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We develop the energy budget equation of the coupled Navier–Stokes–Cahn–Hilliard
(NSCH) system. We use the NSCH equations to model the dynamics of liquid
droplets in a liquid continuum. Buoyancy effects are accounted for through the
Boussinesq assumption. We physically interpret each quantity involved in the energy
exchange to gain further insight into the model. Highly resolved simulations involving
density-driven flows and the merging of droplets allow us to analyse these energy
budgets. In particular, we focus on the energy exchanges when droplets merge,
and describe flow features relevant to this phenomenon. By comparing our numerical
simulations to analytical predictions and experimental results available in the literature,
we conclude that modelling droplet dynamics within the framework of NSCH
equations is a sensible approach worthy of further research.
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1. Introduction
Bubbles and droplets are ubiquitous in natural processes and technological

applications. Engineers, mathematicians and physicists have attempted to understand
these phenomena over the past 200 years (Clift, Grace & Weber 2005). Studies can
be traced back to Young (1805) and Laplace (1805), who described the nonlinear
partial differential equation governing the pressure jump that develops across a
curved interface between fluids. This model is known as the Young–Laplace equation.
Processes that drive the dynamics of bubbles and droplets include rainfall, air
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pollution, boiling, flotation, topological phase transition and fermentation (Clift et al.
2005). Also, there has been intensive study of the coalescence of droplets (Kavehpour
2015) as well as droplet impact on solid surfaces (Josserand & Thoroddsen 2016).

Several methodologies have been developed to model pressure jumps and
sharp gradients. Among them, sharp- and diffuse-interface methods are widely
used to model phase segregation problems coupled with fluid dynamics. Sharp-
interface models include the level-set (Sethian 1999) and volume-of-fluid (Rider &
Kothe 1998) methods. Diffuse-interface models (DIM) have been used to model
topological transitions in compressible (Anderson, McFadden & Wheeler 1998)
and quasi-incompressible (Lowengrub & Truskinovsky 1998) flows under consistent
thermodynamic premises. A wide range of phenomena is described via diffuse
interfaces, ranging from material sciences (Loginova, Amberg & Ågren 2001) and
fracture mechanics (Spatschek et al. 2007) to fluid dynamics (Khatavkar, Anderson
& Meijer 2006, 2007; Gomez, Cueto-Felgueroso & Juanes 2013). A diffuse-interface
model circumvents several numerical difficulties (Yue et al. 2004), and its inherent
thermodynamic consistency allows the method to incorporate rheology when the
phase-field evolution is described by a free energy density (Emmerich 2003).

In this work we use the Cahn–Hilliard equation with the Ginzburg–Landau free
energy defined in Gómez et al. (2008). A derivation of the Cahn–Hilliard equation
is presented by Gurtin (1996) using a balance law for microforces. Gurtin, Polignone
& Viñals (1996) extended that work to couple phase segregation with hydrodynamics,
providing the first derivation of the Navier–Stokes–Cahn–Hilliard system completely
based on continuum mechanics and thermodynamics arguments. This theory uses the
classical balance laws of mass and momentum, together with a new balance law for
microforces. This microforce balance takes into account the ‘microscopic work’ done
by changes in the order parameter, which represents, in the context of our work, the
dimensionless concentration of a phase.

The introduction of microforces and microstresses, as well as their respective
balance laws, modifies the mechanical version of the second law of thermodynamics
(Gurtin et al. 1996, equation (30)), which in turn influences the constitutive relations
under consideration. In particular, a byproduct of this framework is that the capillary
stress tensor naturally appears as a constraint imposed by the mechanical version
of the second law of thermodynamics on the constitutive equations (Gurtin et al.
1996, equation (48)). Liu (2014) extended the framework of Gurtin to encompass the
n-component Navier–Stokes–Cahn–Hilliard (NSCH) multiphase system with a choice
of switching to van der Waals theory.

