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Boundary Element Method
Analysis of Three-Dimensional
Thermoelastic Fracture Problems
Using the Energy Domain Integral
A boundary element method (BEM) implementation of the energy domain integral (EDI)
methodology for the numerical analysis of three-dimensional fracture problems consid-
ering thermal effects is presented in this paper. The EDI is evaluated from a domain
representation naturally compatible with the BEM, since stresses, strains, temperatures,
and derivatives of displacements and temperatures at internal points can be evaluated
using the appropriate boundary integral equations. Special emphasis is put on the selec-
tion of the auxiliary function that represents the virtual crack advance in the domain
integral. This is found to be a key feature to obtain reliable results at the intersection of
the crack front with free surfaces. Several examples are analyzed to demonstrate the
efficiency and accuracy of the implementation. �DOI: 10.1115/1.2173287�
Introduction
Assessing the engineering integrity and life expectancy of ther-
ally stressed components, either under service conditions or dur-

ng the design stage, requires the determination of fracture param-
ters. Over the years much work has been done to evaluate stress
ntensity factors for these problems, resulting in collections of
esults published in handbook form �1,2�. However, most of these
olutions are restricted to regular cracks in infinite or semi-finite
olids and two-dimensional simple crack geometries. The solution
f complicated three-dimensional crack problems usually requires
uch numerical techniques as the finite element method �FEM�
nd the boundary element method �BEM�.

The attraction of the BEM can be largely attributed to the re-
uction in the dimensionality of the problem; for three-
imensional problems only the surface of the domain needs to be
iscretized �3�. At the same time, and due to the inherent charac-
eristics of its formulation, the BEM provides very accurate results
or problems containing strong geometrical discontinuities. This
akes the BEM a powerful numerical tool for modeling crack

roblems �4�. In particular, thermoelastic BEM formulations have
een presented, among others, by Raveendra and Banerjee �5�,
ukherjee et al. �6�, Prassad et al. �7�, and dell’Erba and Aliabadi

8�.
Evaluation of stress intensity factors using boundary elements

as been done by a variety of methods, such as the extrapolation
f displacements or stress, special crack tip elements, the subtrac-
ion of singularity technique, the strain energy release rate, and
-integral methods �9�. Techniques based on the extrapolation of
isplacements and stresses are easy to implement, but they require
very high level of mesh refinement in order to obtain accurate

esults. Alternating and virtual crack extension methods are also
omputationally expensive, as they require multiple computer
uns to solve the problem. On the other hand, path-independent
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integrals, being an energy approach, eliminate the need to solve
local crack tip fields accurately, since if integration domains are
defined over a relatively large portion of the mesh, an accurate
modeling of the crack tip is unnecessary because the contribution
to J of the crack tip fields is not significant. At the same time, the
BEM is ideally suited for the evaluation of path-independent in-
tegrals, since the required stresses, strains, temperatures, and de-
rivatives of displacements and temperatures can be directly ob-
tained from their boundary integral representations. Using the
BEM, Prasad et al. �7� implemented the J-integral due to Kish-
imoto et al. �10� for the analysis of two-dimensional thermoleastic
problems. Its extension to three dimensions was presented by
dell’Erba and Aliabadi �8� together with a decomposition method
for the computation of the mixed mode stress intensity factors.
Among the available methods for calculating fracture parameters,
the energy domain integral �EDI� �11� has shown to be well-suited
for three-dimensional BEM analysis. Applications of the EDI to
solve three-dimensional crack problems using the BEM have been
reported by Cisilino et al. for elasticity �12�, elastoplasticity �13�,
and fiber-matrix interfaces in composite materials �14�. To de-
velop the domain integral the EDI incorporates an auxiliary func-
tion �, which can be interpreted as a virtual crack front advance.
This makes the EDI similar to the virtual crack extension tech-
nique, but with the advantage that only one computer run is nec-
essary to evaluate the pointwise energy release rate along the
complete crack front. In a recent paper, Cisilino and Ortiz�15�
combined the EDI with the M1-integral methodology, for the
analysis of mixed-mode cracks. In that work special emphasis was
put on the selection of the auxiliary function �. The function �
was found to be a key feature to obtain reliable results at the
intersection of the crack front with free surfaces.

This work presents a BEM formulation of the EDI for the
analysis of three-dimensional cracks in thermally stressed bodies.
To the authors’ knowledge this is the first time the EDI is used for
the analysis of three-dimensional thermoelastic problems using
the BEM. Following dell’Erba and Aliabadi �8� the thermoelastic
problem is solved first by using the dual formulation of the BEM
�the dual boundary element method or DBEM�. The formulation
of the EDI is presented in a straightforward approach, and the
auxiliary function � assimilated to a virtual crack-front extension.
The computation of the EDI is implemented as a postprocessing
technique, and so it can be applied to the results from a particular

model at a later stage. The implementation takes advantage of the
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fficiency of the boundary integral equations to directly obtain the
equired stresses, strains, temperatures, and displacement and tem-
erature derivatives. Two approaches are studied for the selection
f the auxiliary function �, and their results compared and dis-
ussed. Several examples are analyzed to demonstrate the effi-
iency and accuracy of the implementation.

The Energy Domain Integral
Consider a three-dimensional crack front with a continuously

urning tangent as depicted in Fig. 1�a�. Define a local coordinate
ystem x* at position �, where the crack energy release rate is
valuated, given by x1

* normal to the crack front, x2
* normal to the

rack plane, and x3
* tangent to the crack front.

