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Abstract. Let L be an Artin algebra of finite global dimension and let T be a tilting
module over L: We develop bounds for the global dimension of the endomorphism
algebra G of T in terms of homological data of T:

Let L be an Artin algebra over a commutative Artin ring R and let mod L be the category
of finitely generated left L-modules. For X 2 mod L we denote by pdLX (resp. id LX) the
projective dimension (resp. injective dimension) of X. We will say that a module X is
exceptional if pdLX < 1 and Exti

L�X;X� � 0 for i > 0: An exceptional module T is called
a tilting module if there exists an exact sequence

0! LL! T 0 ! T1 ! . . .! Tm ! 0

with Tj 2 add T for all j, where add T is the full subcategory of mod L whose objects are
direct sums of direct summands of T.

The purpose of tilting theory is to compare mod L with mod G where G is the
endomorphism algebra EndLT of a tilting module LT: In this article we are mainly
interested in the comparison of the global dimensions gl.dim L of L and gl.dim G of G : We
will assume that L is of finite global dimension. It is well-known (compare for example [4],
III, 3.4) that in this case also gl.dim G < 1 and even

gl.dim Lÿ pdLT % gl.dim G % gl.dim L� pdLT:

Since L is of finite global dimension we have that LT is of finite injective dimension. In
section two we improve the bound for the global dimension of G ; namely

idLT % gl.dim G % pdLT � idLT:

This will follow from the general fact that a tilting module T induces an equivalence
HomL�T;ÿ� between certain subcategories of mod L and mod G :

In sections three and four we continue our investigations of global dimensions for
endomorphism algebras of tilting modules.
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In the third section we consider classical tilting modules, i.e. pdLT % 1: In this case the
result in section two states that s � idLT % gl.dim G % idLT � 1: We prove that gl.dim G � s
if and only if Exts

L�tT;T� � 0; where t denotes the Auslander-Reiten translation. This can
be thought of as a generalized splitting condition. Namely if s � 1; then it is straightforward
to see that the tilting torsion pair on mod L induced by T splits if and only if
Ext1

L�tT;T� � 0; or equivalently that T is a complete slice, or further equivalently that
G � EndLT is a hereditary Artin algebra.

In section four we consider certain Ext-injective tilting modules. For 0 % i % d � gl.dim L

we denote by p % i�L� the full subcategory of mod L consisting of those Lÿmodules LX
with pdLX % i: In case p % i�L� is contravariantly finite in mod L it was shown in [7] that
there exists a tilting module Ti 2 p % i�L� which is Ext-injective in p % i�L� and has
pdLTi � i: If G i � EndLTi and di � gl.dim G i we will show that dÿ i % di % d: Hence
gl.dim G i will never exceed gl.dim L: A special case of this result has been shown by different
methods in [10].

In case two consecutive categories p % i�L� and p % i�1�L� are both contravariantly finite
in mod L we will show that di ÿ 1 % di�1 % di � 1:

If p % i�L� is contravariantly finite in mod L for all 0 % i % d (this is for example satisfied
for representation-finite algebras or Auslander algebras) we may associate a sequence
�d0; . . . ; dd� of global dimensions with L: Note that d0 � dd � d and the absolute difference
of two consecutive numbers is at most one. We finish with examples showing what kind of
sequences may occur.

1. Preliminaries. In this section we will briefly recall the basic definitions and results we
will use in the main part of this article. For unexplained representation-theoretic
terminology we refer to [9] or [2]. We denote the composition of morphisms f : X ! Y
and g : Y ! Z in a given category k by fg.

Let c be a full subcategory of mod L. It is always assumed to be closed under direct sums,
direct summands and isomorphisms. The subcategory c is called contravariantly finite in
mod L, if every X 2 mod L has a right c-approximation, i.e. there is a morphism FX ! X
with FX 2 c such that the induced morphism HomL�C;FX� ! HomL�C;X� is surjective for
all C 2 c. If X admits a right c-approximation then it admits also a minimal right
c-approximation. This is a right c-approximation which in addition is also right minimal in
the sense that its restriction to any nonzero summand is nonzero.