In this work, we use the dimensionless form of the equations of motion to develop
the complete energy budget equation of the coupled NSCH system to model the
dynamics of liquid droplets in a liquid continuum. In addition, from a physical point
of view, we give an interpretation of each quantity involved in the energy exchange
and analyse the behaviour of the mass flux across the interface.

From a numerical point of view, we develop a general and robust formulation
based on a finite-dimensional, high-order isogeometric analysis approximation. We use
divergence-conforming B-spline spaces to obtain a discrete pointwise divergence-free
velocity field (Evans & Hughes 2013a,b,c; Sarmiento et al. 2015). We implement
this discretization in PetIGA, a high-performance isogeometric analysis framework
(Dalcin et al. 2015; Vignal et al. 2015a). Two- and three-dimensional numerical
results highlight the robustness of the framework. Finally, we compare our numerical
results against analytical features of droplet dynamics to verify our model.

The outline of this work is as follows. Section 2 presents the general governing
equations, followed by § 3, which describes the constitutive relations adopted
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here. Section 4 introduces the dimensionless set of equations together with the
dimensionless constitutive equations. Section 5 details the overall mass flux behaviour
characterized by the Cahn–Hilliard equation. In § 6, we present the energy budget of
the NSCH equations under the Boussinesq premise. This concludes the theoretical
analysis and preliminaries of the paper. In § 7 we describe the numerical scheme
we use, whereas in § 8 the set-up of the numerical experiments is detailed. In § 9,
we analyse the numerical results. Finally, in § 10, we briefly detail the conclusions.
Appendix A presents the first and second laws of thermodynamics, showing that our
model is thermodynamically consistent. Appendix B lists the identities obtained to
develop the energy budget of the NSCH flows.

2. General governing equations
The dynamics of binary immiscible fluids involves both mass and momentum

transfer. In this work, the phase segregation phenomenon is described by the
Cahn–Hilliard equation (Cahn & Hilliard 1958, 1959; Cahn 1959), while the
hydrodynamics is incorporated through the incompressible Navier–Stokes equations
under the Boussinesq assumption to account for buoyancy effects (Meiburg & Kneller
2010; Espath et al. 2015b). We assume a small density difference between the fluids.
The resulting set of equations in dimensional form is given by

∇ · v = 0, (2.1a)
∂φ

∂t
+∇ · (φv)+∇ · j= 0, (2.1b)

ρ

[
∂v

∂t
+∇ · (v⊗ v)

]
−∇ · T − φJρKg= 0, (2.1c)

T = T T, (2.1d)

where ρ, v, T , φJρKg, φ and j are the density, velocity, stress, buoyancy force,
volume concentration and mass flux, respectively. The density is defined as the
weighted mean of the fluid densities, ρ = ρ2φ + ρ1(1− φ), where the subscript
indicates the corresponding fluid. We only consider the density excess JρK= ρ2 − ρ1
in the buoyancy force. We denote first- and second-order tensors by bold lower and
upper case symbols, respectively. The differential operators ∇(·) and ∇ · (·) represent
the gradient and divergence, respectively. The superscript (·)T denotes the transpose
and ⊗ the tensor (dyadic) product.

3. Constitutive equations
3.1. Mass flux

According to Landau & Lifshitz (1959), in the absence of heat transfer, the mass
flux may be defined by generalizing Fick’s law, j=−α∇η, where η is the chemical
potential and α is the chemical mass diffusivity. Once the chemical potential is defined
by the Ginzburg–Landau free energy density, i.e. η def= δΨ /δφ [energy/volume] (the
variational derivative of Ψ ), the Cahn–Hilliard equation is obtained (Emmerich 2003;
Gómez et al. 2008). Additionally, the Ginzburg–Landau free energy, in a volume Ω ,
may be written as

Ψ [φ] =
∫
Ω

ψ dΩ =
∫
Ω

(ψφ +ψs) dΩ, (3.1)
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where the bulk and interfacial free energy densities ψφ and ψs, respectively, are
defined as (Cahn & Hilliard 1958, equations (3.1) and (3.13))

