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SUMMARY

This paper presents a numerical formulation of a three dimensional embedded beam element for the
modeling of piles, which incorporates an explicit interaction surface between soil and pile. The formulation
is herein implemented for lateral loading of piles but is able to represent soil–pile interaction phenomena
in a general manner for different types of loading conditions or ground movements. The model assumes
perfect adherence between beam and soil along the interaction surface. The paper presents a comparison of
the results obtained by means of the present formulation and by means of a previously formulated embedded
pile element without interaction surface, as well as reference semi-analytical solutions and a fully 3D finite
element (FE) model. It is seen that the proposed embedded element provides a better convergence behavior
than a previously formulated embedded element and is able to reproduce key features of a full 3D FE model.
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1. INTRODUCTION

The analysis of lateral loading of piles can be performed by means of several techniques with
increasing complexity: from simple two dimensional beam over elastic foundation theory to very
refined three dimensional (3D) finite element (FE) models.

One of the first approaches proposed in order to model pile–soil interaction phenomena was the
Winkler hypothesis, which considers the soil reactions as proportional to the pile displacements by
means of independent linear springs distributed along the pile [1]. This method neglects the shear
stresses that would develop in the ground because of shear strains. The stiffness of the springs is
often referred to as coefficient of subgrade reaction, and it depends on both soil and pile material
properties, pile shape, and type of loading (e.g., [2]).

Pasternak [3] and Vlasov [4] independently developed a beam on elastic foundation theory on
the basis of two-parameter springs to characterize soil reactions, accounting for shear stresses.
These parameters, however, are not widely used in engineering practice, and their definition is not
straightforward, as it depends on the assumed displacement field perpendicular to the pile axis [5].
Because the fact that distortions are accounted for in this formulation, special boundary conditions
are required at the end of the beam elements in order to represent the shear depression zone [5].
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EMBEDDED BEAM ELEMENT WITH INTERACTION SURFACE 569

By means of a boundary element formulation, Poulos [6] studied the response of piles in
homogeneous continua. Poulos tabulated the solutions in several charts in terms of influence factors.

Randolph [7] performed parametric FE analyses on a single vertical pile, subjected to lateral loads
and moments applied at the pile head. Results are tabulated in terms of dimensionless parameters
that were fitted by Randolph to simple analytical expressions. Randolph considered both homoge-
nous and Gibson (i.e., linearly increasing stiffness with depth) soils.

Although these approaches have been very useful in engineering practice, their application is
not straightforward for the analysis of complex soil–structure interaction problems, with large pile
groups, heterogeneous soils, and demands both due to applied loads and ground movements.

Sadek and Shahrour [8] proposed an embedded beam element (EBE) formulation for the elastic
analysis of piles in FE models, where the pile displacement field is written in terms of the displace-
ment interpolation of the solid (soil) elements. This formulation, however, presents a mechanical
incompatibility, which produces non-convergent solutions when the pile nodes are close to or at the
solid nodes. This is primarily a consequence of the fact that there is no explicit interaction surface
between soil and pile, thus leading to stress singularities when the mesh is further refined. Engin
et al. [10] show that the results obtained by means of the standard EBE for nonlinear problems
depend upon the mesh size of the model because of numerical instability. In order to overcome this
issue, Engin et al. [10] define an elastic region around the pile axis where the solid Gauss points are
forced to remain elastic. Engin et al. ([11] and [12]) used this modified EBE formulation to estimate
pile group behavior.

This paper presents a novel formulation of an EBE. The model explicitly introduces a finite
interaction interface in correspondence with the lateral surface of the pile, here denoted as �,
where interaction forces, defined in terms of distributed forces, are accounted for within well-posed
mechanical framework.

The paper is organized as follows: Section 2 summarizes the standard EBE methodology; in
Section 3, discusses the proposed EBE formulation with special emphasis on its implementation; in
Section 4, the numerical performance of the proposed formulation is assessed and compared against
alternative approaches, such as a semi-analytical formula, the standard EBE method, and a full 3D
FE model. The conclusions of this paper are summarized in Section 5.

Throughout the document, lowercase and uppercase letters identify objects defined at the FE level
and global (or assembled) level, respectively. Boldface letter is used to denote vector and matrices.
Finally, the hat-symbol over any variable implies nodal parameters.

