado’s guidelines for multiview systems [61] throughout iter-
ative stages of the layout design. At first, all views appeared juxtaposed, avoiding multiple over-
lapping views. In the latest version, we added the Bookmark Overview (Figure 3(E)) and removed
the Document Viewer from the main view. The latter is currently shown as a modal view when the
user clicks on a particular item in the list.
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Fig. 3. uRank user interface displaying documents related to recommender systems, with ranking updated to
match the keywords “collaborative,” “item,” and “performance.” A. The Tag Box presents a keyword-based
summary of the document collection. B. The Query Box contains keywords selected by the user. The Doc-

ument List (C) and the Ranking View (D) present a list with augmented document titles and stacked bars
indicating relevance scores. E. The Bookmark Overview shows bookmarked documents.

In theory, recommender and information retrieval systems produce lists where items are
already sorted by relevance with respect to certain criteria. However, it has been argued that
user trust and engagement may be hindered if the UI does not provide features for reshaping the
search or recommending criteria (controllability) or clear rationale as to what makes an item more
relevant than another (transparency). With uRank, we attempt to bridge these gaps by providing
a user-driven method for reorganizing documents as information needs evolve, along with a
suitable visual encoding and animated transitions that convey a transparent logic for document
relevance.

The remainder of this section digs deeper into visual and interactive aspects of each compo-
nent of the UI dedicated to support the different steps in the discovery cycle, namely: the Tag

Box for awareness (Section 3.2.1); the Document List, Ranking View, and Query Box for exploration

(Section 3.2.2); and the Document Viewer for explanation (Section 3.2.3).

3.2.1 Awareness: Topic Overview and Information Tracks. uRank automatically extracts key-
words from the recommended documents with a twofold purpose: provide (1)an overview of the
collection and (2) manipulable visual elements that allow the user to express information needs.
The Tag Box (Figure 3(A)) is the component dedicated to raise awareness and comply with RI.

Topic Overview. The Tag Box represents a summary of the textual documents in terms of key-
word tags. Summarizing the collection in a few representative terms allows the user to scan the
recommendations and grasp the general topic and related terms at a glance. This is particularly
important in the context of collections brought by RS, where the user is normally not directly
generating the queries.

Keyword tags are arranged in a bag-of-words fashion, encoding relative frequencies through
position and intensity. The ordering conveys descending document frequency (DF), while five
levels of gray shading allow for visually grouping keywords with similar frequencies. Redundant
frequency coding is intentional and aims at maximizing distinctiveness among items in the
keyword set [63].
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Fig. 4. Tag Box. (a) Keyword hints and tooltip become visible on hover. (b) Clicking on a tag locks the view
and frequently co-occurring keywords are highlighted. (c) Clicking on additional tags creates a multiple
selection. (d) A group of tags being dragged with the cursor. (e) Dropped tags are cloned in the Tag Box and
highlighted with the appropriate border stroke.

Information Tracks. A bag-of-words arrangement is able to convey an outline of keywords cov-
ered in a topic and their relative frequencies. However, this representation alone is insufficient to
supply further details about how a keyword relates to other keywords or documents.

Information scent cues are incorporated by augmenting tags with two compact visual hints.
The co-occurrence hint appears as a red circle showing the number of frequently co-occurring
keywords across all documents, whereas the document hint consists of a pie chart that conveys the
proportion of documents in which the keyword is contained. Both hints become visible on mouse
hover, along with a tooltip at the top of the Tag Box that provides a more in-detail explanation of
the hints’ meaning (Figure 4(a)). In a nutshell, the purpose of these hints is to notify the user that
further inquiries within the same “patch” are possible. Then, clicking on a particular tag provides
the following additional tracks:

(1) Unrelated documents are dimmed in the Document List and Ranking View, so that doc-
uments containing the keyword remain in focus. This feature allows for predicting the
effect of selecting a keyword (Figure 5).

(2) Co-occurring terms are brought into focus by dimming unrelated tags in the background
(Figure 4(b)), in order to support the user in discovering possible key phrases within the
collection.

3.2.2 Exploration: Ranking Documents on the Fly. During exploration, the information needs
of the user frequently change and documents are collected under different assumptions. uRank

encourages the user to reshape the inquiries and reorganize contents on the fly, as stated in RII.
Document titles are initially listed following the order in which they were supplied. Changes

in the document ranking visualization originate from three types of keyword tag manipulations
in the Query Box (Figure 3(B)): addition, weight change, and deletion. Throughout this article, we
often refer to tag manipulations as control features, denoting that these are the means for the user
to steer the document ranking.
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Fig. 5. Information tracks. The zoomed area shows document and co-occurrence hints, helping to predict
the effect of selecting the hovered tag. The tag “web” has been clicked on, and thus bearing items in the list
remain in focus, as well as keywords frequently appearing together.

Fig. 6. (Top) Keyword tag before being dropped in the Query Box. (Bottom) Dropped tag extended with weight
slider and “delete” button. Background colors match a categorical scale and weights have been tuned.

Tag Addition. Keyword tags in the Tag Box can be manually unpinned, dragged with the mouse
pointer, and dropped into the Query Box. Tags can be dropped either one by one (Figure 6) or as
a group. After clicking on a tag of interest, the Tag Box appears “locked” so that the frequently
co-occurring tags remain highlighted. The user then can click on additional tags (Figure 4(c)) and
drag them all together (Figure 4(d)). The Tag Box is “unlocked” once the tags are dropped into the
Query Box. The intention of incorporating multiple drag-and-drop is to assist users in interactively
creating their own key phrases. Remembering the sequence of tags that form a potentially inter-
esting key phrase entails higher cognitive effort if the user can only drag tags individually and the
sequence vanishes from the bare eye every time the view in the Tag Box is unlocked.

Dropped tags are re-rendered by adding a weight slider, a delete button on the right-upper corner
(visible on hover), and a specific background color from a categorical palette (Color Brewer’s 9-

class Set 1 qualitative palette [17]). Since keyword tags represent category labels (i.e., abstractions
of entities into groups), the use of a categorical color scheme allows for clearly distinguishing tags
from one another.

Weight Change. Tag sliders allow the user to adjust the weight of a keyword in document
scores. Figure 6 shows tag backgrounds with different levels of intensity after the sliders have
been tuned.

Tag Deletion. Tags can be removed from the Query Box by clicking on the “delete” icon. The
user also has the alternative to clear the Query Box and restore the document list to its original
state. In any case, animation is used to shift tags to their original positions in the Tag Box at a
perceivable pace.

3.2.3 Explanations: Ranking Visualization and Details on Demand. Several HRI (Human-
Recommender Interaction) studies describe transparency as a desirable characteristic for recom-
mending interfaces because they can boost acceptance and trust of recommended items [21, 59].
This concept is often associated with some sort of explanation that somehow enlightens the user
about the decisions made by the RS.
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Here we seek to foster transparency, but from an exploratory search perspective. Instead of pro-
viding textual proof that a certain item is worth “acquiring” (and consequently ending exploration
at this point), we define an interface as transparent if its graphical representations allow the user
to (1) quickly compare documents in terms of their contents and figure out which ones are worth
exploring in the current “foraging patch” and (2) readily validate their hypothesis as to whether
a document is actually relevant or not. Thus, we rely on a suitable visual encoding and animated
transitions to comply with RIII. Visual encoding supports preattentive processing by leveraging
the capacity of human vision to absorb great amounts of information at a glance. In turn, interac-
tions enable users to directly or indirectly manipulate the data through the view [62], uncovering
pieces of information in the data space that would otherwise pass unnoticed.

Visualizing the Document Ranking. Tags manipulated by the user are forwarded as parameters
to the Ranking Model, which in turn feeds the ranking visualization. This visualization consists
of a list of document titles (Figure 3(C)) and stacked bar charts (Figure 3(D)) depicting relevance
scores for documents and keywords within them.