ψφ =NvkBθ(φ ln φ + (1− φ) ln(1− φ))+Nvω(1− φ)φ, (3.2a)

ψs = γφ2 ∇φ · ∇φ. (3.2b)

Here Nv is the number of molecules per unit volume, kB is Boltzmann’s constant and
ω is an interaction energy given by ω= 2kBθc. The interaction energy is positive and
is related to the critical temperature, θc. In the interfacial free energy density term,
γφ = σ l [force] represents the magnitude of the interfacial energy. The parameters σ
and l are the interface tension [force/length] and the interfacial thickness [length],
respectively. Alternatively, l is a root mean square effective ‘interaction distance’,
according to the original work of Cahn & Hilliard (1959). This force term γφ is
defined in Cahn & Hilliard (1958) (equation (3.12)) and Cahn & Hilliard (1959)
(equation (4.1)) by γφ =Nvωl2.

Without loss of generality, we define the interface thickness to have the simplest
expression for γφ , i.e. σ l. Yue et al. (2004) opted to define this relation as
γφ = 3σ l/(2

√
2), based on the quartic bulk free energy density when the diffuse

interface is at equilibrium (δΨ /δφ = 0).
The scalar parameter α [time× volume/mass] in the mass flux is rewritten as

α =M(φ)β, where M(φ)=Mo(1− φ)φ [length2/time] represents the mobility (with
Mo a positive constant) and β−1 = ρ1u2

m ([mass/volume] × [length/time]2) is related
to the kinetic energy at a molecular scale, ρ1u2

m. The mobility is degenerate, i.e. the
phase dependence of the mobility confines the molecular movement to the interface
region. This effect is detailed in § 5. The mass flux can then be defined as

j=−M(φ)β∇η. (3.3)

Considering the buoyancy effects, we must include the potential energy in the free
energy, i.e.

Ψ [φ] =
∫
Ω

ψ dΩ =
∫
Ω

(ψφ +ψs + ep) dΩ, (3.4)

where ep = φJρKgx2 is the potential energy, g is the gravity acceleration and x2 is the
vertical coordinate. Thus, the total mass flux is now defined as

j=−M(φ)β ∇(ηφ + ηs)−Moβ∇ηp, (3.5)

where ηφ , ηs and ηp are the chemical potentials related to the bulk, interfacial and
potential energies, respectively. The mass flux due to the potential energy is defined
with a constant mobility Mo, since this is not an interfacial but a bulk mass flux. Thus,
for this term the chemical mass diffusivity α is constant.

3.2. Stress
For an incompressible Newtonian fluid, the viscous stress is given by Gurtin, Fried &
Anand (2010) as

T visc = 2µD, (3.6)

with
D = 1

2((∇v)T +∇v), (3.7)
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where the dynamic viscosity, µ def= µ(φ) relates the strain rate D to the viscous stress
tensor T visc. The Cauchy stress tensor is defined as T c = T visc − p1 (Gurtin et al.
2010), with the last term associating the pressure to the Lagrange multiplier that
enforces the incompressibility constraint.

Considering a binary mixture where each phase is endowed with a different
viscosity, we assume a smooth transition through the interface which is given by
µ(φ)=µ1emφ where m= ln(µ2/µ1), with µ1 and µ2 being the viscosity of each
phase. Here, we assume µ1 <µ2. To simplify the exposition in what follows, we
define c= emφ .