2. STANDARD EMBEDDED BEAM ELEMENT FORMULATION

Figure 1 shows a layout of a standard EBE. The EBE is defined by means of a 3D beam element,
writing the displacement DOFs of the beam nodes (i.e., nodes i and j ) in terms of the nodal
displacements of a 3D solid element.

The standard EBE formulation, originally proposed by Sadek and Shahrour [8], assumes that
the displacement field along the beam axis, ub, can be defined by means of standard interpolation

Figure 1. Layout of standard embedded beam element.
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570 D.F. TURELLO, F. PINTO AND P.J. SÁNCHEZ

functions in terms of nodal displacements and rotations (6 DOFs per node). The nodal displacements
of the beam are then expressed in terms of the solid displacements at the locations of the beam
nodes .Xi and Xj / by means of the solid interpolation scheme. Thus, compatibility is only enforced
in terms of displacements at the beam nodes, whereas the displacements within the solid and beam
elements are generally non-compatible.

Compatibility at the beam nodes (Figure 1) can be written for the standard EBE as:

Ovi D ns.Xi / Ous

Ovj D ns.Xj / Ous;
(1)

where Ovi and Ovj are the beam nodal displacements at the i and j nodes, Ous are the solid nodal
displacements, and ns is the matrix containing the standard interpolation functions for the solid FE
(Figure 1).

In the standard EBE formulation, the rotational DOFs,�, are not linked to the solid displacements,
and they remain as additional unknowns in the model.

The nodal beam displacements, Oub, are thus written as a function of the nodal solid displacements,
Ous, as follows:

Oub D

0
BBBBBB@

Ovi

O�i

Ovj

O�j

1
CCCCCCA
D nbs

0
BBBB@
Ous

O�i

O�j

1
CCCCA ; (2)

where nbs is given by:

nbs D

0
BBBBBB@

ns.Xi / 0 0

0 I 0

ns.Xj / 0 0

0 0 I

1
CCCCCCA
; (3)

where I is a 3� 3 identity matrix and 0 represents a null matrix. The elemental transformation matrix
nbs, can be assembled into the global transformation matrix Nbs, which takes into consideration all
beam and soil DOFs.

The global stiffness matrix of the beam elements, Kb, is then written in terms of solid nodal
displacements, by means of the global transformation matrix Nbs, and it is denoted as, Kbs:

Kbs D Nbs
T Kb Nbs (4)

Thus, the stiffness matrix for the complete set of EBEs is obtained by adding to the stiffness
matrix Kbs, given by Equation 4, the contributions of the classical solid FE global matrix, Ks, only
over the corresponding displacement DOFs.

It should be noted that the nodal beam forces are transformed into equivalent nodal solid forces
in order to perform the final assembly of the problem. Thus, the equivalent force vector in terms of
solid DOFs, OPbs, can be expressed as a function of the vector in terms of beam DOFs, OPb, by means
of the transformation matrix Nbs, as follows:

OPbs D Nbs
T OPb: (5)

In this formulation, the nodal moment loads in the beam remain as beam nodal loads and do
not contribute to the solid load vector (Equation (5)). This is a direct consequence of the fact that
the rotational DOFs of the beam are independent of the solid displacements field and remain as
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Figure 2. Layout of proposed embedded beam element.

additional unknown parameters. Only the translational DOFs and forces in the beam are transformed
into equivalent solid DOFs and assembled with the solid elements.

Given the fact that the formulation does not consider an explicit interaction surface between beam
and solid, the solid–beam interaction forces tend to be distributed over a line, generating infinite
stresses in the solid adjacent to the beam for decreasing mesh sizes.

3. PROPOSED EMBEDDED BEAM ELEMENT FORMULATION

In order to overcome the limitations of the standard EBE formulation described earlier, a novel EBE
with explicit interaction surface is proposed in this paper. Figure 2, shows a sketch of the proposed
EBE with explicit interaction surface.

The main purpose of this improved EBE formulation is to explicitly represent the force interac-
tions at the pile surface in order to overcome singular stresses. From the mechanical point of view,
this is naturally achieved by imposing the compatibility between beam and solid displacements
along the interaction surface. That is, the system of interaction forces can be viewed as the system
of reactive forces due to the kinematical restriction imposed at the interaction surface.