Following Natha and Moran �16�, the energy release rate G���
ue to crack extension in its own plane along a three-dimensional
rack front takes the form �see Fig. 1�a��

G��� = lim
C→0

�k����
C���

�w · �ki − �ij
* uj,k

* �nidC �1�

here w is the strain energy density, �ij
* and uj,k

* are Cartesian
omponents of stress and displacement derivatives expressed in
he local system x* ,�k��� is the unit outward normal to the crack
ront in the local crack plane x1

*−x3
* ,ni is the unit vector normal to

he contour C��� �which lies in the x1
*−x2

* plane�, and dC is the
ifferential of the arc length C. It is worth noting that, although
q. �1� comes from a two-dimensional analysis, it applies for the

hree-dimensional case, as in the limit as C→0, plane strain con-
itions prevail so that three-dimensional fields approach to the
lane problem.

Within the framework of uncoupled thermoelasticity, the strain
s written as the sum of an elastic part �ij

e and a thermal part:

�ij = �ij
e + ���ij �2�

here � is the coefficient of linear thermal expansion and � is
emperature. If we make the additional restriction that thermal
trains are bounded, a definition of w which can be used in Eq. �1�
s:

w��ij,�� =�
0

�ij
m

�ij · d�ij
m �3�

here �ij
m=�ij −���ij are the mechanical strains.

In order to derive the equivalent domain representation of Eq.
1�, we consider a small segment Lc of the crack front that lies in
he local x1

*−x3
* plane as shown in Fig. 1�b�. Next we assume that

he segment undergoes a virtual crack advance in the plane of the
rack, and we define the magnitude of the advance at each point �
s 	a���. Note that 	a��� varies continuously along Lc and it

ig. 1 „a… Definition of the local orthogonal Cartesian coordi-
ates at point � on the crack front. „b… Virtual crack front
dvance.
anishes at each end of the segment. Now let

60 / Vol. 73, NOVEMBER 2006
Ḡ��� =�
LC

G���	a���d� �4�

where G��� is the integral defined in Eq. �1�. Note that while

G��� belongs to the point-wise energy release rate, Ḡ gives the
total energy released when the finite segment Lc undergoes the
virtual crack advance.

The appropriate domain form of the point-wise crack-tip con-
tour integral can be obtained from Eq. �1� by considering a tubular
domain V surrounding the crack segment �see Fig. 2�. As shown in
the figure, the surface St is formed by translating the contour C
along the segment Lc, and So stands for the outer surface of V
including the ends. Next an auxiliary function � is introduced,
which is sufficiently smooth in V and it is defined on the surfaces
of V as follows:

�k = �	a��� · �k��� on St

0 on So
�5�

Finally, in the limit as the tubular surface St is shrunk onto the
crack segment Lc, and after applying the divergence theorem, the
domain integral is obtained:

Ḡ =�
V

����ij
* uj,k

* − w · �ki��k,i + ��ii
*�,k�k��dV �6�

In the evaluation of the energy release rate, the integral given by
Eq. �6� reduces to the domain representation of the familiar

J-integral. A simple relationship between J��� and Ḡ can be ob-

tained if it is assumed that Ḡ is constant along the segment Lc. It
follows directly from Eq. �4� that

J��� =
Ḡ

�
Lc

	a���d�

�7�

Finally, it is worth mentioning that the above derivation of the
EDI assumes the absence of crack face tractions. If present, an
extra term needs to be included in Eq. �6�. For a more compre-
hensive derivation of the EDI the reader is referred to �11�.

3 The Dual Boundary Element Method for
Thermoelasticity

Consider a linear-elastic, isotropic and homogeneous body oc-
cupying a domain 
�X� enclosed by a boundary ��x� as illustrated
in Fig. 3�a�. The two governing equations for steady-state ther-
moelasticity are the Laplace and the Navier equations which can
be written as follows:

Fig. 2 Tubular domain surrounding a segment of the crack
front
�,kk = 0 �8�

Transactions of the ASME
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�ui,j j +
�

�1 − 2
�
uj,ij −

2��1 + 
�
�1 − 2
�

��,i = 0 �9�

here � is the temperature and ui are the displacement compo-
ents, � is the shear modulus, 
 is the Poisson’s ratio, and � is the
oefficient of linear thermal expansion. Equations �8� and �9� are
olved subject to boundary conditions in temperatures �, fluxes q,
isplacements u, and tractions t �see Fig. 3�a��.

The dual boundary integral equations on which the thermoelas-
ic formulation of the DBEM is based are the temperature and the
ux boundary integral equations for the solution of the Laplace
quation, and the displacement and the traction integral equations
or the solution of the Navier equation. The boundary integral
emperature equation relating the boundary temperature ��x� with
he boundary fluxes q�x� can be written as

c�x����x�� −�
�

q*�x�,x���x�d� = −�
�

�*�x�,x�q�x�d� �10�

here c�x�� depends on the local geometry of the boundary sur-
ace at the position of point x�; �*�x� ,x� and q*�x� ,x� are the
emperature and flux fundamental solutions at a boundary point x
ue to a unit source placed at location x�. Expressions for the
undamental solutions �*�x� ,x� and q*�x� ,x� are given in the
ppendix.
Assuming continuity of both temperatures and fluxes at x� on a

mooth boundary, the boundary flux integral equation is obtained
y differentiating Eq. �10�:

c�x��q�x�� − ni�x�� −�
�

�i
**�x�,x�q�x�d� = − ni�x��

=�
�

qi
**�x�,x���x�d� �11�

here ni�x�� denotes the component of the outward unit normal to
he boundary at x�. The symbols −	 and =	 represent integrals evalu-
ted in the Cauchy and Hadamard principal value sense, respec-
ively. Expressions for the kernels �i

**�x� ,x� and qi
**�x� ,x� are

iven in the Appendix.
If Eqs. �10� and �11� are used for collocation on coincident

oints on the crack surfaces �points xc� and xc� in Fig. 3�b�� the
emperature and flux boundary integral equations can be written

Fig. 3 „a… General cracked body with mechanical
zation strategy.
s

ournal of Applied Mechanics
1

2
��xc�� +

1

2
��xc�� −�

�

q*�xc�,x���x�d� = −�
�

�*�xc�,x�q�x�d�

�12�

and

1

2
q�xc�� −

1

2
q�xc�� − ni�xc�� −�

�

�i
**�xc�,x�q�x�d�

= − ni�xc�� =�
�

qi
**�xc�,x���x�d� �13�

where the normal vectors ni�x��=−ni�x�� are assumed on the crack
surface. At the same time it is also assumed that the crack surfaces
at the position xc� and xc� are always smooth. The later assump-
tion makes c�x��= 1 � 2 in Eqs. �10� and �11�.