Using the balance of microforces, Gurtin et al. (1996) derived a thermodynamically
consistent complement to the constitutive relation for the Cauchy stress via the
mechanical version of the second law of thermodynamics, which models capillarity
effects. The interfacial capillary stress assumes the form

T s =−γφ∇φ ⊗∇φ. (3.8)

Finally, the total stress associated with the macroscopic motion of the fluid is given
by

T = T c + T s = 2µD − p1− γφ ∇φ ⊗∇φ, (3.9)

where the stress has units of [force/length2].
Finally, our model differs from Gurtin’s model in the sense that we account for

the potential energy in the free energy, and we assume that the density difference
is small. This assumption justifies the use of the Boussinesq assumption in the
momentum equation to account for buoyancy effects. In addition, we employ a
logarithmic function to represent the free energy rather than the more often found
polynomial approximation. In this sense, our work also differs from that of Jacqmin
(1999) and Jamet et al. (2001), where the double-well polynomial function is used to
describe the free energy, and where the potential energy is not included in the free
energy description.

4. Governing equations in dimensionless form
To make the governing equations dimensionless, a length b and a velocity u are

chosen as the characteristic length and velocity scales, respectively. The reference
length and velocity are usually chosen as the droplet diameter or radius and the
terminal velocity or buoyancy velocity, respectively. We scale the viscosities by the
smallest viscosity µ1, the pressure by µ1u/b, the time by b/u and the mobility by Mo.
The chemical potential is rendered dimensionless by ψc = 2NvkBθc =Nvω, which is the
critical free energy density. The phase field is inherently a dimensionless quantity and
is normalized between (0, 1) according to the bulk free energy density. The mixture
law assumes the density to be of the form ρ = ρ1 + φJρK, with JρK= ρ2 − ρ1. In our
examples, ρ1 is the lighter fluid; nevertheless, the association between lower viscosity
and lower density is incidental and can be reversed if the modelling requires this. In
addition, due to the Boussinesq assumption we have that O(φJρK/ρ1)� 1; usually of
the order of 5 % would be admissible. Table 1 lists the dimensionless numbers we
obtain with these scalings.

To the best of our knowledge, two new dimensionless groups appear in this physical
interpretation. We denote these new numbers by Lm and Ln; Lm is the ratio between
the critical free energy density and the capillary energy, i.e. the interfacial curvature
energy. The capillary energy is closely related to the Laplace pressure obtained from
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Number Equation Interpretation

Peclet Pe= ub/Mo Inertia/mass diffusion
Reynolds Re= ρ1ub/µ1 Inertia/momentum diffusion
Weber We= ρ1u2b/σ Inertia/surface tension
Bond Bo= JρKgb2/σ Potential energy/interfacial energy
Cahn Cn= l/b Interfacial thickness/length scale
Lm Lm=ψcb/σ Critical free energy density/capillary energy
Ln Ln= ρ1u2

m/ψc Kinetic energy at the molecular scale/critical free energy density

TABLE 1. Dimensionless groups.

the Young–Laplace equation (Myers 1990). This pressure difference (or Laplace
pressure) JpK= σ(R−1

1 + R−1
2 ) relates the surface tension to the principal radii of

curvature. In the particular case of a spherical droplet, JpK= 2σR−1, where R is the
radius of the sphere. The interfacial curvature energy takes the form σ/b= JpK/4.
The number Ln is the ratio between the kinetic energy at a molecular scale and
the critical free energy density. In the particular case of an ideal gas, Ln can be
interpreted by defining the molecular velocity um as u2

m = u2
rms = 3kBθ/m, where urms

is the root-mean-square speed of a single molecule of mass m. This assumption yields
Ln= ρ1u2

rms/ψc = 3/2ϑ−1, where ϑ = θc/θ defines the ratio between the critical and
the absolute temperatures. Therefore, Ln can measure the deviation of the absolute
temperature from the critical one in an ideal gas.