We favor the use of animation to convey ranking-state transitions rather than abrupt static
changes. Animated transitions are inherently intuitive and engaging, giving a perception of causal-
ity and intentionality [20]. In uRank, soft animated transitions for ranking-state changes and doc-
ument selection are meant to help the user intuitively switch contexts. As Baldonado et al. [61]
state in their rule of attention management, perceptual techniques lead the user’s attention to the
right view at the right time.

Once the document ranking is updated, the Document List is re-sorted in descending order by
overall score and list items are translated to their new positions at a perceptible pace. In the Ranking

View, stacked bars appear growing from left to right and horizontally aligned to each list item.
Green or red shading effects are applied on the left side of list items for a few seconds to denote
positive and negative shifts, respectively.

The total width of stacked bars indicates the overall score of a document, and bar fragments
represent the individual contribution of keywords to the overall score. Bar colors match the
color encoding for selected keywords in the Query Box, enabling the user to make an immediate
association between keyword tags and bars. Missing colored bars in a stack denote the absence of
certain words in the document surrogate. Additionally, each item in the Document List contains
two types of numeric indicators: position and shift with respect to the immediate previous
position. Position is denoted inside a gray circle, whereas shift is indicated as a color-coded
number.

This visualization attempts to attract the user’s attention to likely relevant documents by bring-
ing highly ranked ones to the top and pushing the rest to the bottom. Optionally, the user can
track shifts in particular documents by clicking on the watch (eye-shaped) icon. The watched item
remains in focus as it is surrounded with a slightly darker shadow and the title is underlined. Also,
watched items remain on top of other elements during animated transitions.

Details on Demand. Once the user identifies documents that seem worth further inspecting, he
or she can drill down one by one to determine whether the initial assumption holds. The Document

Viewer (shown in Figure 7) gives access to textual content such as title and snippet, as well as other
available metadata for a particular document.

Query terms and their families of words (e.g., “interactive” and “interactivity” are grouped under
the tag “interaction”) appear highlighted in the text following the same color coding for tags in
the Query Box and stacked bars in the Ranking View. These simple visual cues pop out from their
surroundings, enabling the user to preattentively recognize keywords in the text and perceive their
general context prior to conscious reading.
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Fig. 7. Document Viewer shows augmented title and abstract for a selected document. Color-coded terms
match the tags in Query Box.

Fig. 8. Keyword search in Tag Box. (Left) Found keyword appears highlighted for a few seconds. (Right) Error
message pops up otherwise.

3.2.4 Lessons Learned and Usability Improvements. In an earlier generation of uRank, the user
had to click on the document- and co-occurrence hint to show effects (1) and (2) described in
Section 3.2.1. The study reported in Section 4 revealed that clicking on the small icons representing
the document and co-occurrence hints was offputting; therefore, we simplified this interaction by
triggering their effects together on tag click.

We also found that users had difficulties finding a particular keyword, especially when the Tag

Box was overly populated. For that reason, we added a text input field and a frequency range slider
at the top of the Tag Box. The former provides keyword search functionality, such that if the term
is found, the corresponding tag is highlighted and the Tag Box scrolls to its position; otherwise, an
error message pops up (Figure 8). The frequency slider allows for setting the minimum and maxi-
mum document frequency for visible tags. Tags become visible or hidden as soon as the user starts
dragging the handles. By default, the minimum value is set to 2 and the maximum value matches
the most frequent tag. In Figure 3(A), the slider has been set to the range [7, 81], significantly
reducing the number of tags in display.

Additionally, dragged tags were previously removed from the Tag Box, causing position adjust-
ments in subsequent tags to fill the empty gaps. We learned from user feedback that this had the
undesired effect that already spotted tags could not be found again in the same place. Therefore,
in the current version, a clone of a dropped tag remains in its original position and the border is
highlighted with the same color assigned to the tag dropped in the Query Box (Figure 4(e)).

Items with null score were then hidden and the list height was shrunk or enlarged to fit only
ranked items. Some users argued that such behavior was undesirable or confusing. Hence, un-
ranked items are currently grouped below the ranked ones, so that they remain accessible even
though they are likely irrelevant for the given query.

3.3 Analytical Methods

Control features in uRank (i.e., interactions with tags) are supported by a combination of text-
analytic methods. We first extend the original documents with document vector representations
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containing their representative keywords, identify a set of global keywords thereof, and use them
to calculate a query-document similarity ranking upon user interactions.

3.3.1 Keyword Extraction. The described interactive features are supported by a combination
of well-known text-mining techniques that extend the original documents with document vectors
and provide meaningful terms to populate the Tag Box.

Document vectors ideally include only content-bearing terms like nouns and frequent adjec-
tives, appearing in at least 25% of the collection; hence, it is not enough to just rely on a list of stop
words to remove meaningless terms. First, we perform a part-of-speech tagging (POS tagging) [7]
step to identify words that meet our criteria (i.e., common and proper nouns and adjectives). Filter-
ing out nonfrequent adjectives requires an extra step. Then, plural nouns are converted into their
singular form, proper nouns are kept capitalized, and terms in uppercase remain unchanged (they
normally represent acronyms, e.g., “IT,” “AR”). Porter stemming [41] is applied over the resulting
terms, in order to increase the probability of matching for similar words (e.g., “robot,” “robots,”
and “robotics” all match the stem “robot”). A document vector thus consists of stemmed versions
of content-bearing terms.

Next, we generate a weighing scheme by computing tf-idf (term frequency–inverse document
frequency) scores for each term in a document vector. This score is a statistical measure of how
important the term is to a document in a collection. Therefore, the more frequent a term is in a
document and the fewer times it appears in the corpora, the higher its score will be. Documents’
metadata are extended with these weighted document vectors.

To fill the Tag Box with representative keywords for the collection set, all document keywords
are collected in a global keyword set. Global keywords are sorted by document frequency (DF), that
is, the number of documents in which they appear, regardless of the frequency within documents.
To avoid overpopulating the Tag Box, only terms with DF above a certain threshold (default 5) are
taken into account. The terms used to label keyword tags are actually representative words and
not plain stems. Scanning a summary of stemmed words would turn unintuitive for users. Thus,
we keep track of all variations matching each stem in order to allow for reverse stemming. The
most representative term is then selected according to the following rules:

1. If there is only one term for a stem, use it to label the tag.
2. If a stem has two variants, one in lowercase and the other in uppercase or capitalized, use

it in lowercase.
3. Use a noun ending in “ion,” “ment,” “ism,” or “ty.”
4. Use a term exactly matching the stem.
5. Use the shortest term.

To feed document hints, uRank employs a keyword-document matrix that links bearing docu-
ments to each global keyword. For co-occurrence hints (Figure 3.(A)), uRank builds a keyword-
keyword matrix that tracks keyword co-occurrences with (by default) a maximum word distance
of 2 (excluding stop words) and at least 10 repetitions across all documents.

3.3.2 Document Ranking Computation. Quick content exploration in uRank depends on its abil-
ity to readily re-sort documents according to changing information needs. As titles and snippets
are the only content available in document surrogates, we compute relevance scores with a term-
frequency scheme. Term distribution schemes are rather adequate for long or full texts and are
hence out of our scope. Boolean models have the disadvantages that they not only consider every
term equally important but also produce absolute values that preclude a document ranking.

As the user manipulates keyword tags and builds queries from a subset of the global keyword
collection, the Ranking Model builds a vector space model to compute document-query similarity
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using the document vectors previously generated during keyword extraction. The contribution
that each query term adds to the document score should be clear in the visual representation, in
order to give the user a transparent explanation as to why a document ranks in a higher position
than another. However, a single relevance measure like cosine similarity alone is not enough to
convey individual query-term contributions to the overall score. This is not a trivial issue, since
the best overall matches are not necessarily the ones in which most query terms are found [18,
31]. Therefore, we break down the cosine similarity computation and obtain individual scores for
each query term, which are then added up as an overall relevance score. Additionally, assuming
that some keywords take precedence over others, the algorithm also takes into account weights
specified by the user through tag sliders in the UI.