As a starting point of this formulation, beam and solid displacements are defined by means of
standard interpolation functions on the basis of nodal displacements (beam and solid) and rotations
(beam only). Mapping functions are defined in order to express the beam displacements ub and
forces fb, at the interaction surface, as a function of the beam displacements ub and forces fb
defined along the beam axis, respectively.

3.1. Discretization and mapping functions

The 3D solid displacement vector field us is discretized by means of standard interpolation
functions, ns, in terms of the spatial position, X, and nodal parameters, Ous:

us.X/ D ns.X/ Ous: (6)

The beam displacement vector field at the interaction surface ub (Figure 3) is expressed as a
function of the beam nodal displacements Oub (displacements and rotations), by means of a mapping
matrix hu, which is composed of: (i) an interpolation matrix nu that defines the displacement field at
the beam axis in terms of nodal displacements Oub, and (ii) a matrix mu that converts displacements
and rotations at the beam axis into a vector displacement field at the interaction surface.

Figure 3 shows a layout of the mapping operations, together with the global (i.e., X1; X2; X3)
and local (i.e., r; ') coordinate systems for the case of a vertical pile with circular cross section
(Rp is the radius of the pile). While the procedure can be generalized for other cases, this is not a
straightforward task, as a new generalized mapping operator needs to be defined.
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Figure 3. Layout of mapping matrices (a) hu and (b) hf in the proposed embedded beam element.

The interpolation matrix for beam displacements, nu, is defined in terms of the local position
along the beam axis, r (Figure 3).

The mapping matrix mu is defined in terms of the local cylindrical coordinate, ', and takes into
account the standard Navier–Bernoulli hypothesis, where the beam cross section � , remains planar,
undeformed, and perpendicular to the beam axis. This hypothesis may be inaccurate for piles in
stiff soils, where shear deformations may be significant because of the short characteristic length.
However, the coupling formulation technique herein discussed remains valid if shear strains are
accounted for and will be implemented in future developments.

The beam displacement vector field, ub, at the interaction surface, can thus be written in terms of
the beam nodal displacements, Oub, as:

ub.r; '/ D hu.r; '/ Oub D mu.'/ nu.r/ Oub: (7)

The explicit form of the mapping matrix, hu, for a 2-node (i.e., nodes i and j ) cylindrical pile in
local coordinates, as it is shown in Figure 3, is given in Equation 8.

hu.r; '/ D mu.'/ nu.r/

nu.r/ D
�
nui .r/ nuj .r/

�
with

nui .r/ D

0
BBBBBBBBBBBB@

nH1 i .r/ 0 0 0 nH2 i .r/ 0

0 nH1 i .r/ 0 nH2 i .r/ 0 0

0 0 nLi .r/ 0 0 0

0 �nH1 i;r.r/ 0 �nH2 i;r.r/ 0 0

nH1 i;r.r/ 0 0 0 nH2 i;r.r/ 0

0 0 0 0 0 nLi .r/

1
CCCCCCCCCCCCA

mu.'/ D

0
BBB@
1 0 0 0 0 �Rp sin.'/

0 1 0 0 0 Rp cos.'/

0 0 1 Rp sin.'/ �Rp cos.'/ 0

1
CCCA ;

(8)
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where nH1 ; n
H
2 are the cubic Hermite polynomial functions for interpolation of displacements in

terms of nodal displacements and rotations, respectively; nL are the standard linear interpolation
functions, and nuj .r/ has an identical expression to nui .r/ but exchanging the sub-index i by j . In
this equation, ./;r represents the partial derivative with respect to the local coordinate r .

Similarly, the interaction force field fb, at the interaction surface, can be expressed as a function
of nodal beam interaction forces, Ofb, by means of the mapping matrix hf. The mapping scheme
consists of two parts: (i) a matrix nf that performs an interpolation of the beam forces fb defined
at the beam axis in terms of nodal force values Ofb, and (ii) a matrix mf that defines the distributed
force vector field fb, at the interaction surface, in terms of the forces interpolated at the beam
axis fb.

The interpolation matrix nf is written in terms of the local coordinate r (Figure 3), whereas the
matrix mf, which transfers the loads from the beam axis into the interaction surface, is defined in
terms of the local coordinate '.