Henceforth, all quantities considered are dimensionless according to table 1. The
dimensionless forms of the free energy densities are

ψφ = 1
2ϑ
(φ ln φ + (1− φ) ln(1− φ))+ (1− φ)φ, (4.1a)

ψs = Cn
2Lm
∇φ · ∇φ, (4.1b)

ep = Bo
We
φx2, (4.1c)

and the chemical potential reads

η= δΨ
δφ
= ∂ψ
∂φ
−∇ · ∂ψ

∂∇φ =
1

2ϑ
ln

φ

1− φ + 1− 2φ − Cn
Lm
1φ + Bo

We
x2. (4.2)

The set of dimensionless differential equations is given by

∇ · v = 0, (4.3a)
∂φ

∂t
+ v · ∇φ +∇ · j= 0, (4.3b)

∂v

∂t
+ v · ∇v −∇ · T + Bo

We
φe2 = 0, (4.3c)

where the dimensionless mass flux is defined as

j=− 1
PeLn

{
M(φ)∇

(
1

2ϑ
ln

φ

1− φ + 1− 2φ − Cn
Lm
1φ

)
+ Bo

We
e2

}
, (4.4)
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the stress is given by

T = 2c
Re

D − 1
Re

p1− Cn
We
∇φ ⊗∇φ, (4.5)

and c scales the kinetic viscosities of the different fluids. The rescaled mobility is
equal to M(φ)= φ(1− φ). For convenience, we assume gravity points in the −e2
direction.

To understand the components of the mass flux, we split the chemical potential
into η= ηφ + ηs + ηp where ηφ = 1/2ϑ ln (φ/(1− φ))+ 1− 2φ, ηs =−(Cn/Lm)1φ
and ηp = (Bo/We) x2, which yield the bulk, interfacial and gravitational mass fluxes,
respectively.

5. Mass flux behaviour
In the Cahn–Hilliard equation, the mass flux is a phobic phenomenon that segregates

the phases. The mass flux exhibits an ‘anomalous’ behaviour across the interface
thickness, as it may change its sign (twice) and deviate from the gradient direction of
the phase field. In the following, we present the analysis of the orientation of these
mass fluxes. We start by analysing the flux structure in a one-dimensional example.
Next, we describe some of the restrictive conditions under which the two mass flux
terms are parallel. We conclude this section with a detailed description of a general
two-dimensional simulation. To later explain the energy exchanges in the free energy
densities, we first develop a good understanding of the mass flux behaviour. To do
so, we rewrite the mass flux (4.4) as

j = − 1
PeLn

M(φ)∇(ηφ + ηs)− 1
PeLn

Bo
We
∇ηp

= −M(φ)
PeLn

[(
−2+ 1

2ϑφ(1− φ)
)
∇φ − Cn

Lm
∇ · H

]
− 1

PeLn
Bo
We

e2. (5.1)

To simplify notation, we define the bulk, jφ , interfacial, js, and gravitational, jp, mass
fluxes as

jφ =−
1

PeLn

(
−2+ 1

2ϑφ(1− φ)
)

M(φ)∇φ, (5.2a)

js =
1

PeLn
Cn
Lm

M(φ)∇ · H, (5.2b)

jp =−
1

PeLn
Bo
We

e2, (5.2c)

where H denotes the Hessian of φ. In general, ∇ηφ and ∇ηs are not parallel, so the
mass flux might not be normal to the interface implicitly defined by isovalues of the
phase field.

First, let us observe how the mass flux may change sign across the interface.
Figure 1 shows, in panel (a), the phase field and its derivatives up to third order in
a one-dimensional problem. In this figure, lower values of φ represent the droplet
(inclusion). Inward and outward are with respect to this region. In addition, figure 1
shows the mass flux behaviour assuming constant and degenerate mobilities (panels
(b) and (c), respectively). In each panel the first row shows the phase field. The
second and third rows in panels (b) and (c) show the dependence of the bulk mass
flux jφ on the temperature ratio ϑ . Finally, the fourth row depicts the interfacial
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Constant mobility Degenerate mobility(a) (b) (c)

l

Phase field and its 
spatial derivatives

FIGURE 1. (Colour online) (a) Phase field and its spatial derivatives in one spatial
dimension. (b) Mass fluxes with constant mobility in the cases ϑ < 1 and ϑ > 1 (ϑ = θc/θ ).
(c) The same mass fluxes with degenerate mobility.

