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A mathematical model is presented in order to describe the dynamics of polygamous
populations, bearing in mind single individuals of both sexes and the development of
reproductive groups. In this context, the description leads us to consider positive homo-
geneous dynamical systems, establishing conditions for the stationary state existence
and its local stability. A fourth pre-reproductive stage was considered, i.e. males and
females spend part of their lives before being in condition to reproduce, as a first step
to consider more general models. Finally, we parametrized the proposed model using
southern elephant seal data, to analyze the direct applicability to a real population.
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1. Introduction

Differential equation and dynamical system theory has been developed in straight
linking with other disciplines, particularly the description of population dynamics
in continuous time. In this context, the description of a population with both sexes
leads to the consideration of a certain kind of nonlinear autonomous systems [11, 6].
The two-sex problem is well known in demography and population biology since
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classical linear population models are not appropriate for description of changes
in the sex ratio and its consequences, see [19] and references therein. Moreover,
mating models are particularly relevant for the study of sexually transmitted dis-
eases [2], and endangered populations with skewed sex ratios, due, for example, to
sex-selective hunting[14, 18].

A simple two-sex model was described by Hadeler et al. [10], taking into account
a population with three stages of reproductive individuals: solitary males, solitary
females and pairs; and conditions for the existence of a stationary state were given.
In the stationary solution, sex ratio becomes stable and the population increases
(or decreases) exponentially. This model presents some limitations and offers the
possibility to consider some interesting generalizations. On the one hand, the con-
cept of pairs can only be applied to monogamous populations while polygamy is a
common characteristic in wild populations. Moreover, the three-stage model implies
that individuals reach the reproductive state immediately, without a previous mat-
uration period.

In this work, we generalized the Hadeler et al. model [10] in two ways. First, we
considered reproductive groups with a mean number of males and females. Results
about stationary state existence and its local stability were the same as that in
[10], but analysis was different and we focused on sexual proportion of the groups,
that is, the social structure of the population. Then we extended our analysis to a
four-stage model, with a pre-reproductive stage. Finally, we applied the model with
elephant seal population parameters and compared the results with data from the
social structure observed in the field.

Positive homogeneous equations. The positivity and stability of differential systems
are very important issues since they are, in many situations, the first step to consider
the applicability to some real processes like dynamics of populations or ecological
models. In this work, we consider systems of the form Ẋ = F (X), where F : R

n →
R

n is homogeneous of degree 1, that is F (αX) = αF (X) for all α ≥ 0, and we will
assume that

Fi(X) ≥ 0 for X ≥ 0, Xi = 0,

so the system flow leaves the positive cone R
n
+ invariant. The positivity is guaranteed

for that type of systems and we will restrict our analysis to the positive cone since
the vector X describes population densities in the considered models. On the other
hand, homogeneous assumption is usual when we are interested in the so-called
frequency-dependent models, as a first generalization of classical linear population
models. That is, we discard population regulation considering the possibility of
unlimited population growth. Demographic properties of such models depend only
on the relative magnitudes of the Xi, and not on their absolute magnitudes [3]. We
refer the reader to [5] for a study of positivity in the linear case and to [4] for an
approach to density-dependent models like the Beverton–Holt equation.

For general positive homogeneous systems we will recall the framework deve-
loped by Hadeler et al. [10] in Secs. 2 and 3. We know that X = 0 is the only
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stationary point and that X(t) > 0 for all t if X(0) > 0. Stationary solutions have
exponential growth, just like in the linear case, and we know that a stationary
exponential solution with growth rate λ∗ and stationary structure X̄:

X(t) = X̄ exp(λ∗t),

corresponds to a solution of the nonlinear eigenvalue problem: F (X̄) = λ∗X̄. More-
over, let F ′(X̄) be the Jacobian matrix at X̄ , then F ′(X̄) · X̄ = λ∗X̄ and the
stationary solution is locally stable if and only if the numbers λ−λ∗ have negative
real part, for every λ eigenvalue of F ′(X̄), λ �= λ∗.

2. Population Model with Three Stages

Following Hadeler et al. [10], we will expose a two-sex model with reproductive
group formation. The model is given by a system of three differential equations:

ẋ = (kxh + µyh + σh)g − µxx − ϕ
(x

h
,

y

m

)
h,

ẏ = (kyh + µxm + σm)g − µyy − ϕ
(x

h
,

y

m

)
m,

ġ = −(µx + µy + σ)g + ϕ
(x

h
,

y

m

)
.