The distributed force vector field fb, at the interaction surface, can thus be written as:

fb.r; '/ D hf.r; '/ Ofb D mf.'/ nf .r/ Ofb: (9)

The explicit form of the mapping function hf for a cylindrical pile is given in Equation 10.

hf.r; '/ D mf.'/ nf .r/

nf .r/ D
�
nf i .r/ nf j .r/

�
with

nf i .r/ D

0
BBBBBBBBBBBBB@

nH1 i .r/ 0 0 0 nH2 i .r/ 0

0 nH1 i .r/ 0 nH2 i .r/ 0 0

0 0 nLi .r/ 0 0 0

0 �nH1 i;r.r/ 0 �nH2 i;r.r/ 0 0

nH1 i;r.r/ 0 0 0 nH2 i;r.r/ 0

0 0 0 0 0 nLi .r/

1
CCCCCCCCCCCCCA

mf.'/ D

0
BBBBBBBBB@

1

2�Rp
0 0 0 0 �

sin.'/

2�R2p

0
1

2�Rp
0 0 0

cos.'/

2�R2p

0 0
1

2�Rp

sin.'/

�R2p
�

cos.'/

�R2p
0

1
CCCCCCCCCA

(10)

It should be noted that the interpolation matrices nu and nf are defined in terms of the r coor-
dinate alone (Figure 3), whereas the mapping functions hu and hf are written in terms of the local
cylindrical coordinates r and '.

Figure 4 shows a sketch of the interaction force patterns for different loading modes (i.e., axial
and transverse loading, bending, and torsion).

3.2. Formulation of the embedded beam element with interaction surface

Compatibility of solid and beam displacements is defined at the interaction surface˝. In this paper,
a fully rough elastic interaction is considered. However, the formulation can readily be extended
to incorporate more realistic pile–soil interaction, accounting for nonlinear behavior (material and
slippage). A weak kinematic compatibility is enforced by imposing that the relative displacement
between beam and soil, at the interaction surface, produces no virtual work with respect to any
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Figure 4. Interaction force patterns for different types of loads.

admissible system of virtual interaction forces, ıfb (this vector field at global level is written as ıFb).
Using FEM, this restriction is expressed as:

0 D
eDNb

AAA
eD1

Z
!

ıfb
T .us � ub/ d! 8 admissible ıfb

T

0 D ı OFb
T eDNb

AAA
eD1

Z
!

hf
T ns d!

„ ƒ‚ …
AT

OUs � ı OFb
T eDNb

AAA
eD1

Z
!

hf
T hu d!

„ ƒ‚ …
BT

OUb 8 ı OFb
T

0 D AT OUs � BT OUb;

(11)

where OUs is the assembled vector of all solid DOFs and OUb is the assembled vector of all nodal beam
DOFs, AAA is a proper FE assembly operator; Nb is the number of beam elements, and the global
matrices A and B are defined as:

A D
eDNb

AAA
eD1

Z
!

ns
T hf d!

B D
eDNb

AAA
eD1

Z
!

hu
T hf d!:

(12)

If the same interpolation matrices for both ub and fb are chosen (i.e., nu D nf ), the matrix B
yields invertible. Thus, the nodal beam displacements could be expressed in terms of nodal solid
displacements as:

OUb D B�T AT OUs: (13)
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By establishing the virtual work equilibrium under virtual nodal displacement field of the entire
pile, ı OUb, and using Equations 7 and 9, the equivalent lumped load vector of the complete pile, OPb,
can be written in terms of the nodal interaction forces vector, OFb, as:

ı OUb
T
OPb D ı OUb

T eDNb
AAA
eD1

Z
!

hu
T hf d! OFb 8 ı OUb

T

OPb D
eDNb

AAA
eD1

Z
!

hu
T hf d!

„ ƒ‚ …
B

OFb
(14)

OPb D B OFb: (15)

By establishing the virtual work equilibrium under a virtual solid nodal displacements, ı OUs, the
interaction load vector defined in terms of the solid DOFs, OPs, can be expressed as a function of the
global nodal interaction forces vector, OFb, as:

ı OUTs OPs D ı OUTs
eDNb

AAA
eD1

Z
!

ns
T hf d! OFb 8 ı OUTs

OPs D
eDNb

AAA
eD1

Z
!

ns
T hf d!