Similarly to the boundary integral temperature equation, the
displacement boundary integral equation relates the displacements
uj�x� with the boundary tractions tj�x�, temperatures ��x�, and
fluxes q�x�:

cij�x��ui�x�� + −�
�

Tij�x�,x�uj�x�d� −�
�

P̄i�x�,x���x�d�

=�
�

Uij�x�,x�tj�x�d� −�
�

Qi�x�,x�q�x�d� �14�

where Uij�x� ,x� and Tij�x� ,x� are the Kelvin traction and displace-
ment fundamental solutions for elasticity, and Pi�x� ,x� and
Qi�x� ,x� are the fundamental fields that account for the thermal
expansion �see the Appendix�.

Assuming continuity of both strains and tractions at x� on a
smooth boundary, the boundary traction integral equation is ob-
tained by differentiating Eq. �14� and by applying the material

thermal boundary conditions. „b… Crack discreti-
and
constitutive relationships

NOVEMBER 2006, Vol. 73 / 961
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1

2
ti�x�� + nj�x�� =�

�

Tkij�x�,x�uk�x�d� − nj�x�� −�
�

P̄ij�x�,x���x�d�

+
��1 + 
�
�1 − 2
�

�ni�x����x��

=nj�x�� −�
�

Ukij�x�,x�tk�x�d�

− nj�x���
�

Q̄ij�x�,x�q�x�d� �15�

here the kernels Tkij�xc� ,x�, Ukij�xc� ,x�, Pij�xc� ,x�, and Qij�xc� ,x�
ontain derivatives of the fundamental fields in Eq. �14� together
ith elastic constants.
If, as it has been done with their thermal counterparts, Eqs. �14�

nd �15� are used for collocation on coincident points on the crack
urfaces, then the displacement and traction boundary integral
quations can be written as

1

2
ui�xc�� +

1

2
ui�xc�� + −�

�

Tij�x�,x�uj�x�d� −�
�

Pi�x�,x���x�d�

=�
�

Uij�x�,x�tj�x�d� −�
�

Qi�x�,x�q�x�d� �16�

nd

1

2
tj�xc�� −

1

2
tj�xc�� + nj�xc��

=�
�

Tkij�xc�,x�uk�x�d� − nj�xc�� −�
�

Pij�xc�,x���x�d�

+
��1 + 
�
�1 − 2
�

�ni�xc����xc��

= nj�xc�� −�
�

Ukij�xc�,x�tk�x�d� − nj�xc���
�

Qij�xc�,x�q�x�d�

�17�
ollowing dell’Erba and Aliabadi �8�, the general discretization
trategy can be summarized as follows �see Fig. 3�b��:

• Crack surfaces are discretized using eight-node discon-
tinuous quadratilateral elements in order to ensure the
continuity requirements of the field variables for the ex-
istence of the flux and traction equations.

• Continuous elements are used over the remaining model
boundary, except at the intersection of the crack with the
boundary surface. Edge discontinuous elements are em-
ployed in this region in order to avoid common nodes at
the intersection.

• The temperature integral equation �12� and the displace-
ment integral equation �16� are applied for collocation on
one of the crack surfaces.

• The flux integral equation �13� and the traction integral
equation �17� are applied for collocation on the opposite
crack surface.

• The temperature integral equation �10� and the displace-
ment integral equation �14� are applied for collocation on
all other surfaces.

Stresses, Strains, and Displacement and Tempera-
ure Derivatives

4.1 Internal Points. As it has been stated in Sec. 2, the com-

utation of the EDI requires the stress, strain, and temperature

62 / Vol. 73, NOVEMBER 2006
fields, �ij, �ij, and �, and the displacement and temperature de-
rivatives, ui,j and �,k, to be known within the integration volume
V. Although these quantities must be expressed in the local crack-
front coordinate system, in this work, and for the sake of simplic-
ity, they are first computed in the global system and then trans-
formed to the local crack-front coordinate system. Bearing this in
mind, and in order to integrate the computation of the EDI into the
DBEM formulation, derivatives of the displacements at internal
points X� are obtained from their boundary integral representa-
tions. Thus, the integral equations for the displacement and tem-
perature derivatives result from the analytical differentiation of
the internal counterparts of Eqs. �10� and �14�:

�,k�X�� =�
�

q,k
**�X�,x���x�d� −�

�

�,k
**�X�,x�q�x�d� �18�

and

ui,k�X�� = −�
�

Tij,k�X�,x�uj�x�d� +�
�

Pi,k�X�,x���x�d�

+�
�

Uij,k�X�,x�tj�x�d� −�
�

Qi,k�X�x�q�x�d� �19�

where the kernels q,k
**�X� ,x�, �,k

**�X� ,x�, Tij,k�X� ,x�, Uij,k�X� ,x�,
Pi,k�X� ,x�, and Qi,k�X� ,x� are the derivatives of the fundamental
solutions.

Once the displacement derivatives uj,k are known, stresses �ij
and strains �ij are computed using basic continuum mechanics
relationships:

�ij = 1
2 �ui,j + uj,i� + ���ij �20�

�ij =
E

1 + 


�ij +




1 − 2

�kk�ij� −

E

1 − 2

���ij �21�

4.2 Boundary Points. Temperature and displacement deriva-
tives �,k and ui,j at boundary nodes could be obtained from Eqs.
�18� and �19� in a similar way to their internal counterparts, by
taking the limit of Eqs. �18� and �19� as point X� moves to the
boundary, i.e., X�→x�. However, this procedure is computation-
ally expensive because of the occurrence of hypersingular inte-
grands. To avoid this difficulty, stresses and strains, as well as the
displacements and temperatures on the model surface, are evalu-
ated in this work from the boundary displacements, tractions, tem-
peratures, and fluxes following a procedure similar to that used in
FEM computations. Consider with this purpose a local Cartesian
system, �x1

0 ,x2
0 ,x3

0�, such that x3
0 is the unit vector in the normal

direction to the boundary element and x1
0 and x2

0 are unit vectors
which define the local tangential plane. If �ij

0 and tj
0 are stresses

and tractions in the local system, stress components in the normal
direction can be written as

�i3
0 = ti

0 �22�

The remaining stress tensor components, �11
0 , �12

0 , and �22
0 can be

expressed in terms of t3
0 and the tangential strain tensor compo-

nents �11
0 , �12

0 , and �22
0 , by eliminating �33

0 from the general ex-
pression of Hooke’s law. Thus,

�11
0 =

1

1 − 

�
t3

0 + 2���11
0 + 
�22

0 � − �1 + 
����

�22
0 =

1

1 − 

�
t3

0 + 2���22
0 + 
�11

0 � − �1 + 
����

�12
0 = 2��12

0 �23�

Strain components �ij
0 can be obtained using Eq. �20�, now applied
in the local coordinate system. It is worth nothing that displace-

Transactions of the ASME
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ent derivatives in Eq. �20� are initially evaluated in the intrinsic
lement directions ��1 ,�2� and then converted to the local coordi-
ate system x0 since, as usual in the BEM, boundary displace-
ents are approximated in terms of the piecewise parametric rep-

esentation �shape functions� of intrinsic coordinates:

ui��1,�2� = �
n=1

8

�n��1,�2�ui
n �24�

here �n are the shape functions and ui
n are the nodal values of

he displacements.
From �24� it follows

�ui

�� j
= �

n=1

8
��n

�� j
ui

n �25�

inally, the derivatives of the displacements in the global system
re computed. Using chain differentiation, derivatives of the dis-
lacements in the global system, ui,m, can be related to the deriva-
ives of the displacements in the intrinsic boundary element direc-
ions, �ui /�� j, as follows:

�ui

�� j
=

�ui

�xm

�xm

�� j
�26�

here �xm /�� j is the Jacobian matrix of the transformation. The
ine components of the displacement derivatives ui,m can be re-
rieved by solving for each case a system of equations constructed
sing expressions �26�. For further details the reader is referred to
he works by Cisilino et al. �12,13,15�.

A similar procedure can be employed for the computation of the
emperature derivatives on the model boundary.

Boundary Element Implementation

5.1 Energy Domain Integral Evaluation. As it has been
tated in Sec. 2, Eq. �6� allows computation of the J-integral at
ny position � on the crack front. This requires the evaluation of
volume integral within domains that enclose a segment of the

rack front Lc. A natural choice here is to make � coincident with
he element nodes on the crack front, while Lc is taken as the
lement or element sides at which points � lies �see Fig. 4�.

The portion of the model domain in which the volume integrals
re evaluated is discretized using 20-node isoparametric �brick�
ells, over which stresses, strains, and displacements and tempera-
ure derivatives are approximated by products of the cell interpo-
ation functions, �n, and the nodal values of �ij, �ij, uij, and �,k.
odal values of these variables are computed following the pro-

edures introduced in Secs. 4.1 and 4.2 depending on whether the
ode is internal or it lies on the model boundary. Volume discreti-

Fig. 4 Schematic of the volume cel
the virtual crack extensions for a co
node
ation is designed to have a web-style geometry around the crack

ournal of Applied Mechanics
front, while the integration volumes are taken coincident with
different rings of cells. This is illustrated for an example in Fig. 5,
where one of the model faces has been removed to show the crack
and the integration domains.

As depicted in Fig. 4, three different cases need to be consid-
ered, depending on whether the node of interest M is in the middle
of an element side �mid-node�, it is shared by two elements �cor-

n the crack front region illustrating
er node, a mid-node, and a surface
ls i
rn
Fig. 5 Boundary element discretization and integration cells

NOVEMBER 2006, Vol. 73 / 963
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er node�, or it is located coincident with the external surface
surface node�. If the node M is a mid-node or surface node, Lc
the segment of the crack front over which the J-integral is com-
uted� spans over one element, connecting nodes M −1, M, and
+1 and nodes M −2, M −1, and M, respectively. On the other

and, if M is a corner node, Lc spans over two elements, connect-
ng nodes from M −2 to M +2.

The function � is used to specify the virtual crack extension.
or the sake of simplicity the direction of the crack extension is

aken constant along Lc and coincident with the three orthogonal
ocal directions defined at � �see Fig. 1�a��. Consistent with the
soparametric formulation, � is given by

�k = �
i=1

20

�i�k
i �27�

here �i are the cell interpolation functions and �k
i are the nodal

alues for the ith node. From the definition of � �see Eq. �5��,
k
i =0 if the ith node is on S0 �the outer surface of the integration
omain� and �k

i �0 for the nodes on Lc. In particular �k
i =1 for the

ode at � �nodes labeled M in Fig. 4�. Different criteria for speci-
ying �k

i for the other nodes Lc and for the nodes inside the inte-
ration domain V are discussed in next section.