All subcategories in this paragraph are subcategories of mod L: The subcategory c is
called resolving if c is closed under extensions, kernels of surjective maps and contains LL.
Note that for a contravariantly finite subcategory which is resolving every right approximation
is surjective [1]. Indeed, the projective cover has to factor over the right approximation.

If c is a resolving subcategory and C 2 c is c-injective, so satisfies Ext1
L�X;C� � 0 for all

X 2 c; then Exti
L�X;C� � 0 for all X 2 c and all i > 0.

The notions of covariantly finite and coresolving subcategories are defined dually.
Following Auslander and Reiten [1] we associate with a subcategory c of mod L the

following full subcategories of mod L:

c? � fX jExti
L�C;X� � 0 for all i > 0 and all C 2 cg

?c � fX jExti
L�X;C� � 0 for all i > 0 and all C 2 cg
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We will be mainly interested in these categories when c � addLT for a tilting module LT:
In this case they will be denoted by T?; ?T respectively. For a tilting module LT we denote
by G � EndLT the endomorphism algebra of T: We will also consider the full subcategory
t0 of mod G whose objects Y satisfy TorG

j �T;Y� � 0 for all j > 0.

2. General properties. We keep the notation from the previous sections.
We now turn to the proof of a bound for the global dimension of the endomorphism

algebra of a tilting module. We denote by WX the kernel of a projective cover of X; and
define inductively WiX � W�Wiÿ1X� for i > 0: For convenience we sometimes set W0X � X:

Proposition 2.1. Let L be an Artin algebra with finite global dimension d: Let LT be a
tilting module with pdLT � r and idLT � s: Let G � EndLT; then for each Y 2t0 we have
pdG Y % s: Moreover we have that s % gl.dim G % r � s:

P roof. We first observe that T is also a cotilting module since L is of finite global
dimension, and so there exists a long exact sequence

0! Ts ! . . .! T0 ! D�LL� ! 0

with Ti 2 add T for all i (compare for example [4], III, 2.2). We will assume that we have
chosen such a sequence with Ti minimal for all i:

Next we apply the functor HomL�T;ÿ� to the sequence above and conclude that
pdG HomL�T;D�LL�� � s; which shows the first inequality. In a similar way we may show
that for each Y 2 T? we have that pdG HomL�T;Y� % s: In fact, it is well-known that for
each Y 2 T? we have an exact sequence

0! Tt ! . . .! T0 ! Y ! 0

with Ti 2 add T for all i and some t % s: Note that here we use the assumption that L is of
finite global dimension.

By tilting theory we infer that HomL�T;ÿ� induces an equivalence between T? and the
full subcategory t0 of mod G whose objects Y satisfy TorG

j �T;Y� � 0 for all j > 0 (compare
for example [4], III, 3.2). So we see that each Y 2t0 satisfies pdG Y % s: Now pdTG � r;
hence TorG

j �T;Y� � 0 for all j > r: Thus for all Y 2 mod G we have that WrY 2t0: Now
s ^ pdG WrY � ÿr � pdG Y; which shows the second inequality.

3. Classical tilting modules. We now consider global dimensions for endomorphism
algebras of tilting modules.

We consider the special case of a tilting module T with pdLT � 1: Let s � idLT and let
G � EndLT: By Proposition 2.1 we know that gl.dim G � s or gl.dim G � s� 1: We will
develop a criterion which decides which case will actually occur.

We will first recall some of the special features of this case (for details we refer to [5] or
[9], 4.1). A tilting module LT with pdLT � 1 induces a torsion pair �t;f� on mod L as
follows:

t � Fac T � fX 2 mod L jExt1
L�T;X� � 0g

and

f � fX 2 mod L jHomL�T;X� � 0g;
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where Fac T is the subcategory generated by T: It may be shown that f is the subcategory
Sub tT cogenerated by tT; where t is the Auslander-Reiten translation.