„ ƒ‚ …
A

OFb
(16)

OPs D A OFb: (17)

Using Equation 15, the equilibrium of the beam can hence be written in terms of global nodal
interaction forces, OFb, as:

Kb OUb D OPb

Kb OUb D B OFb;
(18)

whereKb is the global standard stiffness matrix for the entire pile. If the same interpolation matrices
nu and nf are chosen, the matrix B yields invertible. Thus, the global nodal interaction forces, OFb,
can be expressed as:

OFb D B�1 Kb OUb: (19)

Replacing Equations 19 and 13 into Equation 17, the global beam stiffness matrix can be written
in terms of solid DOFs as:

OPs D A OFb

OPs D A B�1 Kb OUb
OPs D A B�1 Kb B�T AT„ ƒ‚ …

Kbs

OUs

OPs D Kbs OUs:

(20)

The global stiffness matrix of the beam in terms of solid DOFs, Kbs, yields symmetric because of
the fact that it inherits the symmetry of the standard beam stiffness matrix. This matrix can readily be
assembled to the solid stiffness matrix, in order to obtain the total stiffness matrix of the embedded
pile. Both translational and rotational beam DOFs are transformed into equivalent solid DOFs.

The problem is thus solved in terms of solid DOFs, whereas the beam DOFs can be subsequently
obtained by means of Equation 13, as a post-process step.
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Using Equations 15 and 17, the global nodal load vector of the beam element, OPb, can be
transformed into an equivalent global nodal solid vector load, OPbs, as:

OPbs D A B�1 OPb: (21)

This is of particular relevance for pile loading problems, where external loads and moments are
converted to solid forces. Thus, the complete load vector, in terms of solid DOFs, is obtained by
adding the contributions of OPs, OPbs, and the standard lumped load vector due to external forces (e.g.,
surface traction, and body force) applied in the solid domain.

3.3. Numerical implementation

The proposed EBE formulation is general and can be implemented for several solid and beam
element formulations.

In this paper, the formulation is implemented for two types of solid elements: an 8-node bilinear
brick element with reduced-integration (referred to as H8) and a 27-node quadratic brick element
(referred to as H27). The interpolation functions for both elements belong to the C0 space [9].

Two pile elements are considered: a 2-node beam element, referred to as B2, with standard
Hermite cubic interpolation functions in bending (interpolation functions belong to C1 space)
and standard linear interpolation functions for axial behavior and torsional behavior (interpolation
functions belong to C0 space) as well as a 3-node beam element, referred to as B3, with fifth-
order Hermite polynomials in bending (interpolation functions belong to C1 space) and quadratic
interpolation functions for axial and torsional components (interpolation functions belong to C0
space).

Several combinations of these elements can be made in order to formulate an EBE. For example:
H8B2, H27B2, H8B3, and H27B3 EBEs can be generated by means of the solid and beam elements
described earlier. In this paper, however, only H8B2 and H27B2 are considered for the examples
shown.

The integrals over the interaction surface given in Equation 12 are evaluated by means of
numerical integration.

4. VALIDATION

4.1. Reference solutions

Randolph [13] derived a semi-analytical solution for lateral loading of single vertical piles based
on FE results. This solution considers an ‘active pile length’ where displacements are significant.
Randolph proposed several curves that represent lateral deflections and bending moments as a
function of dimensionless parameters.

In order to obtain an independent benchmark solution, in addition to Randolph’s, a full 3D model
is solved by means of ABAQUS™[14](see a sketch of the test setting in Figure 8). In this model,
both soil and pile domains are modeled by means of 3D solid elements. Two types of solid elements
are used: C3D8R 8-node bilinear brick elements and C3D20 20-node biquadratic brick elements,
both with reduced integration.

In order to study the convergence of the proposed EBE formulation, with respect to the full 3D
ABAQUS™ model, the mesh size in the FEM model is varied from coarse to fine, in order to
generate a head displacement, uhead , versus mesh size, lm, curve, which is normalized with respect
to the pile diameter Dp . Figure 5 shows the refined mesh used in the analysis.

The external boundaries are set at a 10 � Dp offset from the pile axis, where all displacements
components are constrained.