Following standard manipulations

�k,j = �
i=1

20

�
i=1

3
���

�n

��n

�xj
�k

i �28�

here �n are the coordinates in the cell isoparametric space.
If Gaussian integration is used, the discretized form of Eq. �6�

s given by

G = �
cells in V

�
p=1

m 
���ij
* uj,k

* − w · �ki��k,i + ��ii
*�,k�k�det
 �xj

��k
��

p

wp

�29�

here m is the number of Gaussian points per cell and wp are the
eighting factors.

5.2 The �-Function. Since the virtual crack advance can
dopt any arbitrary shape, the only requirement for the function �
s to be sufficiently smooth within the integration volume V as the
valuation of the EDI requires of its differentiation. Although Shih
t al. �11� have shown that the EDI is insensitive to the assumed
hape of the � function, it has been found in a recent work by one
f the authors of this paper �15� that the shape of the function �
ould be relevant for the performance of the EDI computations. In
his sense two different approaches for the shape of the function f
re investigated.

5.2.1 Bi-quadratic �. The bi-quadratic definition of � has
een employed with excellent results in the computation of EDI in
revious works by Cisilino et al. �12–14�. Within this approach �
s defined to vary quadratically in the directions tangential and
ormal to the crack front. Considering that � is at the middle of
he crack front segment Lc, and that r0 is the radius of the inte-
ration domain, the function � is written as:

��x� = �1 − 
 x3

Lc/2
�2� · 
1 − 
 r

r0
�2� �30�

here r is the distance from the crack front in the x1
*−x2

* plane as
epicted in Fig. 1.

5.2.2 Optimized �. Saliva et al. �17� proposed an optimum
hape for the function �, which under certain considerations en-
ures the convergence of the EDI computations. The proposed

unction is
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��x� =
wp�x�−�

wp�x�−� + �
i=1

N

wj
np�x − zi�−�

�31�

where wp, wnp, and � are parameters to be chosen, and zi are the
positions of the N points with null prescribed values of �. These
are given in this work by the N cell-nodes located on S0, the outer
surface of the integration volume V.

Using parameters wp, wnp, and �, it is possible to control the
shape of � and consequently the parts of the domain with the most
significant contribution to the integral in Eq. �6�. In particular � is
associated with the smoothness of �. Greater values induce ap-
proximately null gradients around the crack front, where non-null
values of � are prescribed. In contrast, the field undergoes abrupt
changes outside these regions. With wp and wnp, the region with
non-null gradients can be translated near the crack front or near
the boundary of the integration volume where null values of � are
prescribed. Figure 6 illustrates the influence of the parameters as a
function of the normalized distance r /r0.

It is important to mention here that the previous works which
made use of the optimized �, Refs. �15,17�, were devoted to the
solution of linear elastic crack problems without the presence of
body loads. Under these circumstances, the second term of the
integral in Eq. �6�, the term which accounts for body loads �ther-
mal loads in our case�, vanishes. The key feature for the excellent
performance of the optimized � for problems without body loads
can be attributed to the behavior of � in the crack tip vicinity.
Note that for the optimized definition of �, the gradient �,i is zero
in the vicinity of the crack front �see Fig. 6�, resulting in that the
contribution to G of the crack front fields is not significant. As a
consequence, the zone of the integration domain with the lowest
accuracy in the results has a marginal contribution to the value of
G.

The formulation of the EDI for thermoelastic problems includes
a term to account for the thermal loads �see Eq. �6��. Note that
since this term is multiplied by �, the justification given in the
previous paragraph for the excellent performance of the optimized
� is not longer valid. However, and as it will be shown in the
following sections, the shape of � still contributes to the accuracy
of the EDI computations.

6 Examples

6.1 Edge Crack in a Thin Panel Subjected to a Linear
Thermal Field. An example with two-dimensional characteristics

Fig. 6 Influence of parameters wp, wnp, and � on the shape of
function � „one-dimensional case…
is proposed for the first example. It consists of an edge-cracked
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hin panel illustrated in Fig. 7�a�. The crack length is a=10 mm,
nd the specimen dimensions W=2a, L=W, and t=a /10. Material
roperties are Young modulus E=1000 N/mm2, Poisson ratio 

0.3, coefficient of thermal expansion a=10−5 / °C, and thermal
onductivity �=1 W/ °C·mm. The specimen is subjected to a lin-
ar temperature variation throughout the width W, with zero tem-
erature at mid-width, and temperatures �0= ±100°C at the right
nd left edges, respectively �see Fig. 7�a��. Crack surfaces are
solated. Displacement boundary conditions at the panel ends are
llustrated in Fig. 7�a�. Lateral faces of the specimen �z= ± t /2� are
solated and their normal displacements are restricted in order to
imulate the plane strain condition.

Model discretization follows the same pattern of that illustrated
n Fig. 5, but with only one element in the direction of the speci-

en thickness. Two meshes are considered: a “coarse” mesh con-
isting of 242 elements and 899 nodes, and a “fine” mesh consist-
ng of 374 elements and 1319 nodes. Seven rings of internal cells
ith radii ranging from 5% to 75% of the crack length are con-

tructed around the crack tip for the J computations. For the so-
alled coarse mesh, 60 cells and 526 nodes are used. On the other
and, 116 cells and 958 nodes are used for the fine mesh. The
i-quadratic definition of the function � is used for the solution of
his problem.