It also induces a torsion pair �x;y� on mod G :

x � fY 2 mod G jT 
G Y � 0g
and

y � fY 2 mod G jTorG
1 �T;Y� � 0g:

Lemma 3.1 Assume that L is of finite global dimension. Let LT be a tilting module with
pdLT � 1 and idLT � s: Then Exts

L�tT;T� � 0 if and only if Exts
L�f;t� � 0:

P roof. Since tT 2f and T 2t one direction is clear.
For the converse we first recall that f � Sub tT: Since idLT � s; we infer that Exts�ÿ;T�

is right exact, so Exts
L�tT;T� � 0 implies that Exts�f;T� � 0: Next, for each X 2t there is

an exact sequence

0! Tm ! . . .! T0 ! X ! 0;

with Ti 2 add T and with m % s: Hence for Y 2f we get that Exts
L�Y;X� �

Exts�m�Y;Tm� � 0 completing the proof of the lemma.

Theorem 3.2. Assume that L is of finite global dimension. Let LT be a tilting module with
pdLT � 1 and idLT � s ^ 1: Then s � gl.dim G if and only if Exts

L�tT;T� � 0: Moreover
Exts

L�tT;T� � 0 implies that pdLtT % s:

P roof. By the previous lemma it is enough to show that s � gl.dim G if and only if
Exts

L�f;t� � 0:
By 2.1 we know that each Y 2 y satisfies pdG Y % s; for t0 � y in this context. Next let

X 2 x: Then X � Ext1
L�T;Z� for some Z 2f: We consider the universal extension of Z

by T

0! Z! E! Tt ! 0:

It is easy to see that E 2t: Apply HomL�T;ÿ� to this sequence. This yields the following
exact sequence of G-modules:

0! HomL�T;E� ! HomL�T;Tt� ! Ext1
L�T;Z� ! 0:

Then HomL�T;Tt� is a projective G-module and Exti�Z;T� � Exti�E;T� for all i ^ 1: Let

0! Tm ! . . .! T0 ! E! 0:

with Ti 2 add T for all i and m minimal. Then pdG HomL�T;E� � m < s if and only if
Exts�E;T� � 0: So pdG Ext1�T;Z� % s for all Z 2f if and only if Exts�Z;T� � 0 for all
Z 2f:

We now show the last assertion. By definition of a tilting module we have a short exact
sequence

0! LL! T0 ! T1 ! 0

with T0;T1 2 add T: Applying HomL�tT;ÿ� to this sequence yields the following exact

250 S. GASTAMINZA, D. HAPPEL, M. I. PLATZECK, M. J. REDONDO and L. UNGER ARCH. MATH.



sequence for all t ^ s:

Extt
L�tT;T1� ! Extt�1

L �tT; LL� ! Extt�1�tT;T0�:
The outer terms vanish by assumption, so does the middle term, hence pdLtT % s:

This finishes the proof of the theorem.

We point out that in general the converse of the last implication will not hold. For example
let H be a hereditary Artin algebra and HT a non-injective, non-projective tilting module. So
pdHT � idHT � 1: Then we always have that pdHtT % 1; but it is easily seen that there are
plenty of examples with Ext1

H�tT;T� �j 0:
In Section 4 we will give a reformulation of this result for special tilting modules.
From the theorem we deduce the following well-known characterisation of tilted algebras.

Recall that an Artin algebra L is called a tilted algebra if there exists a hereditary Artin
algebra H and a tilting module HT with EndHT � L:

Corollary 3.3. Let L be an Artin algebra of finite global dimension. Then L is a tilted
algebra if and only if there exists a tilting module LT with pdLT � idLT � 1 and
Ext1

L�tT;T� � 0:

P roof. If such a tilting module exists the theorem implies that G � EndLT is hereditary,
and therefore L is a tilted algebra. For the converse use the usual proof from tilting theory
(compare for example [9], 4.2).

4. Ext-injective tilting modules. As before let L be an Artin algebra of finite global
dimension d: For each 0 % i % d we denote by p % i�L� the full subcategory of mod L

consisting of those Lÿmodules LX with pdLX % i: In case p % i�L� is contravariantly finite
in mod L it was shown in [7] that there exists a tilting module Ti 2 p % i�L� which is Ext-
injective in p % i�L� and has pdLTi � i: If G i � EndLTi we denote by di � gl.dim G i:

Let us pause for a moment to comment on our assumptions. In general the subcategories
p % i�L� will not be contravariantly finite in mod L except for the extreme values i � 0 or
i � d. An example for this can be found for algebras of finite global dimension in [6], which
is a modification of an example in [8]. However if L is a representation-finite algebra of
finite global dimension all these subcategories will be contravariantly finite in mod L:

Another general class of algebras where these assumptions are satisfied is the class of
Auslander algebras. Recall that all Auslander algebras are obtained as follows: Let L be an
arbitrary representation-finite algebra and let M1; . . . ;Mn be a complete list of
representatives from the isomorphism classes of the indecomposable L-modules. Let

M � �n
i�1

Mi: Then G is an Auslander algebra if G is of the form EndLM: It is well-known that

the global dimension of an Auslander algebra is two. It follows from a result in [8] that
p % 1�G� is contravariantly finite in mod G for an Auslander algebra G :

We start with an easy general observation.

Lemma 4.1. Let L be an Artin algebra with gl.dim L � d < 1 and let LT be a tilting
module with pdLT � r and idLT � s: Then dÿ r % s % d:
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P roof. Trivially we have that idLT % d: By definition of a tilting module we have an
exact sequence

0! LL! T0 ! . . .! Tm ! 0

where m � r � pdLT (compare [4], III, 2.2). From the above sequence we conclude that
idLL % idLT � r: Thus d % s� r; or equivalently dÿ r % s:

Proposition 4.2. Let L be an Artin algebra with gl.dim L � d < 1 and let 0 % i % d: If
p % i�L� is contravariantly finite in mod L; then pdLTi � i and idLTi � dÿ i:

P roof. The assertion on the projective dimension of Ti is contained in [7]. The previous
lemma shows that idLTi ^ dÿ i: For the other inequality let X 2 mod L: By assumption we
have that pdLX % d: Thus pdLWdÿiX % i: Thus Ext1

L�WdÿiX;Ti� � 0; for Ti is Ext-injective
in p % i�L�: But

Ext1
L�WdÿiX;Ti� � Extdÿi�1

L �X;Ti�;
hence idLTi % dÿ i:

Corollary 4.3. With the notation and assumptions above we have that d ^ di ^ max�dÿ i; i�:
P roof. The first inequality follows immediately from 2.1 and the previous proposition.

Again by 2.1 and the previous proposition we have that di ^ dÿ i: Since pdLTi � i we infer
that idG i D�Ti� � i; hence di ^ i: This shows the assertion.

We now come back to the situation of 3.2. We point out that this result was previously
obtained in [10] by different methods.

Corollary 4.4. Let L be an Artin algebra of finite global dimension d > 1: Assume that
p % 1�L� is contravariantly finite in mod L and let T1 be the Ext-injective tilting module in
p % 1�L�: Then d1 � gl.dim EndLT1 � dÿ 1 if and only if pdLtT % dÿ 1:

P roof. By the previous corollary and Theorem 3.2 it is enough to show that
Extdÿ1

L �tT1;T1� � 0 whenever pdLtT1 % dÿ 1: If this is the case we infer that
pdLWdÿ2�tT1� % 1: So Ext1

L�Wdÿ2�tT1�;T1� � 0: But

Ext1
L�Wdÿ2�tT1�;T1� � Extdÿ1

L �tT1;T1�;
which shows the assertion.

We will now consider the case that two consecutive such categories are contravariantly
finite in mod L and will compare the two global dimensions.

Theorem 4.5. Let L be an Artin algebra of finite global dimension d: Assume that p % j�L�
is contravariantly finite in mod L for j 2 fi; i� 1g and i� 1 % d: Let LTj be the Ext-injective
tilting module in p % j�L� and G j � EndLTj: If dj � gl.dim G j; then di ÿ 1 % di�1 % di � 1:

P roof. Since p % i�L� is contravariantly finite in mod L we can consider the minimal
p % i�L�ÿapproximation of Ti�1: This gives the following exact sequence