Given a collection of documents D and a set of weighted query termsQ selected by the user, the
relevance score for document di ∈ D is calculated by Equation (1):

s (d,Q ) =
1

| Q |
∑

t ∈Q

t f id f (t ,di ) · ŵt

‖ di ‖ · ‖ Q ‖
, (1)

where t f id f (t ,di ) is the tf-idf score for term t in document di and | | di | | is the Euclidean norm
for vector di . Note that every term t in query Q is 1, such that 1/ | |Q | | represents a single dot in
its unit query vector. Thus, the Euclidean norm of Q equals the square root of the vector length,

that is, | | Q | | =
√
| Q |. In turn, ŵt is the adjusted value forwt , the weight assigned by the user to

term t ∈ Q , such that ∀t ∈ Q : 0 ≤ wt ≤ 1. ŵt is obtained as shown in Equation (2):

ŵt =
wt∑

t ′ ∈Q
wt ′
, s .t .

∑

t ∈Q
ŵt = 1. (2)

The collection D is then sorted in descending order by overall score with the quicksort algo-
rithm. Ranking positions are assigned, taking into account that documents with equal scores share
the same rank. For example, if the first, second, and third elements in the sorted collection have
equivalent scores, they are all assigned the first position, and the fourth item is assigned position
number 2. Equation (3) describes the steps for rank assignment:

ri =

⎧⎪⎪⎨
⎪⎪
⎩

1 if s (di ,Q ) = max(s (dk ,Q )); ∀dk ∈ D
ri−1 if s (di ,Q ) = s (di−1,Q )
ri−1 + #Dp if s (di ,Q ) < s (di−1,Q ),

(3)

where Dp = {dj ∈ D | s (dj ,Q ) > s (di ,Q ), r j = ri−1, 0 ≤ j ≤ i} is a subset of documents in D im-
mediately preceding di in the sorted list. Finally, shifts with respect to the position in the previous
ranking state are calculated. The shift for items with previous null scores are indicated as “new”
in the UI.

3.4 Implementation

uRank is a web-based tool entirely implemented in JavaScript. jQuery1 and d32 are the core third-
party libraries leveraged for the graphic design and interactions in the UI. Keyword extraction
is performed on the client side (due to project requirements). POS-tagging, tokenization, stem-
ming, and tf-idf computation are performed with the jspos3 and a customized version of NaturalJS4

1https://jquery.com./
2http://d3js.org/.
3https://code.google.com/p/jspos/.
4https://github.com/amitamb/NaturalJS.
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libraries. Other support components include colorbrewer,5 for categorical and sequential color
schemes, and Underscore.js,6 for diverse functionalities.

A website7 including an introductory video, a test version of uRank that works out of the box,
and the link to the code repository is publicly available. Additionally, uRank can be installed as a
Bower8 component (bower install --save urank) and included as a third-party library in other
web-based projects.

uRank is currently able to effectively display up to roughly 700 documents without consider-
able delays. In order to extend its capabilities and boost not only performance but also the user
experience, we are in the process of developing a dedicated website, including user and collection
management features. Nonetheless, an earlier version of uRank is currently integrated as a visual-
ization component9 in the EEXCESS Chrome extension.10 As the user navigates any website, this
extension pervasively scans its content and communicates with a federated system (F-RS) that in
turn generates cultural and scientific recommendations from a variety of content providers (e.g.,
Mendeley,11 bit media,12 ZBW13).

4 EXPERIMENT I: URANK VERSUS LIST-BASED UI

Exploratory search interfaces have arguably a steep learning curve that often prevents their adop-
tion. The goal motivating this study was to find out how people responded when working with a
tool like uRank with respect to a traditional list-based UI, in terms of workload, completion time,
and performance.

Additionally, we were interested in observing how our cognitive bottom-up approach elicits
knowledge. Precisely, this evaluation motivated the construction of topic-oriented document col-
lections related to a given query of piece of text. The items collected with both tools were then
compared to the content-based ranking described in Section 3.3.2 and state-of-the-art topic anal-
ysis methods (LDA).

4.1 Methodology

The study was structured in a within-subjects design where participants performed four iterations
of the same task with either uRank (U) or a baseline list-based UI (L) with usual web browser tools
like Control+F search. Furthermore, we were interested in assessing the implications of exposing
participants to pools of different sizes. We controlled this contextual aspect by introducing two
variations of collection sizes, namely, 30 and 60 items. Therefore, the study followed a 2 × 2
repeated measures design with tool and #items as independent variables, each with two levels (tool

= U/L, #items = 30/60). To counterbalance learning effects, we prepared four datasets covering a
variety of topics and topic was treated as a random variable within constraints.

Every participant had to perform one task for each combination of the independent variables,
that is, U-30, U-60, L-30, and L-60. All variable combinations were randomly assigned across
participants with balanced Latin Square.

5http://colorbrewer2.org/.
6http://underscorejs.org/.
7http://urank.know-center.tugraz.at.
8https://bower.io/.
9http://eexcess.eu/visualisations/.
10http://eexcess.eu/results/chrome-extension/.
11http://dev.mendeley.com/.
12http://www.bit.at/.
13http://www.zbw.eu/.
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A typical task unfolded in an exploration scenario in which the participant receives a list of
recommendations while reading the Wikipedia page corresponding to the assigned topic. Note that
participants were not actually exposed to any Wikipedia article. Instead, the task setup simulated
a situation in which the user has already received a list of recommendations and starts to explore
its content.

The general task goal was to “find the five most relevant items” for a given piece of text. In
turn, each task comprised three subtasks (Q1, Q2, and Q3). On one hand, Q1 and Q2 targeted a
specific focused search, and thus we supplied the participant with two or three search terms. Q3,
on the other hand, was designed as a broad-search subtask. Hence, we provided an entire para-
graph extracted from the Wikipedia article so that users had to decide themselves which keywords
described the topic better. The motivation to ask for the “most relevant” documents was to avoid
careless selection.

The system recorded the relevant items selected by participants across each task and subtask,
as well as completion time for the overall task and for every individual subtask. Subjective feed-
back was collected through a posttask questionnaire consisting of a 7-point Likert NASA TLX14

scale covering six dimensions of workload, namely: mental demand, physical demand, temporal
demand, effort, frustration, and perceived performance.

We report the results for workload (Section 4.2.1) and completion time measures (Section 4.2.2)
based on their respective multilevel models. For performance analysis, we investigated similari-
ties and correlations in the lists produced for each subtask (Q1, Q2, Q3) per topic (Section 4.2.3).
Finally, we built topic models with a state-of-the-art method (LDA) and contrasted them against
the collections gathered with both tools (U and L conditions), as well as the ranking algorithm
employed by uRank (Section 4.2.4).

4.1.1 Datasets. The datasets used in this evaluation covered a spectrum of cultural, techni-
cal, and scientific content, namely: Women in workforce (WW), Robots (Ro), Augmented Reality

(AR), and Circular economy (CE). The main selection criterion was that Wikipedia provided a well-
defined article for each one of them.

We prepared static lists of 60 and 30 items for each topic by feeding portions of texts from the
original Wikipedia articles to the F-RS (see Section 3.4), which in turn preprocessed the text and
queried a number of content providers. The result was a sorted merged list of items from each
provider with no scoring information.

4.1.2 Participants. A total of 24 participants took part in the study (11 female, 13 male, between
22 and 37 years old). They were recruited from the medical and computer science university pop-
ulation. None of them was knowledgeable in the topic areas selected for the study.