Obtained results for the two discretizations are reported in
ables 1 and 2 in terms of normalized mode-I stress intensity

ig. 7 Geometry, dimensions, and boundary conditions for
he edge and center cracked specimens

Table 1 Normalized K results KI
*=KI /��

�a� for th

r /a

0.05 0.09 0.15 0.225
urface 0.534 0.527 0.525 0.525
% 5.95 4.56 4.17 4.17

nterior 0.538 0.529 0.527 0.526
% 6.75 4.96 4.56 4.37

Table 2 Normalized K results KI
*=KI /��

�a� for

r /a

0.05 0.09 0.15 0.225
urface 0.482 0.497 0.501 0.501
% −4.37 −1.39 −0.60 −0.60

nterior 0.489 0.5 0.502 0.502
% −2.98 −0.79 −0.40 −0.40
ournal of Applied Mechanics
factor KI
*. Stress intensity factors were computed from J results

via the well-known expression KI=�J ·E / �1−
2� and later nor-
malized using KI

*=KI /��
��a. The symbol ��=�E�0 / �1−
�

stands for the exact solution for the thermal stress in the
y-direction at the right edge of an uncraked specimen. Results are
reported for crack front points located on the specimen surface
and on its mid-plane, and they are compared to the solution re-
ported by Wilson and Yu �18� who solved the problem using finite
elements. Differences between computed results and the reference
solution are denoted as 	%.

Tables 1 and 2 show the improvement of the results with the
refinement of the model discretization. While for the coarse mesh
the differences between the computed results and the reference
value are close to 5%, they drop to less than 1% for the fine mesh.
The only exception is the results obtained for the smallest integra-
tion domain �r /a=0.05� which is defined using only one ring of
cells. It is also worth noting the excellent agreement between the
interior and surface values and the independence of the results
with the integration path. The overall performance of the imple-
mented algorithm is found to be very good, with an accuracy level
similar to other applications of the EDI �12–14�. As usual when
dealing with J-integral computations, the most accurate results are
obtained for integration paths defined over a relatively large por-
tion of the mesh.

6.2 Thin Panel With a Central Crack Subjected to a Ther-
mal Field. The second example consists in a center-cracked thin
panel in plane strain condition. The model geometry is the same
of the first example, but with the addition of the symmetry con-
ditions �both thermal and displacement� at x=0 �see Fig. 7�b��.
The thermal field is given as follows: temperature for crack sur-
faces are �0=0°C while the temperatures for all the surfaces per-
pendicular to the x-y plane �x=W, y=0 and y=2L� are �1
=100°C. As in the previous example, the lateral faces of the
model are isolated and their normal displacements restricted in
order to simulate the plane strain condition.

Normalized stress intensity factor results KI
*=KI /�E��1

−�0��W are reported in Table 3 and compared to those reported
by Murikami et al. �1�. All results were computed using the fine
discretization and the bi-quadratic �. As in the previous example
K results are reported for crack front points located on the speci-
men surface and on the mid-plane. Excellent agreement is ob-
tained between the computed and the reference results, with a
difference less than 2% for all the integration domains.

6.3 Penny-Shaped Crack in a Cylindrical Bar Subjected to
a Thermal Field. A bar of circular cross section containing an
embedded penny-shaped crack is analyzed in this example �see

dge crack in a thin panel „coarse discretization…

Average Ref. �18�

0.338 0.50 0.75
0.526 0.528 0.529 0.528 0.504
4.37 4.76 4.96 4.71

¯

0.528 0.53 0.532 0.530 0.504
4.76 5.16 5.56 5.16

¯

edge crack in a thin panel „fine discretization…

Average Ref. �18�

0.338 0.50 0.75
0.502 0.502 0.502 0.498 0.504
−0.40 −0.40 −0.40 −1.16 ¯

0.503 0.503 0.503 0.500 0.504
−0.20 −0.20 −0.20 −0.74 ¯
e e
the
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ig. 8�a��. The crack of radius a=1 mm is located in the center of
he bar, in a plane perpendicular to the axis of the bar. In order to
ssimilate the problem to that of a penny-shaped crack embedded
n an infinite body, the dimensions R /a=10 and H /R=6 are cho-
en. The temperature of the crack surfaces is set �0=0°C while
or all the surfaces of the cylinder �1=100°C. The boundary ele-
ent mesh consists of 1434 nodes and 224 elements. The crack is

iscretized using 152 elements. Three rings of cells with radii
/a=0.2, 0.35, and 0.50 are used for the J computations. With this
urpose 832 cells are employed. Material properties are adopted
he same as the previous examples. The bar is allowed to expand
reely.

Normalized K results KI
*=KI / ��E�0

�a� / �1−
�� calculated
long the crack front using the bi-quadratic � are reported in Table
. Also included in Table 4 is the analytical solution due to Das
19� for comparison. Since the K result is constant along the crack
ront, results in Table 4 are reported only for a few positions.
able 4 shows that the EDI results deviate less than 3% from the
eference solution, which is considered acceptable for the mesh
sed. No attempt was made to refine the mesh.

6.4 Circular Bar With an Annular Crack Subjected to a
hermal Field. The problem of an annular crack in a circular bar

s considered in this example �see Fig. 8�b��. The crack is situated
t the bar mid-length, on a plane perpendicular to its axis. Model
imensions are crack depth a=20 mm, cylinder radius R /a=2.5,
nd cylinder height H /R=12. The thermal field is given by tem-
eratures �0=−50°C on the crack surfaces and �1=0°C on the
op and the bottom ends of the cylinder. The lateral surface of the
ylinder is isolated. The boundary element discretization consists
f 1970 nodes and 328 elements, 192 of which are used for the
rack faces. Three rings of cells with radii r /a=0.2, 0.35, and 0.50
re used for the J computations. Axial displacements are restricted
or the top and bottom ends of the cylinder.

