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Abstract. We calculate the maximal Lyapunov exponent, the generalized entropies, the asymptotic dis-
tance between nearby trajectories and the fractal dimensions for a finite two-dimensional system at different
initial excitation energies. We show that these quantities have a maximum at about the same excitation
energy. The presence of this maximum indicates the transition from a chaotic regime to a more regular one.
In the chaotic regime the system is composed mainly of a liquid drop while the regular one corresponds to
almost freely flowing particles and small clusters. At the transitional excitation energy the fractal dimen-
sions are similar to those estimated from the Fisher model for a liquid-gas phase transition at the critical
point.

PACS. 25.70.Mn Projectile and target fragmentation – 05.45.-a Nonlinear dynamics and nonlinear dy-
namical systems – 05.70.Jk Critical point phenomena

Introduction

Infinite systems composed of particles interacting with a
potential which displays short-range repulsion plus longer-
range attraction have an Equation Of State (EOS) re-
sembling the Van der Waals one [1], which exhibits phase
transitions from solid to liquid, liquid to gas, etc. The fea-
tures of the EOS of such a system are quite independent
of the specific form of the two-body potential, i.e. a sum
of Yukawa’s or Lennard-Jones potential etc. A problem
arises when the system is constituted of a finite number
of particles N and it is not confined in a box. In such a
limit, it is not strictly correct to define a critical point,
on the other hand, it becomes very interesting to ana-
lyze how the system behaves as a function of its excita-
tion energy. Intuitively, we expect that at low excitation
energies a transition, from solid-like state to liquid-like
state, for a finite system should be very similar to the
infinite case limit [2]. This is so because at these low en-
ergies the attractive part of the potential is dominant and
the system remains confined in a given, self-sustained vol-
ume. One of the most important magnitudes that one can
study is the caloric curve, i.e., the functional relationship
between the temperature of the system and the excita-
tion energy. If a finite system is ananlyzed in the frame
of the canonical ensemble, the caloric curve displays the
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standard “rise-plateau-rise” pattern. On the other hand,
in the frame of the microcanonical ensemble a backbend-
ing is displayed and thus a negative specific heat can be
found [3–6]. At higher excitation energies the system is
unable to remain confined and undergoes a fragmentation
process. This kind of process is characterized by the ap-
pearance of a new degree of freedom, the one associated
with the collective expansion. In this case, it has been
found that many features of a thermodynamical liquid-gas
transition are reproduced even if the system is as small as
being formed by just 100 particles [5,6]. These features
are mainly deduced from the analysis of asymptotic mass
distributions and in particular one finds a power law in
the mass yield for a given initial excitation energy. There
have been also estimates of the critical exponents from
data in nucleus-nucleus and cluster-cluster collisions [7,8].
On the other hand, the corresponding caloric curve does
not show the usual increase in the temperature of the so-
called “vapor branch” with the increase of the excitation
energy, but instead a plateau is reached as the system
enters the fragmentation regime [6,9]. In this case, the
above-mentioned backbending is found, which results in
a negative specific heat [10,11]. The Maximal Lyapunov
Exponent (MLE) has been studied in Classical Molecular
Dynamics (CMD) for a 3-dimensional system composed of
100 particles and for different initial excitation energies.
In [12] a maximum in the MLE was found for an initial ex-
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citation energy where a power law in the mass yield, inter-
mittency signal, largest variance in the size of the biggest
fragment [5,13,14] are also obtained. It is the purpose of
this work to strengthen and better characterize this result
by analyzing the behavior of other important indicators
of chaoticity, i.e. the asymptotic distance between trajec-
tories [15,16], the Generalized Renyi’s Entropies (GRE)
and the generalized fractal dimensions [17].

In sect. 1 we describe the model we used to perform
our numerical simulations. In sect. 2 we recall previous
results regarding the properties of the caloric curve of
isotropically excited disks that undergo fragmentation, we
take advantage of this results to emphasize the role played
by the collective expansion. In sect. 3 we focus on what
we call the Global Maximum Lyapunov exponent and the
asymptotic maximal distance d∞ . In particular, we fo-
cus on the competition between the collective expansion
(ordered motion) and inter-particle collisions (chaotic mo-
tion). In sect. 4 we analyze the behavior of the generalized
entropies and fractal dimensions as a function of the exci-
tation energy of the fragmenting system. Finally, we draw
conclusions.