4.1.3 Apparatus/Materials. The study was run on an Apple MacBook Pro (2.7MHz i7 Quad-
Core) with 15-inch retina display (2880x1800). The service was run in a local server, and the study
interfaces were presented in a Google Chrome browser.

4.1.4 Procedure. At the beginning of the study session, the participant had to answer a few
questions about demographic aspects. Then they were presented with an introductory video ex-
plaining the functionality of uRank, aiming for all participants to receive exactly the same instruc-
tions and explanations. Next, they performed a short training with a different topic (Renaissance)
to familiarize with both uRank and the baseline tools. At the beginning of the first task, the system
showed a short text describing the topic and the task to be fulfilled. After reading the text, the
participant pressed “Start” to redirect the browser to the corresponding UI. Figure 9(a) illustrates

14http://humansystems.arc.nasa.gov/groups/tlx/.
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Fig. 9. Cropped screenshots of the user interfaces employed in study I. (a) Baseline list-based UI. (b) uRank’s
early version.

the list-based UI for the baseline condition, while Figure 9(b) portrays the early version of uRank’s
UI used at the time. At this point, the first subtask of task 1 began and the internal timer initiated
the count without disturbing the user. The goal of the subtask and the reference text was shown
at the top of the UI (see Figure 9). Participants were able to select their relevant items by clicking on
the star-shaped icon and inspect them later on a drop-down list (visible by clicking on “Show List”).
At the beginning of each subtask, the items in the collection were ordered randomly, ensuring that
an item would not appear in the same position in the next subtask.

During the study, the experimenter reminded the participants when the allotted time was almost
over but did not force them to abandon the task (see Section 4.1.5). The subtask was concluded by
clicking on the “Finished” button and then the second subtask started immediately. The UI alerted
participants when attempting to finish without collecting five items but allowed them to continue.
The second and third subtasks proceeded in like manner. After the three subtasks concluded (i.e.,
the whole task), participants had to fill the NASA TLX questionnaire to assess workload under the
given tool and #items. The procedure for the remaining tasks was repeated following the same
steps. Finally, participants were asked about comments and preferences.

4.1.5 Pilot Study: Time Constraints. Three participants took part in a pilot study. None of them
was familiar with the tool or topics in the experiment. After this preliminary stage, we realized
that having asked for “the most relevant items” made the experiment overly long, as participants
tried to carefully inspect their selections (particularly in the List condition). Based on the pilot,
we decided to constrain the duration of the three subtasks Q1, Q2, and Q3 to 3, 3, and 6 minutes,
respectively.

The time constraint was albeit not a hard deadline. In the actual study, the experimenter told
participants they had reached the allotted time but did not prevent them from continuing with the
task. The constraint accomplished two goals: (1) it introduced stress by having to complete the task
in a short (but manageable) time, and (2) it allowed us to study strategies under such conditions.
During the pilot, having an open-ended study made participants take time to carefully read each
item before making a decision, clearly just because of the nature of the formal study. Setting a time
limit in the end made for a closer-to-real condition.
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Fig. 10. Study I results. (a) Workload interaction lines show that uRank is significantly less demanding. (b)
Time completion lines show a tendency toward using all available time.

4.2 Results

The study produced a total of 96 observations grouped according to 24 participants that worked
under the four possible treatments. Hence, the analysis of workload and temporal aspects in the
context of our repeated measures design is based on fitted multilevel models (MLMs) with random
intercepts, where participants are treated as a random effect and the independent variables tool

and #items as fixed effects. Sections 4.2.1 and 4.2.2 report on these results. Moreover, we inves-
tigated similarities and correlations in the lists produced for each subtask (Q1, Q2, Q3) and topic
(Section 4.2.3). Finally, we disclose an empirical analysis of the collections gathered with both tools
against topic models created with state-of-the-art methods (Section 4.2.4).

4.2.1 Workload. We estimated workload by fitting a linear multiple mixed-effects model using
maximum likelihood, such that the predictors tool and #items are fixed effects nested within the
random effect participant.

In order to observe whether individual effects improve the model, we first fit a baseline MLM (or
“empty” model) that includes no predictors other than the intercept, and then build up the model
therefrom adding one effect at a time. Intuitively, the variable of most interest is tool, and thus it
is the first main effect added to the model. Then follows the main effect of #items and lastly the
interaction between the two. Likelihood ratio tests are reported on each step, as well as the t-test
against the baseline condition (Uvs .L) and the corresponding fixed coefficient.

The baseline model is significantly outperformed when tool is added as a predictor, χ 2 (1) =
40.60, p < .0001, which means that tool is a good predictor for workload. The model predicts
a lower overall workload working with uRank than with the List-based benchmark tool, b =
−7.67, t (23) = −7.25, p < .001, 95%CI = [−10.30,−5.05]. The slopeb estimates a decrease of 7.67
points in the NASA TLX scale (recall it is adjusted to a maximum score of 100).

Conversely, accounting for the effect of #items does not yield a better model fit, χ 2 (1) = 0.41, ns .
Indeed, duplicating the item pool size from 30 to 60 increased workload only marginally, b =
0.67, t (46) = 0.63, ns . This may indicate that a pool of 60 items is not large enough for the user
to perceive additional difficulties. Perhaps a more appropriate growth to detect such effect would
be, for example, from 30 to 100 documents.

The interaction of the main effects did not improve the goodness of fit either, χ 2 (2) = 0.04, ns .
This is not surprising, as it can be observed in Figure 10(a) that although the gap between List and
uRank seems rather large at both 30 and 60 items, the interaction lines show a slight growth but
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remain parallel. It is worth pointing out though that workload measurements remained lower for
uRank with 60 items compared to the List with 30 items. Post hoc multiple comparisons for the
general linear hypothesis with Tukey contrasts revealed that the difference for L − 30vs .U − 60
was significant at p < .001, CI = [−21.52,−6.48].

We further broke down the interaction and fit a model with observations under 30 and 60 items
separately (with tool as a unique predictor). Better goodness of fit was achieved with the 60-item
subset, in contrast to the 30-item data. Since the identical model was fitted with two different
datasets, no likelihood ratio can be estimated. However, knowing that the model can be more
accurate under these conditions should be taken into consideration for further studies.

The analysis can be extended to all workload dimensions. In all cases, tool turned out to be a good
predictor (all chi-squared values significant at p < .0001), while #items did not report any fit im-
provements. Refer to Appendix A.1 for further details about the distribution of responses for each
individual workload dimension. Appendix B provides full disclosure about the MLM employed in
the current analysis.

4.2.2 Completion Time. We built similar MLMs with the same structure as described earlier
but computed for the overall time outcome and the individual times recorded per task. The model
for overall completion time yielded a better fit when the tool predictor was added to the baseline
model, χ 2 (1) = 4.56, p < .05. #items and the interaction of the main factors did not provide any
significant improvement to the model.

We found that participants took on average approximately 50 seconds longer to complete a
full task (adding times for Q1, Q2, and Q3) with uRank, b = 25.10, t (23) = 2.16, p < .05. This dif-
ference is solely explained by the time recorded for Q3, b = 23.65, t (23) = 2.49, p < .05, that is,
searching for items related to a full paragraph rather than a couple of keywords. The #items vari-
able was in turn a good predictor for time on the second focused task (Q2): participants took longer
finding relevant items in the longer list, b = 8.25, t (46) = 2.04, p < .05.

Although we intentionally introduced a certain level of stress by setting (flexible) time con-
straints, the fact that tasks developed with uRank took longer is not necessarily a negative or
undesired outcome, especially if perceived time pressure is brought into consideration. Temporal
demand measures indicate that participants felt significantly less pressed to finish while perform-
ing with our tool, b = −0.43, t (23) = −3.81, p < .001, 95% CI = [−0.65,−0.20]. In the closing in-
terviews, most participants admitted to leveraging the extra time to carefully make sure they had
the right items. They claimed that some tasks were particularly hard to solve when the search
terms rarely appeared in titles. Hence, with uRank, they repeatedly had to re-sort the results, then
quickly scan titles and inspect the abstracts of the most promising ones. In the case of the List,
they tended to be less thorough and select items at first glance.