The picture in Fig. 8�c� illustrates boundary element mesh in

Table 3 Normalized K results KI
*=KI /�E„�1−�0…

�W fo

r /a

0.05 0.09 0.15 0.225
urface 0.497 0.489 0.487 0.486
% 0.40 −1.21 −1.62 −1.82

nterior 0.497 0.489 0.487 0.486
% 0.40 −1.21 −1.62 −1.82

Fig. 8 Geometry, dimensions, crac

tions for the penny-shaped and annular

66 / Vol. 73, NOVEMBER 2006
the deformed configuration. Some of the elements in the lateral
surface of the cylinder have been removed in order to see the
crack discretization. Obtained results using the bi-quadratic � are
presented in Table 5 in terms of the normalized stress intensity
factors KI

*=KI / ��E�0
�a�� for a number of positions along the

crack front. Although there is not reference solution available for
comparison, the independence of the results with the integration
path can be verified. Thus, the last column in Table 5 reports the
maximum deviation of the results with respect to the average
value. Maximum deviation is always less than 1%.

6.5 Edge Crack in a Thick Panel Subjected to a Linear
Thermal Field. This example consists of a problem with three-
dimensional characteristics for which the variation of J along the
crack front is studied. The problem loading and geometry are the
same as that of the example studied in Sec. 6.1, but considering
now a panel of length 2L=6W and thickness t=3a. Since the
problem is symmetric with respect to the plane z=−t /2 �see Fig.
7�a��, only one half of its geometry is modeled. The devised
boundary element discretization consists of 292 elements and
1351 nodes. Six elements are placed along the crack front and a
total of 35 elements are used in the crack discretization. Crack
front elements are graded towards the free surface, the smallest
one being equal to t /32 �see Fig. 5�. Four rings of cells with radii
r /a=0.2, 0.35, 0.5, and 0.75 are accommodated around the crack
front for J computations. With this purpose 480 cells and 2302
nodes are employed.

J-integral values are computed using the two approaches intro-
duced in Sec. 5 for the specification of �. Afterwards, K-values
are calculated from J results using KI=�J ·E / �1−
2�, and later
normalized by doing KI

*=KI /�E�0
�W. Results for the bi-

quadratic definition of � are plotted in Fig. 9�a�, while results
obtained using optimized � are plotted in Fig. 9�b�. Following
Ortiz and Cisilino �14� the values of the parameters for the opti-

he edge crack in a thin panel „coarse discretization…

Average Ref. �1�

0.338 0.50 0.75
0.486 0.486 0.496 0.490 0.495
−1.82 −1.82 0.20 −1.10 ¯

0.486 0.486 0.496 0.490 0.495
−1.82 −1.82 0.20 −1.10 ¯

iscretization, and boundary condi-
r t
k d

cracks
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ized � are chosen as wp=6, wnp=1, and �=6. Error bars in the
lots indicate the maximum deviation for the results obtained us-
ng the different integration domains. Reference values in the
lots are those reported by dell’Erba et al. �8� using COD com-
utations from BEM results. In the region near the symmetry
lane, z / t=0, a plane strain condition is expected, and thus the
esult by Wilson and Yu �18� for two-dimensional analysis is also
ncluded for comparison.

Both approaches for � provide results within a 4% error with
espect to the plane strain solution at the position of the symmetry
lane, z / t=0. For positions along the crack front located in the
nterior of the specimen, results computed using the bi-quadratic

show a more stable and robust behavior than those obtained
sing the optimized �. On the other hand, the optimized � results
re more reliable for the computations in the region of the crack
ront near to the free surface. Note that in such a case K values
omputed using the optimized � are almost independent of the
ntegration domains, while those computed using the optimized �
xhibit a relatively large dispersion. Finally, it is worth mention-
ng that results obtained using both approaches for � are always
igher than those reported by dell’Erba et al. �8� and closer to the
lane strain solution. Both sets of results, those computed in this
ork and those reported by dell’Erba et al. �8�, tend to the same
alue at the free surface.

6.6 Thick Panel With a Central Crack Subjected to Ther-
al Field. The last example consists of a thick panel with a

entral crack. Model geometry and boundary conditions are the
ame as that illustrated in Fig. 8�b� and used in the example in
ec. 6.2, but with the specimen the thickness increased to t=3a.
ollowing the previous example, the J-integral and their corre-
ponding K-values are computed along the crack front. Model
iscretization is the same as used in the previous example. Appro-
riate displacement boundary conditions are set in order to ac-
ount for the symmetry conditions.

Normalized K-results KI
*=KI /�E��1−�0��W are reported in

igs. 10�a� and 10�b� for the bi-quadratic and optimized �, re-
pectively. Parameters for the optimized � are chosen as wp=6,

able 4 Normalized K results KI
*=KI / „�E�0

�a /�„1−�…… for the
enny-shaped crack in a cylindrical bar

/2� r /a Average Ref. �19� 	%

0.20 0.35 0.50
.000 0.9580 0.9730 0.9779 0.9696 0.9418 2.95
.125 0.9573 0.9720 0.9762 0.9685 0.9418 2.83
.250 0.9575 0.9721 0.9764 0.9687 0.9418 2.85
.375 0.9575 0.9720 0.9763 0.9686 0.9418 2.84
.500 0.9576 0.9722 0.9764 0.9687 0.9418 2.86
.625 0.9577 0.9722 0.9764 0.9688 0.9418 2.86
.750 0.9576 0.9721 0.9764 0.9687 0.9418 2.85
.875 0.9576 0.9721 0.9764 0.9687 0.9418 2.85