In the ABAQUS™ model, the external load is applied as a uniformly distributed traction force at
the upper end of the pile along the CX direction. Both soil and pile are represented by means of
linearly elastic, homogeneous, and isotropic materials.

The stresses within the pile cross section, � (Figure 3), are integrated in order to obtain the
equivalent beam forces (i.e., bending moments and shear forces). Figures 6 and 7 show the
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Figure 5. Partial view of the refined mesh used in the ABAQUS™ model.

Figure 6. Lateral displacements U1 (UX according to global axes in ABAQUS™ model) for the C3D8R.

Figure 7. Normal stress S22 (SYY according to global axes in ABAQUS™ model) for the C3D8R.
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displacements, U1 (along global axis X ), and the stresses, S22 (or SY Y , according to the global
axis), respectively, for the C3D8R solid element and a fine mesh.

It should be noted that the numerical implementation of the EBE described in this paper does
not include shear strains in the beam, which represents a deviation from the full 3D ABAQUS™
model.

4.2. Comparison of results

A comparison of results is drawn on the basis of lateral loading results of a single vertical pile,
considering the standard EBE formulation, and the formulation with explicit interaction surface
proposed in this paper. Results are benchmarked with respect to Randolph’s solution and 3D FEM
model results.

The soil is discretized by means of H8 and H27 solid elements, whereas the pile is represented by
means of B2 beam elements. Hence, H8B2 and H27B2 EBEs were considered for the soil structure
interaction analyses.

The mesh size varies from lm D 5:0 �Dp (coarse) to lm D 1:0 �Dp (fine). The external load,
P , is applied along theCX1 direction at the upper end of the pile (Figure 8).

In this example, the pile and solid nodes are coincident, as shown in Figure 8.
The soil elastic parameters considered for the analysis are: Young’s modulus Es D 100Mpa

and Poisson’s ratio �s D 0:33. On the other hand, the pile elastic properties are: Young’s modulus
Ep D 30; 000Mpa, Dp D 0:50m, Lp D 10:00m. Physical meaning for all these parameters are
shown in Figure 8.

Figure 9 shows the convergence behavior of the EBE models. It can be seen that the standard EBE
formulation shows non-convergent results for decreasing mesh sizes, for either the H8B2 or H27B2
EBEs. The lack of convergence in the standard EBE formulation is due to the fact that it does not
properly represent the actual distribution of interaction forces, thus leading to unrealistically large
stresses (and displacements) for decreasing mesh sizes. In the limit where the mesh size tends to
zero, the standard EBE formulation yields a line load in a solid, thus leading to unbounded stresses
near the pile. It is therefore expected that displacements obtained by means of the standard EBE
increase up to values larger than the reference solutions for decreasing mesh sizes lm.

Figure 9 also shows the convergence behavior of the proposed EBE elements with interaction
surface. It is seen that the lateral displacements at the pile head converge to the benchmark solution
with decreasing lm.

Figure 8. Lateral view of the 3D example.
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Figure 9. Pile head lateral displacement, uhead , for (a) H8B2 and (b) H27B2 embedded beam elements
(EBEs).

Figure 10. Normalized results for H8B2 embedded beam elements (EBEs) versus normalized depth: (a)
lateral deflection u, (b) bending moment M , and (c) shear force V .

It is noted that the proposed EBE shows a slightly stiffer behavior than the 3D FEM model,
probably due to the fact that this model accounts for shear strains, whereas the EBE model follows
the Euler-Bernoulli hypothesis.
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Figure 11. Normalized results for H27B2 embedded beam elements (EBEs) versus normalized depth: (a)
lateral deflection u, (b) bending moment M , and (c) shear force V .

Figure 10 and Figure 11 show the normalized EBE model results (i.e., lateral deflection u, bending
moments M , and shear forces V ) for the H8B2 and H27B2 elements, respectively, as a function of
the normalized depth, ´=Dp , together with the benchmark solutions.

It is seen that the standard EBE model yields lateral deflections that do not converge to the bench-
mark solutions. The bending moments and shear forces obtained by means of the standard EBE
model are greater than the ones obtained by means of the 3D FEM model and Randolph’s solution.
This is particularly noticeable for the H27B2 elements, which consider a biquadratic interpolation
for the solid elements and a 2-node beam, as shown in Figure 11.