1 The model

As stated in the Introduction, we study the fragmenta-
tion of two-dimensional excited Lennard-Jones disks. The
two-body interaction potential is taken as the truncated
Lennard-Jones (6-12) potential:

V (r) = 4ε
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We took the cut-off radius as rc = 3σ. Energy and dis-
tance are measured in units of the potential well (ε) and
the distance at which the potential changes sign (σ), re-
spectively. The unit of time used is: t0 =

√
σ2m/48ε. We

used the well-known Verlet algorithm (which conserves
volumes in phase space) to integrate the classical equa-
tions of motion [18] taking tint = 0.001t0 as the integra-
tion time step. This led to energy being conserved approx-
imately as one part per million.

We performed explosions of N = 100 particles, two-
dimensional disks. The initial configurations are con-
structed by cutting a circular disk from a thermalized,
periodic, Lennard-Jones system with N = 256 particles in
each periodic cell. The degree of excitation can be easily
controlled in this way by varying the density and temper-
ature of the periodic system. The initial states of our disks
are macroscopically characterized by their energy and den-
sity (taken as that of the periodic system). We studied a
broad energy range which encompasses very different be-
haviors regarding the fragmentation pattern. In fact, the
resulting asymptotic mass spectra go from “U” shaped, for
low excitation energies, to exponentially decaying, for the
higher excitation energies. In between these two extremes
a power-law–like spectra can be detected.

2 The caloric curve of finite systems

We define the caloric curve of finite systems as the func-
tional relationship between the temperature at which the
system fragments and its excitation energy. This problem
involves the determination of the time at which the sys-
tem fragments and the calculation of the corresponding
temperatures at this time. Such a calculation has been
undertaken in ref. [9] and here we briefly summarize the
methods used and quote the main results.

The determination of the time of fragment formation
is related to our ability to detect fragments for a given set
of numerical simulations of fragmenting events. In a series
of papers one of us has undertaken the analysis of different
algorithms and developed what has been dubbed as the
Early Cluster Formation Model (ECFM). Following [19],
clusters are defined as the Most Bound Partition (MBP)
of the system, i.e. the set of clusters {Ci} for which the
sum of the fragment internal energies attains its minimum
value. Then the magnitude that is to be minimized is

ECi

int =
∑

i


 ∑

j∈Ci

Kc.m.
j +

∑
j,k∈Ci

j≤k

Vjk


 , (2)

where the first sum in (2) is over the elements of the
partition {Ci}, Kc.m.

j is the kinetic energy of particle j
measured in the center-of-mass frame of the cluster which
contains particle j, and Vjk stands for the inter-particle
potential of particles j and k, both beloging to the cluster
under consideration. As it can be seen, the calculation is
a highly self-consistent one. On the one hand, the poten-
tial energy term in eq. (2) favors the presence of large and
compact clusters, taking advantage of spatial correlations.
On the other hand, the kinetic term is responsible for the
appearance of clusters with a certain degree of correla-
tions in momentum space. MBP clusters, being built as a
result of this trade-off, are related with what is known as
the most bound density fluctuation in phase space [19].

The algorithm developed to find the MBP is known
as “Early Cluster Recognition Algorithm” (ECRA), it al-
lowed to discover that highly excited drops fragment very
early in the evolution, that this fragmentation takes place
in phase space and that the fragments are formed before
they can be recognized in configuration space. This ap-
proach has been used in many other studies of fragmenta-
tion dynamics [9,19–21]. ECRA searches for most bound
density fluctuations in coordinate and momentum space,
thus some valuable information about the system coordi-
nate and velocity correlations at all times, specially at the
very early stages of the evolution, can be extracted.

Once the fragments are detected at all times using
the above-mentioned fragment recognition algorithms, one
has to detect the time at which the fragmentation process
is over. We call this time, the time of fragment forma-
tion τff . We define it as that time at which the system
has already broken up in pieces of different sizes and after
which the resulting fragments only undergo simple evapo-
ration processes, i.e. the fragments might evaporate a few
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Fig. 1. Caloric curve for 2D Lennard-Jones disks. The tran-
sition from solid-like to liquid-like takes place in the region
delimited by vertical dotted lines. The fragmentation region
is to the right of the dashed vertical line. Full circles denote
results from equilibrium calculations. Full squares denote the
temperature of the fragmenting system at fragmentation time.
Full diamonds stand for the mean temperature of fragments
with mass bigger than 14 at asymptotic times.

monomers. For the estimation of τff , it is then important
to quantitatively measure the degree of similitude between
any two given partitions belonging to the same evolution
and corresponding to different times. We use the micro-
scopic persistence coefficient P [9] to perform that task.