(2.1)

System variables x, y and g represent unmated females, unmated males and repro-
ductive groups’ densities respectively. Population parameters are given by positive
constants: the rates of births, kx, ky; the death rates, µx, µy; and a separation
rate of reproductive groups, σ. Reproductive groups are formed by m males and
h females in average and we would assume that these quantities remain constant.
Group formation rate is represented by ϕ. When a new group is formed, this sub-
tracts h females and m males from the unmated population, thus the coefficients
−h,−m and 1 that join ϕ in the three equations of system (2.1). We remark that
we related newborns linearly to the number of mated females hg, then kxhg repre-
sents the number of newborn females whereas kyhg the number of newborn males.
This introduces a kind of asymmetry in the first two equations of system (2.1),
with consequences on population dynamics. Group formation is a nonlinear process
determined by the mating function ϕ : R

2
+ → R+. As usual in two-sex models [19],

we assume that ϕ is a homogeneous monotone function that satisfies:

ϕ(x, 0) = ϕ(0, y) = 0,

ϕ(αx, αy) = αϕ(x, y), for α ≥ 0,

ϕ(x + u, y + v) ≥ ϕ(x, y), for u ≥ 0; v ≥ 0.

We have then a positive homogeneous system in R
3 of the form Ẋ = F (X). We

know then that the system flow leaves the positive cone R
3
+ invariant and we would

like to characterize the exponential stationary solutions. The following analysis is
basically the same as [10], but some modifications introduced will facilitate the
generalization to a four-stage model.
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2.1. Stationary solutions

Consider the nonlinear eigenvalue problem associated to (2.1):

λx̄ = (kxh + µyh + σh)ḡ − µxx̄ − ϕ
( x̄

h
,

ȳ

m

)
h,

λȳ = (kyh + µxm + σm)ḡ − µyȳ − ϕ
( x̄

h
,

ȳ

m

)
m,

λḡ = −(µx + µy + σ)ḡ + ϕ
( x̄

h
,

ȳ

m

)
.

(2.2)

The system admits two trivial solutions:

v1 = (1, 0, 0) for λ = −µx,

v2 = (0, 1, 0) for λ = −µy.

In these solutions, the lack of group formation leads to the population extinction
since there are no births. Therefore, we are interested in the existence of positive
solutions of (2.2) with ḡ �= 0, which correspond to stationary solutions of (2.1) with
positive stationary structure. Dividing by ḡ we can assume that ḡ = 1, solving for
ϕ( x̄

h , ȳ
m ) in the last equation of (2.2) and substituting in the previous two we have:

x̄

h
=

kx

µx + λ
− 1;

ȳ

m
=

ky

(µy + λ)
h

m
− 1.

Then, replacing in the last equation of (2.2) we find:

ϕ

(
kx − µx − λ

µx + λ
,
kyh/m − µy − λ

(µy + λ)

)
= µx + µy + σ + λ, (2.3)

with the condition that the right-hand side and both arguments of ϕ on the left-
hand side must be positive. We define:

λ = max(−µx,−µy),

λ = min(kx − µx, (kyh/m) − µy)

and we will characterize conditions for the existence and stability of stationary
solutions with positive structure in terms of λ and λ.

Theorem 2.1. If λ > λ, then the nonlinear eigenvalue problem (2.2) has no posi-
tive solution. If λ < λ, there are two cases :

(i) If −µy ≤ −µx, there exists only one nontrivial positive solution, associated to
an eigenvalue λ∗ > −µx, if and only if

kyϕy(1, 0)
(µy + σ + ϕy(1, 0))

h

m
> µy − µx. (2.4)

(ii) If −µx < −µy, there exists only one nontrivial solution, associated to λ∗ >

−µy, if and only if

kxϕx(0, 1)
(µx + σ + ϕx(0, 1))

> µx − µy. (2.5)
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Proof. If λ > λ, there is no λ such that the left-hand side of (2.3) has positive
arguments. Hence, the system only admits trivial solutions. On the other hand,
when λ < λ < λ, the left-hand side of (2.3) continuously decreases from a positive
value K (possibly +∞) to zero:

K = lim
λ→λ
λ>λ

ϕ

(
kx − µx − λ

µx + λ
,
kyh − (µy + λ)m

(µy + λ) m

)
,

while the right-hand side of (2.3) increases linearly from µx + µy + σ + λ to µx +
µy + σ + λ. In the case of (2.3) there will be only one solution λ∗, λ < λ∗ < λ, if
and only if K > µx + µy + σ + λ.

Now, we remark that ϕ(ω, y) tends to ϕy(1, 0)y and ϕ(x, ω) tends to ϕx(0, 1)x
when ω → ∞, then:

K =




ϕy(1, 0)
(

kyh − (µy − µx)m
(µy − µx)m

)
if λ = −µx,

ϕx(0, 1)
(

kx − µx + µy

µx − µy

)
if λ = −µy

and theorem follows.

The following corollary summarizes conditions for the existence of the nontrivial
solution and corresponds to the existence result in [10].

Corollary 2.2. The system (2.1) admits a nontrivial stationary solution with pos-
itive stationary structure if and only if inequalities (2.4) and (2.5) are satisfied.