mass flux js. Red indicates the regions where the mass flux points inward, whereas
blue indicates the regions where the mass flux points outward. The bulk mass flux,
jφ , points in the steepest descent direction if the temperature ratio is lower than
unity, ϑ < 1, while this flux changes its sign twice if the temperature ratio is greater
than one, ϑ > 1. On the other hand, the interfacial mass flux js always exhibits two
changes of sign. Thus, the total mass flux j may have two changes in sign. These
changes in the mass flux direction explain the phobic interactions between the phases.
The function −2+ 1/(2ϑφ(1− φ)) is positive definite if ϑ < 1, otherwise if ϑ > 1 it
becomes indefinite, with ϑ a finite value. Finally, if ϑ→∞ the function is negative
definite.

Remark 1 (The overall behaviour of the mass fluxes). The overall behaviour of ∇ · H
is such that it has a positive inner product with −∇φ when Neumann-free boundary
conditions are considered. For ∇φ · n= 0|Γ , with n the outward unit normal vector to
the boundary Γ , we obtain

∫
Ω
−∇φ · (∇ · H) dΩ = ∫

Ω
(1φ)2 dΩ .

Remark 2 (Mass flux in two dimensions). We consider an idealized two-dimensional
case to understand how the interfacial mass flux js may deviate the total mass flux
from the steepest descent direction of the phase field. Let us define a local coordinate
system given by the Frenet basis (e⊥, e‖) (Kühnel 2006). The basis is defined over
isovalue curves of φ, where e⊥ is the unit vector in the direction of the gradient
of φ, n, and e‖ is the unit vector in the tangential direction, τ . We describe the
coordinate transformation between the Frenet and Cartesian bases by taking the vector
dx= (dx1, dx2) and establishing that

dx= ∂nx dn+ ∂τx dτ , (5.3)

where ∂n = ∂/∂n and ∂τ = ∂/∂τ . We set the metric coefficients as the normal
hn

def= |∂nx| and tangential hτ
def= |∂τx| components. Thus, the gradient operator, the

gradient of φ, the Laplacian operator and the Laplacian of φ are defined in this
coordinate system as

∇(·)= h−1
n ∂n(·)e⊥ + h−1

τ ∂τ (·)e‖, (5.4a)
∇φ = h−1

n ∂nφe⊥, (5.4b)
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1(·)= (hnhτ )−1[∂n(hτh
−1
n ∂n(·))+ ∂τ (h−1

τ hn∂τ (·))], (5.4c)
1φ = (hnhτ )−1∂n(hτh

−1
n ∂nφ). (5.4d)

Finally, the divergence of the Hessian of φ in this orthogonal curvilinear coordinate
system is

∇ · H = h−1
n {∂n(hnhτ )−1[∂n(h

−1
n hτ∂nφ)] + (hnhτ )−1[∂2

n (h
−1
n hτ∂nφ)]}e⊥

+ h−1
τ {∂τ (hnhτ )−1[∂n(h

−1
n hτ∂nφ)] + (hnhτ )−1[∂τ∂n(h

−1
n hτ∂nφ)]}e‖. (5.5)

By assuming that isocurves of φ are parallel (i.e. constant interface thickness) and the
tangential metric along τ is constant (i.e. the isocurves of φ are circumferences or
straight lines), we conclude that (∂ne⊥ = ∂ne‖ = 0 ⇒ ∂nhn = ∂τhn = 0) and (∂τhτ = 0),
respectively. Thus, under these premises, we write the divergence of the Hessian of φ
as

∇ · H = ϕe⊥ (5.6)

with ϕ = h−1
n ∂nhτ [∂nhτ∂nφ + hτ∂2

nφ + (h2
nhτ )−1∂2

n hτ∂nφ + h−2
n ∂

3
nφ].