able 5 Normalized K results KI
*=KI / „�E�0

�a /�… for the
enny-shaped crack in a cylinderical bar

/2� r /a Average Maximum deviation %

0.20 0.35 0.50
,000 0,164 0,166 0,166 0,166 0,618
,104 0,166 0,168 0,168 0,167 0,605
,208 0,165 0,167 0,167 0,166 0,872
,313 0,166 0,168 0,168 0,167 0,604
,417 0,165 0,167 0,167 0,166 0,872
,521 0,166 0,168 0,168 0,167 0,605
,625 0,165 0,167 0,167 0,166 0,872
,729 0,166 0,168 0,168 0,167 0,605
,833 0,165 0,167 0,167 0,166 0,872
,938 0,166 0,168 0,168 0,167 0,604
ournal of Applied Mechanics
wnp=1, and �=6. As for the previous example, error bars indicate
the maximum deviation in the results with respect to the integra-
tion domains.

Computed results show the same general behavior of the previ-
ous example: both approaches for � provide results very close to
the plane strain solution for the symmetry plane �position z / t=0�,
the bi-quadratic � behaves more stable and robust than the opti-
mized � in the interior of the specimen, and the optimized �
results are more appropriate for the computations on the free sur-
face. At this point it is worth noting that although both approaches
result in the same K-value at the free surface �see Fig. 10�, those
computed using the bi-quadratic � possess nearly 20% dispersion,
while for the optimized � the dispersion is only 3%.

7 Conclusions
A three-dimensional dual boundary element method formula-

tion of the energy domain integral for the numerical analysis of

Fig. 9 Normalized mode I stress intensity factor along the
crack front for the edge crack in a thick panel: „a… results using
bi-quadratic � and „b… results using optimized �
thermoelastic fracture problems has been presented in this paper.

NOVEMBER 2006, Vol. 73 / 967
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he proposed formulation has been implemented as a post-
rocessing technique, and so it can be applied to the results from
particular model at a later stage. The implementation takes ad-

antage of the efficiency of the boundary integral equations to
irectly obtain the required stress, strains, temperatures, and dis-
lacement and temperature derivatives. A number of examples
ave been solved to demonstrate the efficiency and accuracy of
he proposed formulation. Obtained results are accurate and in
ood agreement with other results reported in the literature.

Special emphasis has been put on the appropriate selection of
he auxiliary function � present in the domain integral formula-
ion. In this sense two approaches have been considered: a bi-
uadratic variation and an optimized approach proposed in the
aper by Saliva et al. �17�.

It has been found that the function � constitutes a key feature
or the performance of the proposed methodology. Obtained re-
ults show that the optimized � performs markedly better for the
oint located at the intersection of the crack front with the free

ig. 10 Normalized mode I stress intensity factor along the
rack front for the central crack in a thick panel: „a… results
sing bi-quadratic � and „b… results using optimized �
urface, allowing obtaining reliable J results where the bi-

68 / Vol. 73, NOVEMBER 2006
quadratic � fails. On the other hand, for crack front positions
located in the interior of the specimen both approaches allow
computing accurate J results, however the bi-quadratic � presents
a more robust behavior. These behaviors for the two definitions of
� are the same as those reported in a recent paper by one of the
authors of this work �15� when dealing with the application of the
EDI to linear elastic crack problems without the presence of body
loads.
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Appendix
In this appendix the fundamental solutions for the implementa-

tion of the thermoelastic formulation of the dual boundary ele-
ment method are provided. In what follows the symbol r stands
for the distance from the field point xto the source point x�:

r�x�,x� = �x − x�� �A1�

The notation r,k indicates the derivative at the source point, i.e.,

�r

�xk
= − r,k �A2�

The fundamental solutions in the temperature Eq. �10� are

�*�x�,x� =
− 1

4�r
�A3�

q*�x�,x� = �
r,knk

4�r2 �A4�

The fundamental solutions for the flux Eq. �11� can be found after
the differentiation of the solutions �A3� and �A4� to yield

�i
**�x�,x� =

�

4�r2r,i �A5�

qi
**�x�,x� =

�

4�r3 �3r,ir,knk − ni� �A6�

The fundamental solutions in the displacement Eq. �14� are given
by

Tij�x�,x� =
− 1

8��1 − 
�r2� �r

�n
��1 − 2
��ij + 3r,ir,j�

− �1 − 2
��njr,i − nir,j�� �A7�

Uij�x�,x� =
− 1

16��1 − 
��r
��3 − 4
��ij + r,ir,j� �A8�

P̄i�x�,x� =
��1 + 
�

8��1 − 
�r
ni −
�r

�n
r,i� �A9�

Q̄i�x�,x� =
��1 + 
�

8��1 − 
�
r,i �A10�

The fundamental solutions in the traction equation �15� are ob-
tained by material constitutive relationships. This procedure re-

sults in
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Tkij�x�,x� =
�

4��1 − 
�r3�3
�r

�n
��1 − 2
��ijr,k + 
��ijr,k + � jkr,i

− 5r,ir,jr,k�� + 3
�nir,jr,k + njr,ir,k�

+ �1 − 2
��3nkr,ir,j + nk�ij + ni� jk�− �1 − 4
�nk�ij�
�A11�

Ukij�x�,x� =
1

8��1 − 
�r2 ��1 − 2
���ikr,j + � jkr,i − �ijr,k� + 3r,ir,jr,k�

�A12�

P̄ij�x�,x� = 4
���1 + 
�

8��1 − 
�r2�nkr,k
 �ij

1 − 2

− 3r,ir,j� + nir,j + njr,i�

�A13�

Q̄i�x�,x� = 4
���1 + 
�
8��1 − 
�r
r,ir,j −

�ij

1 − 2

� �A14�
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