Given X ≡ {Ci} and Y ≡ {C ′
i}, two different parti-

tions, we define:

P [X,Y ] =
1∑
cl ni

∑
cl

ni
ai

bi
, (3)

where bi is the number of pairs of particles in the cluster
Ci of partition X, ai is the number of pairs of particles
that belong to cluster Ci and also are together in a given
cluster C ′

j of partition Y , ni is the number of particles
in cluster Ci. The persistence coefficient is equal to one if
the microscopic composition of the partition X equals the
one of partition Y . On the other hand, it tends to zero
when none of the constituent particles of a given cluster
in X appear together in any given cluster in Y . From this,
we determine the time of fragment formation τff . Defin-
ing the caloric curve as the temperature of the system
at the time of fragment formation τff , dividing the sys-
tem in concentric rings around the c.m. and calculating
the temperature from the fluctuations of the velocity of
the particles around the mean velocity of expansion of the
above-mentioned rings, we get the caloric curve depicted
in fig. 1 (for details of this calculation we refer to [9]). It
is clear that the resulting caloric curve displays a simple
rise plateau shape which lacks the usual vapor branch.
This behavior has been traced to the role played by the
collective mode of expansion that behaves as a heat sink.

3 Maximal global Lyapunov exponents

In order to further explore the effect on the dynamical
evolution of the system of the emergence of the collec-
tive mode of expansion, we find useful to study the maxi-
mal Lyapunov exponent (MLE), which measures the rate
of exploration of the available phase space. A convenient
way to calculate the MLE is the following, we generate
at time t = 0, for each trajectory, a second one where we
change the momenta of the particles by a small amount d0

in momentum space. Following [12], we define a distance
between trajectories d(t) as:

d(t)=

(
1
N

N∑
i=1

[a(r1(t)−r2(t))2+b(p1(t))−p2(t))2]i

)1/2

,

where r,p refer to the positions and momenta of N parti-
cles at time t. Indices 1 and 2 refer to the two trajectories
differing by d0 at t = 0. a, b are two arbitrary parame-
ters which express the fact that the MLE are independent
of the particular metrics in the phase space [22]. For the
purpose of this paper, we will fix a = 0, b = 1/m where
m is the mass of the particles, i.e. distances in velocity
space only. If we calculate numerically the time evolution
of d(t) solving the CEOM, we observe an exponential in-
crease followed by saturation in velocity space [12,15,16].
The exponential increase of d(t) is associated to the MLE
λ̂ and it implies the following relation: dd(t)

dt = λ̂d(t). But
this rapid increase cannot last forever because the avail-
able velocity phase space is limited, giving rise to a sat-
uration of the inter-trajectory distance in velocity space.
In order to describe this saturation, we can consider the
previous relation as a first-order term in an expansion in
d(t), going to second order we get [15]

dd(t)
dt

= λ̂d(t) − αd2(t) + .. ,

where α is a constant greater than zero for fully developed
chaos. This equation can be easily solved, giving:

d(t) =
d∞d0

d0 + (d∞ − d0)e−λ̂t
, (4)

λ̂ = αd∞ , (5)

where d0 = d(t = 0) and d∞ = d(t = ∞). Thus,
eqs. (4),(5) tell us that, to characterize the entire time
evolution of d(t), we need three quantities, λ, the asymp-
totic distance between trajectories d∞ and α, but only
two quantities are independent because of eq. (5). In par-
ticular, if α is a constant, we find that the LE are propor-
tional to d∞. In ref. [15] this relation was supported from
numerical simulation in Hamiltonian systems, similarly in
ref. [16] for maps.