4.2.3 Performance. Assessing performance is not a trivial task, as relevance is a rather sub-
jective measure. In the absence of some ground truth and considering a possible bias that could
have been introduced if we had recruited a small group of experts on each topic to define it, we
decided instead to analyze “consensus” in the collections generated by the participants. Thus, we
aggregated the collections gathered under all the manipulated conditions and computed cosine
similarity across tool, #items, topic (WW, Ro, AR, and CE), and subtask (Q1, Q2, and Q3).

Similarity values between collections produced with uRank and the list-based UI across all sub-
tasks (U vs. L) denote that participants’ choices regarding relevant documents matched approxi-
mately three out of four times (μ = .73, σ = .1), regardless of the number of items to which they
were exposed.

Table 1 shows that collections produced with our tool for the two variations of #items (U-30
vs. U-60) turned highly similar regardless of topic and subtask (μ = .80, σ = .12, with a minimum
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Table 1. Cosine Similarities Between Collections Gathered
During Study I

Task Type Comparison WW Ro AR CE All Topics
Q1 U vs. L .55 .79 .58 .74 .66
(focused U-30 vs. U-60 .71 .83 .94 .67 .79

search) L-30 vs. L-60 .58 .83 .56 .56 .63
ICC .66 .86 .81 .91 –

Q2 U vs L .70 .86 .84 .86 .81
(focused U-30 vs. U-60 .84 .89 .90 .93 .89

search) L-30 vs. L-60 .82 .74 .81 .87 .81
ICC 86 .84 .87 .87 –

Q3 U vs. L .75 .72 .75 .63 .72
(broad U-30 vs. U-60 .64 .88 .75 .62 .72

search) L-30 vs. U-60 .59 .66 .63 .33 .55
ICC .75 .74 .81 .71 –

of .62). Comparisons for the List with 30 and 60 items (L-30 vs. L-60) denote greater diversity (μ =
.67, σ = .16, with a minimum of .33). Not surprisingly, similarity values tend to decrease for broad
search task (Q3) (μ = .66, σ = .13) compared to focused search (Q1 and Q2) (μ = .77, σ = .13).

Summarizing, the results suggest that with our tool, users tend to make uniform decisions, as
the number of items to which they are exposed grows. Nevertheless, the proportion of matching
documents in list-generated collections (two out of three) still conveys a moderate consensus. The
decrease in consensus for broad searches with respect to focused tasks could be explained by the
variability across participants at the moment of choosing the search terms for a given text larger
than a couple of words.

Additionally, we aggregated the items collected with the list (Lp ) and uRank (Up ) for each topic
and compared them with the scores received by our ranking algorithm (CB). We performed intra-
class correlations (ICC) with a two-way, consistency, average measures model and found good to
excellent ICCs across all subtasks, namely: on average, .81 for Q1, .86 for Q2, and .75 for Q3. Re-
sults are summarized in the last row of each subtask in Table 1. A closer look at the distribution of
scores in Figure 11 reveals that highly ranked documents byCB were also popular choices within
Up and Lp . For focused searches (Q1 & Q2) CB, Up , and Lp share at least five popular items across
all topics (aligned blocks with high intensity along rows 2, 3, and 4 in Q1 and Q2 heatmaps for
each topic). In the case of broad searches (Q3), Lp produced more widespread collections with less
individual favorites, while Up yielded more consensus in its collections (more blocks with higher
intensity). The overlap between CB, Up , and Lp was hence moderate, with roughly three items.

Overall, we found a high consensus in collections gathered with both tools, albeit higher in
those collected with uRank. With the List, having more items to search through resulted in lower
consensus. The preference for uRank was mostly reflected in a more satisfactory user experience.
Results for temporal demand reported in Section 4.2.1 and measures for perceived performance
(b = −0.45, t (23) = −3.44, p < .01, 95%CI = [−0.71,−0.18]) support this postulate. Nevertheless,
despite the overall consensus achieved with both tools, collections gathered with uRank were less
susceptible to growths in the dataset size (U-30 vs. U-60 and L-30 vs. L-60 comparisons in Table 1).
Intuitively, exposing participants to larger result lists would likely yield fewer overlapping most
popular items for the baseline tool.

4.2.4 Emergent Topics. Having defined collections and subtopics, we created topic models
from the collections as baseline state-of-the-art topic analysis. To generate the topic models, the
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Fig. 11. Correlations heatmap per topic. Most popular items collected with our tool (Up ) had high scores in
the CB ranking. Most popular items collected with the list (Lp ) are more widespread. Documents found in
the topic model (TM) also had high CB rank and were picked often (Up , Lp ).

topicmodels package of R was used, with variational expectation-maximization and estimated
α . Finding the right parameters for topic modeling was a challenge. In the end, a topic model
was created for each collection, with parameters (K = 30, α = estimated) so that the focused
exploration questions (Q1 and Q2) were covered by one or more topics. The broad exploration
questions (Q3) were adjusted by choosing the highest number of words in the subject text
appearing in a single topic. Document scores within each topic were modulated with cumulative
tf-idf scores for the chosen keywords.

Admittedly, attempting to recreate information needs along the division of topic models was
a daunting task; it required several iterations of adjusting parameters, recreating the model, and
searching through generated topics. Configurations that could answer one question were not able
to answer the next one, due to fragmented topics. Our approach interactively accomplished similar
results, with the added value that the cognitive experience remains in the user.

The topics obtained with topic modeling (TM) were used as a basis for comparisons against the
CB ranking and the collections of documents generated by the 24 participants with the List (Lp )
and uRank (Up ). To obtain normalized scores for the most popular items in each collection, we
used frequency of choice (times chosen/trials, where trials = 12). Figure 11 illustrates the overlap
in score results. Topic models (TM) were very narrow, while the CB ranking tended to produce
widespread results with low peaks when the requirements used many keywords. It seemed that
there were common high-scoring documents highlighted in the topic and also popular among
participants. To establish whether there is a valid correlation, we first collected the top five scoring
items for each method (CB,Up , Lp ,TM) and formed a matrix. The dimensions of the matrix varied
due to the nonperfect overlap among top-scoring items across methods. We collected the scores
from each method for all the documents in the matrix and computed Pearson product-moment
correlations with TM : (CB −TM , Up −TM , Lp −TM). Table 2 summarizes the correlation
results.

It is important to highlight that the scoring mechanisms in topic models are different from the
one used by the CBranking and the one for the most popular items collected with both tools (Up

and Lp ). Despite differences in scoring schemes, Table 2 shows a number of significant correlations.
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Table 2. Emergent Topics

Q1 Q2 Q3
WW

CB r (11) = −.00,p = .99 r (6) = .42,p = .29 r (11) = −.15,p = .60
UP r(11) = .68, p < .05 r (6) = .39,p = .32 r (11) = −.65,p = .05
LP r (11) = .16,p = .59 r (6) = −.55,p = .24 r(11) = .56, p < .05

Ro
CB r (11) = −.41,p = .16 r (9) = .00,p = .98 r(11) = .55, p = .05

UP r (11) = −.41,p = .16 r (9) = .05,p = .86 r (11) = .09,p = .74
LP r (11) = −.52,p = .06 r (9) = −.06,p = .80 r (11) = −.35,p = .23

AR
CB r (9) = .38,p = .24 r (9) = .06,p = .84 r (11) = −.01,p = .95
UP r (9) = .08,p = .80 r (9) = .54,p = .08 r(11) = −.61, p < .05

LP r (9) = .01,p = .96 r (9) = .00,p = .99 r(11) = −.58, p < .05

CE
CB r(6) = .82, p = .01 r (8) = .23,p = .51 r(11) = −.57, p < .05

UP r (6) = .64,p = .08 r (8) = .30,p = .39 r (11) = −.11,p = .7
LP r (6) = .53,p = .17 r (8) = .42,p = .22 r (11) = −.24,p = .4

Correlations: Top-5 ranked elements (CB), popular with uRank (UP ) and the List UI (LP )

compared to documents from the corresponding topic model. Note: Bold indicates signif-

icance at p < .05.