2.2. Local stability

To analyze the conditions for local stability of the solutions we will recall some
results from [10]. When the positive solution exists, we can apply the following
change of variables:

ξ =
x

(h/m)g
; η =

y

(h/m)g
,

reducing (2.1) to a system of dimension two. Analyzing the trace and determinant
of the resultant system, we can infer that positive stationary state is always locally
stable.

To analyze the stability of trivial solutions we will consider the Jacobian of the
right-hand side of (2.1):

f ′(x, y, g) =




−µx − ϕx

(x

h
,

y

m

)
−ϕy

(x

h
,

y

m

) h

m
kxh + µyh + σh

−ϕx

(x

h
,

y

m

) m

h
−µy − ϕy

(x

h
,

y

m

)
kyh + µxm + σm

ϕx

(x

h
,

y

m

) 1
h

ϕy

(x

h
,

y

m

) 1
m

−(µx + µy + σ)




1550049-5

In
t. 

J.
 B

io
m

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 M
ar

ia
no

 F
er

ra
ri

 o
n 

04
/0

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

March 26, 2015 15:4 WSPC S1793-5245 242-IJB 1550049
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and its characteristic polynomial

P (λ, (x, y, g)) = det(f ′(x, y, g) − λI3).

Theorem 2.3. Given the system (2.1) and considering the associated nonlinear
eigenvalue problem, let λ = max(−µx,−µy) corresponding to a trivial solution and
v be the associated eigenvector. We assume that λ is not a double root of the char-
acteristic polynomial P (λ, v), then:

(a) If there is a nontrivial stationary solution, this is locally stable while the two
trivial solutions are unstable.

(b) If there does not exist the positive solution, then the trivial solution correspond-
ing to λ is stable, while the one corresponding to min(−µx,−µy) is unstable.

Proof. Assume first that λ = −µx > −µy, we can see that:

P (−µx, (x, y, g)) = kxϕx

(x

h
,

y

m

)
(µy − µx) ≥ 0,

P (−µy, (x, y, g)) = − h

m
kyϕy

(x

h
,

y

m

)
(µy − µx) ≤ 0.

We have then, for every (x, y, g), that the characteristic polynomial has a real root
greater than or equal to −µx, since P (λ, (x, y, g)) tends to −∞ when λ → +∞. In
particular P (λ, (0, 1, 0)) would have a real root greater than −µy, and then we are
able to affirm that the solution corresponding to (0, 1, 0) is unstable.

To analyze the stability of (1, 0, 0) let us consider P (λ, (1, 0, 0)) = (µx +λ)Q(λ),
being Q the quadratic polynomial

Q(λ) =
h

m
kyϕy(1, 0) − (µx + µy + ϕy(1, 0) + σ + λ)(µy + λ).

Then Q(−µx) = h
mkyϕy(1, 0) + (µy + ϕy(1, 0) + σ)(µx − µy), being Q(−µx) �= 0 by

hypothesis. If Q(−µx) > 0, then (2.4) is fulfilled, positive stationary solution exists
and Q(λ) has a real root greater than −µx, in consequence (1, 0, 0) is unstable. On
the other hand, if Q(−µx) < 0, then positive stationary solution does not exist and
we can see that Q(λ) has two real roots less than −µx, thus the trivial solution
(1, 0, 0) is stable.

When λ = −µy > −µx the analysis is similar, we have that (1, 0, 0) is unstable,
while (0, 1, 0) is stable if positive stationary solution does not exist, and unstable
if it does exist. In the case of λ = −µx = −µy, we can see, bearing in mind the
previous analysis, that positive stationary solution exists and is stable while other
trivial solutions are unstable.

To illustrate solutions behavior we plot the stationary sex ratio rx = x̄/(x̄ + ȳ)
when varying a key population parameter, the female death rate, and keep fixed
the rest of the parameters. A sex ratio rx = 1 corresponds to lack of males and
rx = 0 corresponds to lack of females, whereas 0 < rx < 1 indicates the existence

1550049-6

In
t. 

J.
 B

io
m

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 M
ar

ia
no

 F
er

ra
ri

 o
n 

04
/0

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

March 26, 2015 15:4 WSPC S1793-5245 242-IJB 1550049

Dynamics of populations with two sexes

Fig. 1. Stationary sex ratio and population growth for system (2.1) when varying female death
rate. The rest of the parameters were fixed: kx = 0.7, ky = 0.35, µy = 0.6, σ = 0.5, h = 6, m = 1
and the mating function was proportional to the harmonic mean ϕ(x, y) = xy/(x+y). Dashed lines
in the upper panel indicate unstable solutions. Population is increasing with positive stationary
sex ratio for 0 < µx < 0.191, decreasing with positive stationary sex ratio for 0.191 < µx < 0.893
and collapses due to lack of females if µx > 0.893.