0! Ki�1 ! Fi�1 ! Ti�1 ! 0
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with Fi�1 2 p % i�L� and Ext1�p % i�L�;Ki�1� � 0 by Wakamatsu©s Lemma (compare for
example [1]). Since p % i�L� � p % i�1�L� and Ti�1 is Ext-injective in p % i�1�L� we also
have that Ext1�p % i�L�;Ti�1� � 0; hence Ext1�p % i�L�;Fi�1� � 0: Since pdLTi�1 � i� 1
and pdLFi�1 % i; we infer from the sequence above that pdLKi�1 � i; and so Ki�1 2 p % i�L�:
Since p % i�L� is resolving we have Extt�p % i�L�;Ki�1� � Extt�p % i�L�;Fi�1� � 0 for all
t > 0: But then Ki�1 and Fi�1 are both Ext-injective in p % i�L�; hence Ki�1;Fi�1 2 add Ti:

For convenience we rewrite the sequence to

0! T1
i ! T0

i ! Ti�1 ! 0

with T1
i ;T

0
i 2 add Ti: This also shows that Ti�1 2 T?i : Next we apply the functor

HomL�Ti;ÿ� to this sequence and obtain an exact sequence of G i-modules

0! HomL�Ti;T1
i � ! HomL�Ti;T0

i � ! HomL�Ti;Ti�1� ! 0:

So we see that pdG i
HomL�Ti;Ti�1� % 1: Moreover it is easy to verify that the G i-module

HomL�Ti;Ti�1� is a tilting module with G i�1 � EndG i�HomL�Ti;Ti�1��: So the assertion
follows from 2.1 in combination with 4.1.

We point out that the G i-tilting module HomL�Ti;Ti�1� will in general not be Ext-injective
in p % 1�G i�: This can be easily verified in examples but also follows from the following
general remark.

Let L be an Artin algebra of finite global dimension d and assume that p % i�L� is
contravariantly finite in mod L for all 0 % i % d: Let Ti be the Ext-injective tilting module in
p % i�L�: Let G i � EndLTi and di � gl.dim G i: Then we may form the global dimension
sequence �d0; . . . ; dd�: Trivially we have that d0 � dd � d: From 4.3 we conclude that
d ^ di ^ max�dÿ i; i� and the last assertion shows that di ÿ 1 % di�1 % di � 1: So in case
there is j with dj < d there has to be some index t � 1 ^ j where the G t-tilting module
HomL�Tt;Tt�1� will not be Ext-injective in p % 1�G t�:

We finish with some examples which illustrate what kind of sequences may occur. The
calculations are straightforward and therefore will not be given. For the examples we choose
a field k and the algebras will be path algebras of a finite quiver D

!
over k modulo an

admissible twosided ideal of kD
!
: To each vertex i of D

!
we denote by S�i� the simple module

concentrated in i and by P�i� the projective cover of S�i�:
For the first example let D

!
be the following quiver and let I be the twosided ideal

generated by all paths of length two in D
!
: Let Ln � kD

!
=I:

Note that gl.dim Ln � nÿ 1 and that the Ext-injective tilting module Ti in p % i�Ln� is of
the form

Tiÿ1 � �
n

j�2
P�j�� S�i�

for 1 % i % n: Let G i � EndLn Ti and di � gl.dim G i for 0 % i % nÿ 1:
We distinguish two cases.
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First we consider the case that n � 2m� 1 is odd. Then using the notation from above we
have that dm�i � dmÿi � m� i for 0 % i % m:

If n � 2m is even. Then using the notation from above we have that dm�i � m� i for
0 % i % mÿ 1 and dmÿi � m� iÿ 1 for 1 % i % m:

For the next example let D
!

be the following quiver and let I be the twosided ideal
generated by all paths of length two except ab: Let Ln � kD

!
=I: The indecomposable

projectives Ln-modules P�i� have length two for 1 % i % nÿ 1 and P�n� has length three.

Note that gl.dim Ln � n and that the Ext-injective tilting module Ti in p % i�Ln� is of the
form

Ti � �
n

j�2
P�j�� S�nÿ i� 1�

for 1 % i % nÿ 1: Clearly T0 � Ln Ln and Tn � D�LnLn
�: Let G i � EndLn Ti and let

di � gl.dim G i for 0 % i % n: Then it is easy to see that G i ' Ln for all 0 % i % n: In
particular we see that di � n for 0 % i % n:

These two examples show that the upper and lower bounds established in 4.3 are best
possible.
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