The MLE is proportional to the distance in velocity
space which provides a measure of the fluctuations. For
instance for an infinite system in equilibrium as t → ∞,
the momenta of particles in event 1 are uncorrelated to
those of event 2, and it is very easy to show that in such
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Fig. 2. MLE (triangles) and d∞/4 (full circles) as a function of
energy for two-dimensional Lennard-Jones drops with N = 100
particles.

cases the d∞ is proportional to the variance in velocity
space. This is a very useful result which allows us to esti-
mate the LE using the final distributions obtained either
from the data or from the theory such as the thermody-
namics. For example, for a classical Boltzmann gas the
variance of the velocity distribution σ is given by [1]

d∞ ∝ σ =
(

3T

m

)1/2

, (6)

where T is the temperature of the gas measured in units
of energy. For the infinite system, the MLE is then an
increasing function of the temperature of the system [15,
23]. On the other hand, in the case of a free expansion
of a finite system (collective motion), d∞ = d0 holds, i.e.
λ̂ = 0.

In fig. 2 we plot the MLE and the d∞ vs. energy ε as
obtained in our CMD simulations. The qualitative features
are the same as those obtained in ref. [12,15]. Both quan-
tities plotted display a maximum even though at slightly
different ε. The decrease of the d∞ for large ε, suggests
that the particles having an initial kinetic energy larger
than the binding energy escape quickly from the system
without interacting. In fact, if we compare this figure with
the caloric curve displayed in fig. 1 we will notice that d∞
attains its maximum when the caloric curve reaches the
plateau, which signals the state at which the dynamics of
the system begins to be characterized by the presence of
a collective radial flow.

The maximum in the MLE is shifted with respect to
the one of the d∞, in order to clarify the meaning of this
maximum we show in fig. 3 the behavior of the Normalized
Variance of the Maximum fragment defined as

NVM =
〈Amax − 〈Amax〉〉2

〈Amax〉 , (7)

where Amax stands for the size of the maximum fragment
in each fragmentation event and 〈...〉 denote the average

-2.0 0.0 2.0 4.0
ε

0.0

1.0

2.0

3.0

N
V

M

Fig. 3. Normalized Variance of the Maximum fragment
(NVM) as a function of the energy of the fragmenting system.

over an ensemble of event at a given energy. This quantity
has been discussed in [13,14] and it was shown that it
displays a peak in the critical region. We then notice that
both the MLE and NVM display a maximum for the same
energy of the fragmenting system. So the MLE reaches a
maximum for that energy for which the fluctations are
maximal and where we expect to find critical behavior

When the evolution of the system is dominated by the
ordered collective motion, the rate of exploration of phase
space is reduced, i.e. the MLE decreases. This supports
also the idea of a limiting temperature that a finite system
can sustain [5,9,24].

The maximum in the MLE signals a transition from a
chaotic to a more ordered motion, i.e. a motion in which
the expansion collective mode becomes more and more
important. For a finite system, the main effect of collec-
tive motion is to suppress inter-particle collisions, in fact
the higher the initial energy, the faster the systems breaks
and the smaller the final fragments are. Such a behavior
resembles the one that has already been observed in [25]
in a liquid to solid transition for the correlated cell model
when changing the density. Notice indeed the similarity
of the two cases. Small ε in our case corresponds to small
ρ in [25], i.e. the chaotic motion occurs in the liquid. At
high ε, we obtain a more ordered motion because of the
collective expansion, while in [25] at high ρ the system be-
comes a solid displaying regular trajectories which remains
trapped within the volume determined by the neighboring
particles.

4 Generalized entropies and fractal
dimensions

If our simulations are followed for a long time, stable frag-
ments will finally be formed. From the mass distributions,
we can estimate the GRE as follows. Define the proba-
bility of finding a fragment of mass i as the number of
fragments M(i, δ), where δ is the mass resolution, divided
the total number of fragments produced for a given event
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Fig. 4. a) Generalized entropies and b) fractal dimensions vs.
energy calculated from the asymptotic mass spectra for the
same system as fig. 1. Full circles q = 0 , full triangles q = 1,
full squares q = 2, crosses q = 3, full diamonds q = 4, down
pointing triangles q = 5.

at that ε. Thus,

p(i, δ) =
M(i, δ)∑
M(i, δ)

. (8)

GRE are defined as [17]

Sq(δ) =
1

1 − q
log

(∑
i

〈pi〉
q

)
,

where 〈 〉 denote the average over an ensemble and we
take q as an integer number. It is important to stress that
the minimum mass resolution possible for finite systems
is clearly δ = 1.