of the positive solution, in such case we can consider the stationary growth rate λ∗

to distinguish between a decreasing or increasing population, see Fig. 1.
Regarding the structure of reproductive groups, we remark that if µx ≤ µy,

there is a critical ratio between h and m, H0 ≥ 0 given by (2.4) such that the
positive stationary state exists if and only if h/m > H0:

H0 =
(µy − µx)(µy + σ + ϕy(1, 0))

kyϕy(1, 0)
. (2.6)

On the other hand, if µx > µy, the stationary state existence depends on (2.5),
and is not dependent on the structure of reproductive groups. That is, a lack of
males could be compensated with a higher proportion of males in reproductive
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Fig. 2. Stationary sex ratio and population growth for system (2.1) when varying the sexual
proportion of reproductive groups. The rest of the parameters were fixed: kx = 0.7, ky = 0.35, µy =
0.6, σ = 0.5, µx = 0.2 and the mating function was proportional to the harmonic mean ϕ(x, y) =
xy/(x+y). Population collapses due to lack of males if h/m < 2.4, whereas population is decreasing
with positive stationary sex ratio for 2.4 < h/m < 6.36 and increasing with positive stationary
sex ratio for h/m > 6.36.

groups whereas a lack of females could not be compensated. In Fig. 2, we show
the stationary sex ratio and growth rate when varying the sexual proportion of the
reproductive groups: h/m.

3. Population Model with Four Stages

We propose a model with four stages, including a pre-reproductive stage s. That
is, individuals spend part of their life before changing into reproductive males or
females. In our model, the difference between both sexes will be based on the death
rates (µx, µy) and the recruitment rates (kx, ky), that is the transition rates from the
pre-reproductive stage to the reproductive ones. This model is a first approximation
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and it is important to mention that, for a more realistic description, it should be
considered one or more pre-reproductive stages for each sex and delayed equations
to model the different maturation times. Now, our four-stage system is described by:

ẋ = kxs + σhg + µyhg − µxx − ϕ
(x

h
,

y

m

)
h,

ẏ = kys + σmg + µxmg − µyy − ϕ
(x

h
,

y

m

)
m,

ṡ = kshg − (µs + kx + ky)s,

ġ = −(µx + µy + σ)g + ϕ
(x

h
,

y

m

)
.

(3.1)

Again, the associated nonlinear eigenvalue problem admits two trivial solutions:

v1 = (1, 0, 0, 0) for λ = −µx,

v2 = (0, 1, 0, 0) for λ = −µy.

If z̄ = (x̄, ȳ, s̄, ḡ) is a positive solution, of the nonlinear eigenvalue problem, asso-
ciated to an eigenvalue λ it must satisfy, assuming ḡ = 1, that: s̄ = hks

(µs+kx+ky+λ)

and:
x̄

h
=

kxks − (µs + kx + ky + λ)(µx + λ)
(µs + kx + ky + λ)(µx + λ)

,

ȳ

m
=

kyksh − (µs + kx + ky + λ)(µy + λ)m
(µs + kx + ky + λ)(µy + λ)m

.

Moreover, from the last equation of (3.1) we have that

ϕ(x̄/h, ȳ/m) = µx + µy + σ + λ. (3.2)

Thus, from s̄ > 0 we have that λ > −(µs + kx + ky) and then, from x̄, ȳ > 0 we
have that λ > −µx and λ > −µy. If we call λ 1 = max(−µx,−µy,−(µs + kx + ky))
and

λ1 = max(λ ≥ −(µs + kx + ky) : x̄ ≥ 0 and ȳ ≥ 0),

then we can characterize the existence of the nontrivial solution as in the three
stages case.

From what follows, let us denote ϕx = ϕx(0, 1) and ϕy = ϕy(1, 0).

Theorem 3.1. Given the two-sex model with pre-reproductive stage (3.1), we have
that λ 1 < λ1 is a necessary condition for the existence of a nontrivial positive
solution. When it exists, the positive solution is unique and has an associated growth
rate λ∗ > max(−µx,−µy,−(µs +kx +ky)). Furthermore, if λ 1 < λ1 three cases are
presented :

(i) If λ 1 = −µx, then the nontrivial solution exists if and only if

kyksϕy

(µy + σ + ϕy)
h

m
> (µy − µx)(µs − µx + kx + ky). (3.3)
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(ii) If λ 1 = −µy, then the nontrivial solution exists if and only if

kxksϕx

(µx + σ + ϕx)
> (µx − µy)(µs − µy + kx + ky). (3.4)

(iii) If λ 1 = −(µs + kx + ky), then the nontrivial solution always exists.