Finding correlations with the topic models was a surprise. Admittedly, topic models are used for
exploration in a different way. Yet, this provides evidence that cognitive topic analysis led to com-
parable results. Due to its workflow of exploration and discovery, our approach lets the user take
control over the organization of the corpus along his or her information needs.

4.3 Discussion and Limitations

It is a long-known problem that most users do not go beyond simple keyword search, in spite of
the effort invested in more advanced UIs. Nonetheless, this study shed light on the benefits of a
tool like uRank. Even though our tool is inherently more complex than a Google-like UI, users felt
significantly less pressed by time and more confident about their performance. We also observed
that documents highly ranked by theCB algorithm were frequently collected not only with uRank

(which is the obvious case) but also with the List. Moreover, we observed many overlaps between
items chosen by participants and those in the topic models. Lower levels of workload and similar
bookmark choices suggest that uRank effectively helped to alleviate the cognitive load without
hindering performance. An important remark is that participants were first-timers and only had a
few minutes of training prior to the evaluation tasks; hence, we would expect increased acceptance
of the tool with further usage.

Admittedly, the highly controlled and rather unnatural setting posed certain limitations. For
example, we balanced the level of knowledgeability by choosing topics in which none of the par-
ticipants was an expert. Having little or no knowledge about the underlying topic made tasks quite
difficult for some of them. Also, exploration was guided toward common “search interests,” which
probably did not represent the true interests of the users. Taking these limitations into account,
we conducted a second user study to observe user behavior during exploratory search in more
realistic conditions.
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5 USER STUDY II: ACTION ANALYSIS AND USABILITY

This study was intended to analyze the exploratory search strategies users employ when working
with uRank in a more natural setting, that is, without the shortcomings from study I, such as rigid
tasks, time-ups, or uninteresting topics. We were particularly interested in addressing usability
aspects and detecting usage patterns.

5.1 Methodology

This empirical study was conducted with the purpose of assessing in detail what components of
uRank were more successfully used in a real search setting, specifically, within the framework of
the conceptual model introduced in Section 3.1. Thus, we asked participants to freely explore a
collection of documents for the topic of their selection and bookmark a few documents of interest.
Meanwhile, the system collected logs for three kinds of actions: prediction, control, and drill-down.

Prediction actions are linked to the stage where the system tries to help the user become aware of
possible exploration paths, that is, keywords of interest that would be potentially worth selecting.
Control actions refer in general to ranking updates, where the user is exploring the document
collection. Lastly, drill-down actions are related to the user seeking explanations that validate his
or her initial assumptions about the relevance of a particular document. These results are reported
in Section 5.2. Additionally, we split control action logs based on the moment of the first bookmark
and analyzed whether this was actually a tipping point during search sessions (Section 5.3). We
contrasted both analyses with subjective data collected at the end of the task. Finally, we report
on subjective usability aspects measured with a standard scale.

5.1.1 Evaluation Protocol. We sent invitations via email to colleagues in the computer science
field, which included a link to a web form with all necessary guidelines. A total of 24 people
accepted to take part in the study. However, we only took 20 of them into consideration, as we
presumed the remaining four dropped the study (they did not create any bookmark although it
was clearly stated in the study guidelines).

A session started with a demonstrative video of the UI features. Thereafter, participants had to
open the uRank website in their browsers. They could choose a topic of their preference out of
seven collections, each with approximately 100 documents. The task consisted of freely explor-
ing the collection and bookmarking interesting documents. We suggested between five and 10,
although did not impose this as a strict condition.

The system recorded action logs, such as tag clicks, single and multiple drag-and-drop inter-
actions, and so forth. After submitting the session data, users filled out a survey consisting of
(1) questions addressing usability aspects of specific UI components and (2) a standard usability
questionnaire.

5.2 Action Analysis

In this section, we break down action log information according to action-type categories: explo-
ration, control, and drill-down, which in turn are intrinsically related to the three stages described
in our model. Table 3 presents a summary of these recorded behaviors.

We contrast user behavior against subjective feedback provided for UI-specific questions. Re-
sponses were collected on a 7-point Likert scale (−3 = strongly disagree, 3 = strongly agree). Most
questions were phrased in a positive tone, for example, “Looking at the colors in keywords and
bars, it was clear how the ranking was computed.” The scale was inverted for negative-tone ques-
tions, for example, “The position indicator in the document list was confusing,” and hence, all
values can be interpreted as “higher is better.” Figure 12 illustrates meaningful relationships ex-
tracted from both behavioral and subjective data, putting ranking updates (an aggregation of all
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Table 3. Cosine Similarities Between Collections Gathered
During Study II

Type Action μ (σ ) #Users

Prediction Tag hover 124.7 (19.6) 20
(awareness) Tag click 2.5 (0.5) 20

Keyword search 0.2 (0.2) 1
Frequency range slider 24.2 (15.9) 4

Control Ranking update 10.6 (1.9) 20
(exploration) Single tag dropped 4.3 (0.7) 18

Multiple tags dropped 0.4 (0.1) 7
Tag weight changed 4.7 (1.3) 15
Tag deleted 1.2 (0.5) 8
Reset 0.2 (0.2) 1

Drill-down Document click 69.5 (22.4) 19
(explanation) Document bookmark 6.55 (0.5) 20

Document unbookmark 0.1 (0.1) 1
Document watched 1.2 (0.3) 13
Document unwatched 0.3 (0.1) 5

control actions) at the center of the network. In the following analysis, we often refer to these
relationships to draw our conclusions.

5.2.1 Prediction Actions: Becoming Aware. Action logs show that users extensively hovered on
keyword tags (124 times on overage) and additionally clicked on a tag around 2.5 times to preview
bearing documents and co-occurring keywords. The fact that all participants performed tag clicks
in Tag Box is a promising indicator for usefulness.

Usage data for the keyword range slider revealed that, despite positive answers stating it was
useful to reduce the number of visible tags (μ = 1.05, σ = 1.76), only four participants actually
used it. The keyword search feature was also scarcely used: only one participant actively searched
for specific terms. This corresponds with previous observations: people preferred browsing the
offered keywords to explicitly searching for them [19].

5.2.2 Control Actions: Exploring by Ranking On the Fly. Ranking updates were significantly
more frequent than tag clicks in the Tag Box, t (19) = 4.37,p < .001, which may suggest that users
were more interested in immediately discovering the effect of manipulating a tag rather than try-
ing to predict it beforehand. This evidences the role of interactive control features in engaging
users in a trial-and-error search process.

Most control actions corresponded to simple tag additions (4.3 times) and weight changes
(4.7 times). Measurements for simple tag selections correlate with user responses, as they admit-
ted mostly choosing keywords one by one (μ = 1.20, σ = 2.16), r = .65,p < .05. Multiple drag-
and-drops were far more infrequent, t (19) = 5.30,p < .001, and only performed by a third of the
participants (seven), which matches the disagreement with the question “I mostly chose groups of
keywords together” (μ = −1.13, σ = 2.05), r = .70, p < .001. When asked about how easy it was
to use this mechanism, responses were quite neutral (μ = −0.15, σ = 1.53). Although this answer
does not correlate with usage logs, r = .07, ns , perhaps the interaction was indeed too complicated
(two participants actively reported so). We attribute the low usage to its two-step mechanism, ev-
idencing that a one-step increment in the interaction path inherently hinders ease of use.
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Fig. 13. Study II Results. (a) Stacked bars for ranking updates distribution around first, second, and third
bookmark. (b) Bar chart shows average pre- and post-first-bookmark session time.