The proposed EBE formulation shows both bending moments and shear forces that converge to
the reference solutions, with an acceptable degree of accuracy, when mesh sizes tend to the pile
diameter. This is observed for both H8B2 and H27B2 EBEs (Figures 10 and 11), where it is seen
that the results obtained by means of the H27B2 element are in remarkable agreement with the
reference solutions.

In order to assess the convergence rate, a simple relative error norm is defined as:

jjejj D

LpR
0

q�
uref � u

�2
d´

LpR
0

q�
uref

�2
d´

; (22)

where uref is the lateral deflection in the full 3D ABAQUS™ solution for the finer mesh considered
in the analysis, u is the lateral deflection obtained with the proposed EBE formulation, and Lp is
the pile length. Figure 12 shows the error norm for both H8B2 and H27B2 EBEs considering the
standard as well as the proposed formulation.

It is seen that the relative error norm jjejj in the standard EBE formulation does not seem to vanish
as the mesh size tends to the pile diameter for both H8B2 and H27B2 elements. The proposed EBE
formulation, however, shows a relative error norm that essentially vanishes as the mesh size tends
to the pile diameter for both elements considered in the example.

It is observed that the convergence rate is greater for the H27B2 element and that the relative error
norm is smaller for the H27B2 for all mesh sizes considered in the analyses.
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Figure 12. Relative error norm jjejj versus lm. (a) standard embedded beam element (EBE) and
(b) proposed EBE.

5. CONCLUSIONS

This paper presents a new formulation for an EBE with an explicit interaction surface where the
equilibrium of interaction forces and kinematic compatibility between the soil and beam displace-
ment fields are established. Actually, a family of EBE can be derived from the present methodology,
in accordance with the interpolation order adopted for the solid and beam elements.

The kinematics of the beam element (i.e., displacements and rotations), as well as the elemental
interaction forces (i.e., distributed forces and moments) are defined by means of mapping functions
that allow the evaluation of 3D beam displacement vectors, ub, and interaction forces, fb, over the
interaction surface, !. The explicit forms of these mapping functions are given for a vertical pile
with circular cross section. By means of the virtual work principle, the stiffness matrix of the beam
element is written in terms of the solid DOFs. The beam element can thus be directly assembled with
the solid element for soil–structure interaction analyses. The kinematic compatibility between beam
and solid displacement fields is hence established in a weak integral form within the interaction
surface. The numerical performance of the proposed elements is shown through a comparison with
respect to benchmark solutions (i.e., full 3D FEM model and a semi-analytical solution).

Unlike the standard EBE, the proposed EBE formulation express all the beam DOFs (i.e.,
displacements as well as rotations) in terms of solid DOFs. Thus, the final equation system is
expressed exclusively in terms of solid nodal parameters.

A vertical pile subjected to lateral loading is considered in order to validate the proposed formu-
lation and compare the convergence rate of the solution with respect to a previously formulated EBE
methodology. It is seen that the pile head displacements obtained by means of the proposed EBE for-
mulation tends to the benchmark solution as the mesh size is decreased, whereas the standard EBE
results do not, as stresses due to interaction forces are unbounded for decreasing mesh sizes. The
internal forces (i.e., bending moments and shear forces) obtained by means of the proposed formu-
lation are also in reasonable agreement with the benchmark solutions. This agreement is particularly
remarkable for the H27B2 element. The relative error norm jjejj for the proposed EBE formulation
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seems to vanish for decreasing mesh sizes, for both H8B2 and H27B2 elements. As expected, the
convergence rate of the H27B2 element is considerably greater than that of the H8B2 element.

Although results are shown for a single vertical pile embedded into a linear elastic soil, the pro-
posed EBE formulation described in this paper is able to represent the soil–structure interaction
phenomena in a general manner for different kinds of geotechnical problems. In this sense, nonlinear
material behavior for pile, soil, or even interaction forces across the soil–pile interaction surface can
be incorporated into the present model with a minor effort. This is the subject of future contributions
of the authors.

The proposed formulation not only is useful for problems involving lateral loading of piles but
also for any engineering application where beam-type elements (i.e., structural members for which
bending and shear stiffness are relevant) need to be modeled interacting with solid elements.
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