Proof. If λ 1 ≥ λ1 there is no positive solution since there is no λ such that
s̄, x̄, ȳ > 0. Now let λ 1 < λ < λ1, then ϕ(x̄/h, ȳ/m) is a decreasing function. Let

K = lim
λ→λ 1

λ 1<λ

ϕ(x̄/h, ȳ/m),

it results that (3.2) have only one solution λ∗ if and only if K > µx + µy + σ + λ 1.
Now, we observe that:

K =




ϕy

[
kyksh − (µy − µx)(µs − µx + kx + ky)m

(µy − µx)(µs − µx + kx + ky)m

]
if λ 1 = −µx,

ϕx

[
kxks − (µx − µy)(µs − µy + kx + ky)

(µx − µy)(µs − µy + kx + ky)

]
if λ 1 = −µy,

∞ if λ 1 = −(µs + kx + ky)

and we obtain the three cases of the theorem.

We remark here that the three cases of Theorem 3.1 cannot be synthesized
in two inequalities, as we summarized the cases of Theorem 2.1 in Corollary 2.2.
On the other hand, the model still provides a critical proportion of reproductive
groups for the existence of the positive stationary solution. In fact, if µx < µy and
µx < µs + kx + ky we have from (3.3) that the positive stationary solution exists if
and only if h/m > H0:

H0 =
(µy − µx)(µs − µx + kx + ky)(µy + σ + ϕy(1, 0))

kyksϕy(1, 0)
.

Conditions for the local stability of solutions can be analyzed as in the previous
section. We will consider the Jacobian of the right-hand side of (3.1):

f ′(x, y, s, g)

=




−µx − ϕx

(x

h
,

y

m

)
−ϕy

(x

h
,

y

m

) h

m
kx σh + µyh

−ϕx

(x

h
,

y

m

) m

h
−µy − ϕy

(x

h
,

y

m

)
ky σm + µxm

0 0 −(µs + kx + ky) ksh

ϕx

(x

h
,

y

m

) 1
h

ϕy

(x

h
,

y

m

) 1
m

0 −(µx + µy + σ)
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and the characteristic polynomial:

P (λ, (x, y, s, g)) = det(f ′(x, y, s, g) − λI4).

In particular:

f ′(1, 0, 0, 0) =




−µx −ϕy
h

m
kx σh + µyh

0 −µy − ϕy ky σm + µxm

0 0 −(µs + kx + ky) ksh

0 ϕy
1
m

0 −(µx + µy + σ)




since ϕx( 1
h , 0) = ϕx(1, 0) = 0, ϕy( 1

h , 0) = ϕy(1, 0) = ϕy and

f ′(0, 1, 0, 0) =




−µx − ϕx 0 kx σh + µyh

−ϕx
m

h
−µy ky σm + µxm

0 0 −(µs + kx + ky) ksh

ϕx
1
h

0 0 −(µx + µy + σ)




,

since ϕy(0, 1
m ) = ϕy(0, 1) = 0 and ϕx(0, 1

m ) = ϕx(0, 1) = ϕx. We remark here that

we do not use f ′(1, 0, 0, 0) and f ′(0, 1, 0, 0) to study stability around (1, 0, 0, 0) and
(0, 1, 0, 0) since there is no equilibrium points in system (3.1) other than (0, 0, 0, 0).
The non-negativity of solutions is guaranteed although f ′(1, 0, 0, 0) and f ′(0, 1, 0, 0)
are not Metzler matrices [5] and eigenvalues determine here the stability of expo-
nential solutions with stationary structure (1, 0, 0, 0) and (0, 1, 0, 0) respectively.

Now, we can rewrite Theorem 2.3.

Theorem 3.2. The statements of Theorem 2.3 remain valid replacing system (2.1)
by system (3.1).

Proof. To analyze the local stability of the nontrivial solution we consider the
following change of variables, valid for g > 0:

ξ =
x

(h/m)g
; η =

y

(h/m)g
; γ =

s

(h/m)g
.

We then applied the Routh–Hurwitz’s method [17] to the resultant system of dimen-
sion three to verify that the real parts of the roots of its characteristic polynomial
are negative (we omit here the calculations). Thus we reached the conclusion that,
if there is a positive stationary state, it is stable.

For the trivial solutions stability, let us observe that:

P (−µx, (x, y, s, g)) = kskxϕx

(x

h
,

y

m

)
(µx − µy),

P (−µy, (x, y, s, g)) =
h

m
kskyϕy

(x

h
,

y

m

)
(µy − µx).