As for changes to tag weights, 75% of the participants performed this action approximately 6.3
times (for N = 15) and indeed reported frequently using the sliders to change keyword weights
(μ = 1.20, σ = 1.24) (no correlation was found though). Tag deletions remained in a low rate,
as two-thirds of the participants never performed this action. The rest did it between 3 and 4
times.

5.2.3 Drill-Down Actions: Seeking Explanations. All but one participant clicked several times on
a specific document to access full abstracts an average of 73 times (with a 95% CI = [24, 121] for
N = 19). In general, participants admitted that they often read document titles (μ = 1.70, σ = 1.34)
and reported reading full abstracts only moderately (μ = 0.55, σ = 1.54).

In turn, every participant bookmarked roughly six documents (95% CI = [5.65, 7.55]). We ar-
gue this is not discouraging, considering that the task did not impose a minimum amount. They
did not revert their decisions, as we only accounted for one item that was accidentally unbook-
marked and immediately bookmarked again. Participants acknowledged mostly choosing their
bookmarks by looking at the titles and the ranking (μ = 0.95, σ = 1.36). However, we found a
negative correlation between the level of agreement with this statement and the total number
of bookmarks, r = −.47, p < .05, which may suggest that more engaged users (more bookmarks)
were indeed more careful choosing items. Their responses also revealed that they clearly under-
stood how the ranking was computed by looking at the color of tags and bars (μ = 1.80, σ = 1.28),
denoting that the UI was able to convey a transparent logic. Interestingly, the agreement to often
reading sentences surrounding colored keywords (μ = 0.75, σ = 2.62) is higher for participants
that bookmarked more items, r = .51, p < .05.

Summarizing, the evidence suggests that uRank helped participants achieve a high level of self-
perceived performance and that they felt confident about their decisions.

5.3 Search Strategy Analysis

Control actions represent trial-and-error steps that users perform throughout browser-based
exploration. We attempt to discover search patterns thereof by splitting ranking update actions,
namely, tag dropped, multiple tag dropped, tag weight change, and tag deleted, and observ-
ing how frequently they occurred (1) before the first bookmark and (2) between subsequent
bookmarks.

At first glance, Figure 13(a) reveals a strong tendency for tag selections to occur prior to the
first bookmark event. A paired t-test confirms this observation, t (19) = −3.46,p < .01. Almost all
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multiple tag drops were performed at this stage, while roughly 75% of all single tag drops fell
therein (μ = 3.2, σ = 2.33). As stated before, tag deletions were infrequent, but appear slightly
more frequently in the second half (μ = 0.35, σ = 0.81 before and μ = 0.85, σ = 1.81 after the
first bookmark break). Weight changes also reach their peak before the first bookmark cut (μ =
2.85, σ = 3.73), then tend to decrease toward the second (μ = 0.30, σ = 0.66) and third bookmarks
(μ = 0.25, σ = 0.91), and finally a slight increment appears toward the end (μ = 1.30, σ = 2.70).
The distribution of actions depicted in Figure 13(a) suggests that after the first bookmark, users
were quite certain about the chosen keywords, although they minimally fine-tuned keyword
weights even after identifying three relevant documents.

This notion is supported by the time distribution. With an average session of roughly 5 min-
utes, Figure 13(b) reveals that pre- and post-first-bookmark exploration were balanced (on average
2’26” and 2’22”, respectively). This suggests that the tipping point in a session was almost exactly
marked by the occurrence of the first bookmark. Control actions (i.e., ranking updates) in general
were executed in the first half of a session. Thereafter, users minimally refined query parameters,
denoting that they were satisfied with their decisions, and dedicated the second half of the session
to find other relevant documents. Moreover, the fact that tag drops and weight sliders were exten-
sively used and that tag deletions were scarce may indicate that participants tended to know what
they were searching for from the beginning and rarely undid their decisions. Further validation
can be found in the number of keywords per bookmark (amount of tags present in the Query Box

when a bookmark action occurs) (μ = 4.1, σ = 1.9), which did not differ significantly from the
average number of unique keywords selected per participant (μ = 4.9, σ = 2.29).

Interestingly, although the event of the first bookmark in general aligns to the half-session cut
and most control actions take place in the first part, it is possible to observe two different search
patterns in the logged data. The streams in Figure 14(a) represent control (all four kinds) and book-
mark actions for each user, such that the x-axis in a user diagram indicates the order of execution
of logged actions (regardless of time offset) and the two levels in the y-axis split control (on top)
from bookmark actions (bottom). These stream-based graphics reveal, on one hand, that eight
participants (2, 6, 8, 11, 15, 17, 18, and 20) conducted a two-step search, namely: they performed
several tag manipulations and added all the bookmarks only after they had finished refining the
document ranking. According to Qu and Furnas [42], users following this type of search pattern
tend to build internal topical constructs and only create external constructs (folders) and add doc-
uments to them once the structure is clear in their minds. On the other hand, the logs for eight
other participants (3, 4, 5, 7, 9, 14, 16, and 19) denote an iterative pattern, as they performed se-
ries of ranking updates intertwined with bookmarking actions. This search pattern seems to align
with the berry-picking cognitive model for information retrieval [5], whereby search evolves and
occurs bit by bit; that is, a user constantly changes the search terms after evaluating the returned
results. We can also detect a third group of four participants (1, 10, 12, and 13) that fall in a fuzzy
area between the two-step and the iterative search strategies, as they performed all bookmarks
almost uninterruptedly with only one ranking refinement in between.

We picked one representative case of each pattern type, namely, participant 15 (P15) for two-
step search and participant 16 (P16) for the iterative strategy. Then we plotted their logged actions
in more detail and contrasted them against the exploratory search model in Figure 1. The action
paths in Figure 14(b) add an intermediate level illustrating inspection actions, that is, opening a
document to see its full content. Both participants started their sessions with five control actions
(ranking updates). These initial actions denote a trial-and-error exploratory phase. Thereafter,
they opted for different strategies: P15 inspected dozens of documents before deciding to create
the first bookmark, while P16 immediately started to save resources. What they both have in com-
mon is that the subsequent updates (control actions) and bookmarks are preceded and followed
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Fig. 14. Search strategies in study II.

by several document inspections (between seven and 33), which sheds light on the need of users
to seek explanations at every stage in the discovery process. We can also see that two kinds of
situations triggered awareness in the participants, meaning that they realized their information
needs had changed and hence it was time to update the document ranking. One case is after
reading several documents (orange paths ascending from mid- to upper level in the y-axis), and
the second case is when the user possibly discovered new pieces of information after bookmarking
a document (orange paths from bottom to upper level). Overall, Figure 14 suggests that the cycle
of exploration-explanation-awareness introduced in Figure 1 is applicable to either the two-step
or the iterative search patterns, even though the internal processes that make the user aware of
changes in information needs may vary.

Summarizing, we observed that users mostly tended to conduct the search process following
either a two-step or an iterative pattern. Yet, regardless of the search strategy, the event of the first
bookmark in the middle of an average session suggests that participants occupied half their time for
sense making and only then were they ready to assess the relevance or usefulness of a document.
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5.4 Usability Analysis

In addition to questions for specific UI features, participants also filled out a Software Usability Scale

(SUS) questionnaire [8], a standard poststudy questionnaire for subjective assessment of usability.
Participants were not native English speakers, and hence we chose a version with all positive-
tone questions [50] for better understanding. To keep consistency with the scoring scale in the
uRank-specific questions, we used a 7-point Likert scale instead of a 5-point one (in this case 1 =
strongly disagree, 7 = strongly agree). User responses were multiplied by 1.66 instead of 2.5 to
obtain overall SUS scores in a range between 0 and 100. Thus, the score si for question xi was
computed as si = (xi − 1) ∗ 1.6.