In fig. 4a) we plot Sq(δ = 1) vs. ε, for q = 0–5 a clear
peak is observed. This peak is precisely in the region in
which the MLE also shows a peak. Note that in the cal-
culations we restricted the sum to those particles having
mass larger than 2. If we keep smaller masses, the peak
remains even though it broadens.

From the knowledge of the GRE we can define the
Generalized Dimensions (GD) as:

Dq =
lim

δ → 0
Sq(δ)
log δ

,

i.e. we study the way in which Sq(δ) scales with δ [26]. In
fig. 4b) we show the fractal dimension Dq vs. ε. It is once
again immediate to see a peak in Dq (q ≥ 1) in the same
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Fig. 5. Generalized fractal dimensions at ε = −1.37 (open
circles) −0.75 (full circles) and 2.25 (open squares). The full
squares are obtained assuming a power law mass distribution.

region in which MLE and Sq displayed a peak. Finally, in
fig. 5 we plot the Dq vs. q for various excitation energies.

By way of illustration we discuss some limiting cases.
For instance, if the mass distribution is uniform, we eas-
ily get Dq = 1 for all q. This is a trivial case which tells
us that the entire space is uniformly covered and the Dq

are equal to the topological dimension 1. Another limit-
ing case is when all the particles are concentrated in one
bin (say mass 1) and zero otherwise. This gives Dq = 0
which is the dimension of the space occupied, i.e. the di-
mension of a point. It is also interesting to note that if
the pi’s are different from 0 for M contiguous bins only,
then D0 = 1, i.e. the Hausdorff dimension of a segment.
A more interesting case is when the mass distribution is
given by a power law. We can write such a mass distri-
bution as y(x) ∝ x−τ , where xε[ε, 1], x = i/N and ε is a
small quantity related to the smallest possible mass that
we can have. Following [17], taking the limits δ → ε → 0
gives, for τ < 1:

Dq =
{

1; q < 1/τ ;
q(1 − τ)/(q − 1); q ≥ 1/τ .

For instance, τ = 0.5 gives the GD as for the logis-
tic map at r = 4 [17] with Dq continuous, but its first
derivative has a discontinuity at q = 2 and this behavior
is referred to as a first-order phase transition. As we no-
ticed before, in our case we get a power-law distribution
for the excitation energy where the MLE and the GRE
have a maximum. Since the power that we get is larger
than 2, it is interesting to see what the behavior of the
Dq is in such a case, which corresponds to a second-order
phase transition (at least in the infinite case limit). First,
we have simulated numerically a power-law yield and the
result is plotted in fig. 5 (full squares), for a system com-
posed of 100 particles and τ = 2.1. The CMD results for
ε = −0.75 (full circles) where a power law in the mass
distribution is obtained, are in good agreement with the
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simulation. We notice that the Dq show no discontinuities
at variance with the cases where τ ≤ 1. In order to test
if this is a finite size effect, we have simulated fragmen-
tation in a simple percolation model whose properties are
well studied. We find a similar behavior for the one dis-
cussed above at the critical percolation point and for very
large sizes more details will be discussed elsewhere. The
Dq are also plotted for the cases when d∞ has a maximum
(open circles) and at high ε (open squares). The functional
dependence of Dq on q suggests a multifractal character
of the probability distributions.

5 Conclusions

From these analysis the behavior of excited finite systems
is greatly clarified. If we start with a cold (solid) drop of
matter and begin to heat it up the Lyapunov exponent in-
creases as well as the d∞. The first one is proportional to
the rate at which the system explores phase space and the
second to the available phase space. This trend changes
as the rate of evaporation increases, i.e. when radial flow,
the extra degree-of-freedom characteristic of the evolution
of highly excited finite systems, starts to play a major
role in the evolution. A maximum of both quantities is
reached when the system approaches the critical region,
i.e. when fluctuations are maximal and the final spectra
contain both liquid-like and vapor-like components. For
even higher excitation energies both magnitudes decrease
as a result of the fast fragmentation process and the trans-
fer of chaotic (thermal) energy into ordered (radial flux)
energy. A peak is also observed in the generalized Renyi
entropies and in the generalized fractal dimensions Dq.
The Dq at the “critical” point for which a power law with
τ ≥ 2 is obtained is a smooth decreasing function of q at
variance with the cases where τ ≤ 1.
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