(3.5)

We assume first that −µx �= −µy, and consider the three cases of Theorem 3.1.
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(i) −µx = max(−µx,−µy,−(µs + kx + ky))
From (3.5), P (−µx, (x, y, s, g)) < 0 and P (λ, (x, y, s, g)) has a real root

greater than or equal to −µx. In particular, P (λ, (0, 1, 0, 0)) will have a real
root greater than −µy, hence the point (0, 1, 0, 0) corresponds to an unstable
solution. To evaluate the stability at (1, 0, 0, 0), we calculate P (λ, (1, 0, 0, 0)) =
(µx + λ)Q(λ), being Q a cubic polynomial:

Q(λ) = (µx + µy + ϕy + σ + λ)(µy + λ)(µs + kx + ky + λ) − h

m
kyksϕy (3.6)

and

Q(−µx) = (µy + ϕy + σ)(µy − µx)(µs − µx + kx + ky) − h

m
kyksϕy,

different from zero by hypothesis. If Q(−µx) < 0 then (3.3) is verified, there
exists a positive, stable, stationary solution and Q(λ) has a real root greater
than −µx, since Q(λ) → +∞ when λ → ∞. Hence (1, 0, 0, 0) is unstable. On
the other hand, if Q(−µx) > 0, then the positive stationary state does not
exist. We consider:

Q(λ) +
h

m
kyksϕy = (µx + µy + ϕy + σ + λ)(µy + λ)(µs + kx + ky + λ),

the roots of the right-hand side satisfy the inequalities:

−(µx + µy + ϕy + σ) < −µy < −µx and −(µs + kx + ky) < −µx.

If we put in order these roots, we have r1 ≤ r2 ≤ r3 < −µx, where some of the
inequalities between r1 ≤ r2 ≤ r3 must be strict. Then we see that, depending
on the magnitude of h

mkyksϕy, Q(λ) has three real roots to the left of −µx

or one real root between r3 and −µx and two complex conjugated roots with
real part less than r2, see Fig. 3. Thus the trivial solution corresponding to
(1, 0, 0, 0), and associated to the eigenvalue −µx, is locally stable.

(ii) −µy = max(−µx,−µy,−(µs + kx + ky))
The analysis is similar to the case (i). The solution (1, 0, 0, 0) is unstable,

since P (−µy, (x, y, s, g)) < 0 and then P (λ, (1, 0, 0, 0)) has a real root greater
than −µx. On the other hand, P (λ, (0, 1, 0, 0)) = (µy + λ)Q′(λ), being Q′ a
cubic polynomial

Q′(λ) = (µx + µy + ϕx + σ + λ)(µx + λ)(µs + kx + ky + λ) − kxksϕx.

If Q′(−µy) < 0 then (3.4) is verified, the positive stable solution exists and
(0, 1, 0, 0) is unstable while if Q′(−µy) > 0, positive solution does not exist
and (0, 1, 0, 0) is stable.

(iii) −(µs + kx + ky) = max(−µx,−µy,−(µs + kx + ky))
The nontrivial solution exists and it is stable. To show the instability of

the trivial solutions, let us suppose that −(µs + kx + ky) > −µx > −µy. From
what was analyzed on (i), we have that the trivial solution corresponding to
(0, 1, 0, 0) is unstable by (3.5). In addition, Q(−µx) < 0 and then the trivial
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Fig. 3. The cubic polynomial Q(λ) from (3.6) with Q(−µx) > 0. Q(λ) has three or one real root
but, in any case, the real parts of all roots are less than −µx.

solution (1, 0, 0, 0) is unstable too. A similar argument is valid for the case
−(µs + kx + ky) > −µy > −µx. Then we have completed all the cases if
−µx �= −µy.

Considering now −µx = −µy, we have that the nontrivial solution exists and
we can see that Q(−µx), Q′(−µy) < 0, hence both trivial solutions are unstable.

4. A Southern Elephant Seal Population

We consider an example of parametrization just to take the flavor of the applicability
of the model in a preliminary test and motivate future developments. The southern
elephant seal is a polygamous species in which males and females show different life
cycles and spend part of their life in a subadult stage until they reach the sexual
maturity. Thus, this species is an example where the three-stage model would be an
extreme simplification whereas the four-stage model, although still corresponding
to a simplified approximation, provides more flexibility to describe the life cycle.

The reproductive season of this species spans two months from the beginning
of August to early November. During this period, animals distribute themselves
along the beach forming reproductive groups called harems. Each harem consists
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of one dominant male, a group of females which can vary between two to hundred
individuals and some peripheral males. Females reproduce for the first time around
the age of four, while males do not participate actively in the reproductive season
until they reach the age of six [1, 13].

To parametrize our model, we based on life tables of southern elephant seals
which present survival values of males and females until the age of 20 [16]. From
life tables we obtained lf(i) and lm(i), which represent the probability that a female
(respectively male) pup will survive to age i. We will assume that adult females are
those within the age of four or older and adult males within the age of seven or
older. In consequence, the pre-reproductive stage corresponds to females that are
three years old or younger and males that are six years old or younger. The life table
was estimated for a population close to stability, which means that the number of
births remains constant year after year. Likewise, lf(i) represents the proportion
of females in the age group i per born female and, because the sex ratio at births
is one-to-one, lf(i) is the proportion of females in age group i, with respect to all
individuals in the population.