Averaging over all questions and participants, the mean raw score amounted to 81.8 (σ = 13.9).
uRank falls in the 90th to 95th percentile range in the curved grading scale interpretation of SUS
scores [50], and thus obtained an A grade. These scores are also subdivided into Usable (questions
1, 2, 3, 5, 6, 7, and 8) and Learnable (4 and 10) subscales [30]. Adjusting multipliers for a 7-point
Likert scale (2.08 and 8.33, respectively), uRank scored an A for Usable (μ = 80.3, σ = 14.7) and an
A+ for Learnable (μ = 87.5, σ = 14.7).

At the end of the study, users were asked to share their general impressions of the system.
Two participants reported some delays in the ranking update after changing tag weights, and a
few expressed that they would prefer softer colors for tags and bars or even less color diversity.
Nonetheless, most of the positive answers agreed that overall usability and ease of use were
good. A few answers even highlighted that animations made it easy to follow the effects of their
actions.

5.5 Discussion and Limitations

This study revealed which parts of the tool proved most useful and easy to handle. More impor-
tantly, it provided some insights on how exploratory search unfolded: for example, control actions
occurred mostly before the first bookmark, and then users dedicated their time to find more in-
teresting documents. This was, to some extent, surprising, as we expected a decreasing yet less
abrupt frequency of ranking updates.

Particularly, this study falls on the opposite side of study I. The task did not impose any
goals or reasons to actually pursue a dedicated search. Therefore, perhaps people were only
motivated to try the tool once and see how it works, but did not actually engage in exploring
and learning. We expect that conscious exploration would involve several changes of interest
and further interactions. The short duration of an average session (4’50”) corroborates this
assumption.

We believe the only way to produce a realistic situation would be through a longitudinal study,
for example, having an online service where people can obtain an actual profit after interacting
with it. Another option could be a more balanced setup that is less controlled than study I and
less free than study II. However, defining the optimal setup for this kind of evaluation is out of the
scope of this article.

6 CONCLUSIONS AND FUTURE WORK

This article introduced a visual analytic tool for exploratory search of textual documents. The
reasoning line for its visual and interactive design is strongly influenced by a conceptual model
based on a cycle of awareness, exploration, and explanation. This work also provided details about
some lessons learned and incremental changes implemented along the way.

Although originally planned as a recommending interface, the whole concept of uRank (UI plus
analytic methods) can be extended to generic search interfaces for not only unstructured data
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like text but also structured data. Doing so would require enriching the input data with semantic
information, such as tags or named entities.

We also presented two complementary user studies that either validated some aspects of the
design or showed the path for further improvement. Examples of the latter might be a more
intuitive mechanism for multiple drag-and-drop and the addition of an overview component
to navigate large lists. The first study consisted of a highly controlled comparative evaluation
against a traditional list-based UI. Results revealed that participants found it significantly more
relaxing to work with uRank, despite no major differences in performance or speed. In fact, most
of them reported their wish to start actively using uRank in their scientific endeavors (e.g., paper
writing). The limitations of a strictly controlled study served as a starting point for the second
study. In this case, we asked users to freely explore documents with uRank and bookmark the
relevant ones within a topic of interest. This study shed light on interaction paths and browsing
strategies followed during exploratory search. Moreover, the tool received positive critique, as
supported by the poststudy questionnaires.

Future work includes extending the text-mining methods, for example, by enriching key-
words with synonyms and semantic relationships. Ultimately, we plan to leverage bookmark
logs collected during both studies and use them as feedback to improve recommendations with
folksonomy-based information, closing the interactive loop with the RS, as shown in Figure 2.

APPENDIXES

A QUESTIONNAIRES

A.1 Questionnaire Used in Study I

Figure 15 summarizes the distribution of responses to the NASA TLX scale gathered during study I.

Fig. 15. Boxplots show distribution of subjective feedback provided in study I.

A.2 Questionnaire Used in Study II

Responses to UI-specific questions answered by participants in study II are presented in Figure 16.

B MULTILEVEL MODEL FOR REPEATED MEASURES DESIGN

MLMs allow one to model the fact that some observations come from the same entities and are
hence correlated. Several authors report their benefits over repeated-measures ANOVA [43] and
even provide step-by-step guidance with statistical software packages [11]. These models are ex-
tensively applied in behavioral studies but not yet quite adopted in HCI evaluations. Thus, this
section has been added for clarification purposes.

Recall that all participants in study I performed four tasks under all combinations of the inde-
pendent variables; hence, we assume that mean differences across sampling units (i.e., participants)
create a constant dependency over the independent variables. The first level of our MLM is for-
mally defined as a linear model in Equation (4), where Yi, j is the outcome variable (in our case
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Fig. 16. Boxplots show distribution of subjective feedback provided in study II.

Table 4. Multilevel Mixed-Effects Model for Workload

Goodness of Fit Model A Model B
–2LL 764 762
AIC −775 −779
BIC −791 −799

Fixed Effects Coefficients (SE) p Coefficients (SE) p
Intercept (γ00 in b0j ) 46.3 (2.92) *** 46.3 (2.95) ***
Tool (γ10 in b1) −7.7 (1.28) *** −7.7 (1.30) ***
Items (γ20 in b2) 0.7 (0.92)
Tool × Items −0.2 (0.92)

Random Effects Variance (SD) Variance (SD)
Level 1 Residual (ϵi j ) 13.47 (3.67) 13.40 (3.66)
Level 2 Residual (u0j ) 723.07 (26.89) 722.00 (26.87)
Total Residuals 736.54 735.40

Incremental Models: Model A only includes tool as predictor, whereas model B incorporates #items

and the interaction thereof. The Fixed Effects part shows that model B did not improve model A;

that is, #items and the interaction are not significantly good predictors for workload. The Random

Effects part indicates the amount of variance explained by the lowest-level residuals (ϵi j ) and the

higher-level residual (u0j ).

Goodness of fit:–2log-likelihood (−2LL), Akaike’s information criterion (AIC ), and Schwarz’s

Bayesian criterion (BIC ) are interpreted as the smaller the better.

either workload or completion time); Tooli, j and Itemsi, j are the levels assigned to the dependent
variables tool and #items for participant i and task j, respectively; and (Tools × Items )i, j is the in-
teraction of the main effects. b0j is a random intercept and ϵi j is the residual for each observation.

Yi, j = b0j + b1 Tooli, j + b2 Itemsi j + b12 (Tools × Items )i j + ϵi j (4)

The coefficient b0j is referred to as random intercept because it adds a component to measure
the variability in intercepts across participants. The second level of the model is thus defined in
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Equation (5). Coefficients b1 = γ10 and b2 = γ20 are the average slopes for Tool and Items across all
participants, such that the subindices in γ10 and γ20 indicate that they are coefficients of level 1.

b0j = γ00 + u0j , (5)

where γ00 is the average intercept across all participants and u0j is a level 2 residual, that is, for
each participant. The two levels of our MLM are then combined in Equation (6):

Yi, j = b0 + b1 Tooli, j + b2 Itemsi, j + b12 (Tools × Items )i, j + (u0j + ϵi j ). (6)

Finally, Table 4 presents a version of our model with only Tool as a predictor, whereas model B
incorporates Items and the interaction of the main effects. Looking at goodness-of-fit measures,
it is evident that model A was not improved by these additions, given that the number of items
had no significant effect on workload measures. The middle part of the table lists the coefficients
obtained for the fixed effects and the bottom the residuals of the mixed part of the model. Note
that adding a second-level residual allows one to explain 98% of the total variance.
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