Adult female annual survival can be estimated as the proportion of adult females
that remains as adults from a year to another:

px =
lf(5) + lf(6) + · · · + lf(20)
lf(4) + lf(5) + · · · + lf(20)

.

The female death rate can then be estimated by px = exp(−µx), as it is usual for
life table and matrix models [3, 12]. In the same way, we can calculate the annual
survival of adult males and pre-reproductive individuals, with the corresponding
death rates:

py =
lm(8) + · · · + lm(20)
lm(7) + · · · + lm(20)

= exp(−µy),

ps =
lf(2) + lf(3) + lf(4) + lm(2) + · · · + lm(7)
lf(1) + lf(2) + lf(3) + lm(1) + · · · + lm(6)

= exp(−µs).

On the other hand, the female recruitment rate kx can be estimated as the
proportion of pre-reproductive individuals that will be adult females the next year
and, in the same way, we calculated the transition rate ky from pre-reproductive
individuals to adult males:

kx =
lf(4)

lf(1) + lf(2) + lf(3) + lm(1) + · · · + lm(6)
,

ky =
lm(7)

lf(1) + lf(2) + lf(3) + lm(1) + · · · + lm(6)
.

The birth rate is given by the product of female fecundity (pregnancy rate in [16])
and the adult survival: ks = 0.88px, calculated as birth pulse fertility in populations
with post-breeding censuses [12].

Finally, as a reference of the social structure, we have data from the population
of Peninsula Valdes, a population that was near stability during the last decade.
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Fig. 4. Stationary sex ratio and population growth for the southern elephant seal population
model. Female death rate varies from 0 to 1.5 and the rest of the vital rates vary proportionally
according to life table estimates. We used a minimum mating function ϕ(x, y) = min(x, y), and
a small harem size h/m = 6. Population is stable, with growth rate = 0, for µx = 0.121 and
collapses for µx ≥ 1.123.

There the adult sex ratio, during the breeding season, is close to six females per male
and the median of the harem size around 13, with annual mean varying between
11 and 35 females per male [8, 15]. The reproductive groups are formed again each
season but we do not have any estimation of the separation rate, corresponding to
model parameter σ, thus we set σ = 1 as a reference value.

Although population parameters were estimated from stable populations accord-
ing to life tables, when we evaluated these parameters in our continuous time model
we obtained a decreasing population. To analyze a stable population we increase px
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varying the rest of the vital rates proportionally according to life table estimates:
py/px = 0.84, ps/px = 1.001, kx/px = 0.118, ky/px = 0.059 and ks/px = 0.88. We
analyze stationary solutions using a minimum mating function, ϕ(x, y) = min(x, y),
and small harem size, h/m = 6 corresponding to the adult sex ratio observed in
the field, Fig. 4. With this setting we are in case (i) of Theorem 3.1 and the popu-
lation collapses when µx = 1.123, which corresponds to very low annual survivals:
px = 0.325 and py = 0.273. If we set µx = 0.121, corresponding to a stable popula-
tion, and we vary the harem size, Fig. 5, we find the critical harem size H0 = 1.534.
The break points in Fig. 5, which occur at H0 and H1 ≈ 4.9, show us how the
minimum function works on the model. For h/m below H0, there does not exist
the positive stationary solution; for H0 < h/m < H1, there exists the positive sta-
tionary solution but hy < mx in the stationary state, that is, the number of males

Fig. 5. Stationary sex ratio and population growth for a potentially stable southern elephant
seal population when varying the sexual proportion of reproductive groups.
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is limiting the population growth, moreover the population is decreasing (λ∗ < 0);
finally for h/m > H1 we have that hy > mx in the stationary state, and population
is stable (λ∗ = 0).

5. Conclusions and Discussion

The modification on a simple two-sex three-dimensional model allowed us to con-
sider the social structure in polygamous populations. An alternative approach was
presented in order to analyze the model in a way that it was possible to generalize
the results for a four-dimensional model, as a first step toward the study of more
general and complex systems.

The model’s solutions resulted in three possible situations: the existence of a
stationary state where the population’s structure stabilizes increasing or decreasing
exponentially and other two solutions, which lead to the population’s collapse by
means of lack of males or females.

The conditions were established for the existence of the stationary state and
its local stability, determining in this manner the critical sexual proportion of the
reproductive groups. The adult sex ratio and the structure of reproductive groups
are key variables in population dynamics and, in some cases can be directly esti-
mated [9, 15]. This kind of models could be applied on wildlife populations with a
pre-reproductive stage and can help, as a first approximation, to assess the popu-
lation status according to its demographic and social parameters, in relation to the
critical structure.

When we parametrize the model for a southern elephant seal population, we
find threshold values for the harem size, H0 and H1, which determine the existence
of the stationary solution and the population stability respectively. These results
could be confronted with similar analyses based on discrete-time models [7]. The
critical harem size, H0 < 2, is below observed values, as we expect for a healthy
population. And, although small harems are observed in populations of southern
elephant seals, the collapse of a population due to small harems would not be a
possibility according to our model. On the other hand, the harem size needed for
a stable population H1 is close to the adult sex ratio, observed at the breeding
season, but still below from the population’s mean harem size. We believe that
more complex population models and, specially a better description of the mating
function, would be needed to understand these big observed harems and, in general,
to analyze the breeding behavior in wildlife populations.
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M. C. Pérez, E. A. Saavedra & M. A. Ferrari

[4] M. de la Sen, The generalized Beverton–Holt equation and the control of populations,
Appl. Math. Model. 32 (2008) 2312–2328.

[5] L. Farina and S. Rinaldi, Positive Linear Systems — Theory and Applications (John
Wiley and Sons, 2000).

[6] M. Farkas, Dynamical Models in Biology (Academic Press, 2001).
[7] M. A. Ferrari, M. N. Lewis and C. Campagna, Two-sex population models applied

to polygamous species, Acta Acad. Nac. Cienc. XIV (2008) 75–83.
[8] M. A. Ferrari, M. N. Lewis, M. A. Pascual and C. Campagna, Interdependence of

social structure and demography in the southern elephant seal colony of Peninsula
Valdes, Argentina, Mar. Mammal Sci. 25 (2009) 681–692.

[9] L. R. Gerber, Including behavioral data in demographic models improves estimates
of population viability, Front. Ecol. Environ. 4 (2006) 419–427.

[10] K. P. Hadeler, R. Waldstätter and A. Wörz-Busekros, Models for pair formation in
bisexual populations, J. Math. Biol. 26 (1988) 635–649.

[11] M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Sys-
tems and an Introduction to Chaos (Elsevier, 2004).

[12] N. Keyfitz and H. Caswell, Applied Mathematical Demography, 3rd edn. (Springer,
2005).

[13] B. J. Le Boeuf and R. M. Laws, Elephant Seals: Population Ecology, Behavior and
Physiology (University of California Press, Berkeley, 1994).

[14] S. Legendre, J. Colbert, A. P. Miller and G. Sorci, Demographic stochasticity and
social mating system in the process of extinction of small populations: The case of
passerines introduced to New Zealand, Amer. Nat. 153 (1999) 449–463.

[15] M. N. Lewis, C. Campagna, F. Quintana and V. Falabella, Estado actual y dis-
tribucin de la poblacin del elefante marino del sur en la Pennsula Valds, Argentina,
Mastozoologa Neotropical 5 (1998) 29–40.

[16] T. S. McCann, Size, status and demography of southern elephant seal (Mirounga
leonina) populations, in Studies of Sea Mammals in South Latitudes, eds. J. K. Ling
and M. M. Bryden (South Australian Museum, Northfield, 1985).

[17] G. Meinsma, Elementary proof of the Routh–Hurwitz test, Syst. Control Lett. 25
(1995) 237–242.

[18] E. J. Milner-Gulland, O. M. Bukreeva, T. Coulson, A. A. Lushchekina, M. V. Kholo-
dova, A. B. Bekenov and I. A. Grachev, Reproductive collapse in saiga antelope
harems, Nature 422 (2003) 135.

[19] J. H. Pollard, Modelling the interaction between the sexes, Math. Comput. Model.
26 (1997) 11–24.

1550049-18

In
t. 

J.
 B

io
m

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 M
ar

ia
no

 F
er

ra
ri

 o
n 

04
/0

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.worldscientific.com/action/showLinks?crossref=10.1038%2F422135a&isi=000181488900034
http://www.worldscientific.com/action/showLinks?crossref=10.1890%2F1540-9295%282006%294%5B419%3AIBDIDM%5D2.0.CO%3B2&isi=000240997000019
http://www.worldscientific.com/action/showLinks?crossref=10.1016%2Fj.apm.2007.09.007&isi=000258438000009
http://www.worldscientific.com/action/showLinks?crossref=10.1007%2FBF00276145&isi=A1988R352400003
http://www.worldscientific.com/action/showLinks?crossref=10.1016%2F0167-6911%2894%2900089-E&isi=A1995RD59300001
http://www.worldscientific.com/action/showLinks?crossref=10.1111%2Fj.1748-7692.2008.00268.x&isi=000268031000011
http://www.worldscientific.com/action/showLinks?crossref=10.1016%2FS0895-7177%2897%2900166-0&isi=A1997YG11800004
http://www.worldscientific.com/action/showLinks?crossref=10.1086%2F303195&isi=000080950400001