The idealized example explained above deals with isocontours of φ endowed with
parallel and constant curvature to show the simplest behaviour of the mass flux,
yielding a mass flux normal to the interfaces. In the general case, the mass flux
deviates from the normal direction due to changes in the metric coefficients in both
directions.

Remark 3 (Mass flux in steady state solutions). From Remark 2, we conclude that
the steady state solution of the Cahn–Hilliard equation yields ∇φ ‖∇ · H. We stress
that this conclusion does not consider hydrodynamic effects.

Figure 2 shows three stages in the merging of two rising droplets and how the mass
flux behaves during this process. At an early stage, details 1–3 depict the mass flux
on three isocontours of the phase field, φ = 0.1, 0.5 and 0.9. Across the interface, in
the leading zone of the top droplet, the mass flux points inward and is almost normal
to the interface; cf. detail 1. However, detail 2 shows a gradual change in the mass
flux direction. In this region, the mass flux points outward on a isocontour φ = 0.5,
whereas on a isocontour φ = 0.9 the mass flux points inward. In the regions where
the phase field isocontours exhibit a large change in curvature, which happens when
droplets merge, we observe a significant deviation of the mass flux from the steepest
descent direction, as detail 3 depicts. In the trailing zone, the mass flux points outward
during the entire merging process. The largest values of the tangential component of
the mass flux are located in the highly curved region of the phase field. At the last
stage, instant t3, large mass flux deviations are not observed.

In figure 3(a) the red (blue) region represents where the mass flux points inward
(outward) with respect to the droplets. In the leading (trailing) zone, the mass flux
points inward (outward). In the highly curved region, the mass flux pushes the droplet
shape to reduce its curvature. In the contact region between the droplets, the mass
flux points toward the interiors of the droplets and the mass flux changes its sign
across the contact interface between two droplets. In figure 3(b) the regions where
the tangential component is large are shown in yellow. Figures 2 and 3 were obtained
from the second example (case 2) detailed in § 9. This example involves the merging
of two rising liquid droplets embedded in a continuous liquid. Finally, as jp is a
divergence-free field, it does not play any role in the mass transfer equation. However,
that is not the case for the energy budget equation, as we will show in the following
section.
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FIGURE 2. (Colour online) Mass flux over isocontours of φ = 0.1, 0.5 and 0.9 at three
instants t1, t2 and t3 when two droplets are merging and rising. Three details at t1 show
regions where the mass flux changes its sign and deviates from the normal direction.

Blue Yellow

Red

outward largest tangential
component

inward

(a) (b)

FIGURE 3. (Colour online) (a) Red (blue) depicts the region where the mass flux points
inward (outward) and (b) yellow depicts the region where the tangential component of the
mass flux is largest.

6. Energy budget

In this section, we describe the temporal evolution of the different energy
components of the flow and analyse their physical meaning. The energy budget
plays a central role in the scientific understanding of physical phenomena. We
analyse the exchanges of the kinetic, potential, bulk and interfacial free energies.
In particular, the energy budget describes the energy exchange mechanisms that
govern the flow. Moreover, according to Liu & Walkington (2000) and Guo, Lin
& Lowengrub (2014), the convergence of finite-dimensional approximations to the
solutions of the partial differential equations is also linked to those energy transfers,
particularly for non-smooth solutions.

For the sake of clarity, subscripts k, φ, s and p will refer to quantities derived from
the kinetic energy, bulk free energy density ψφ , interfacial free energy density ψs and
potential energy, respectively. Assuming that the control volume Ω does not deform,
in the following subsections we derive energy exchanges in an Eulerian description.
The identities and definitions used here are detailed in appendix B.
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6.1. Energies
The different energies relevant to the incompressible NSCH equations under the
Boussinesq assumption in the dimensionless form are

Ek =
∫
Ω

ek dΩ =
∫
Ω

1
2
v · v dΩ, (6.1a)

Eφ =
∫
Ω

ψφ dΩ =
∫
Ω

(
1

2ϑ
(φ ln φ + (1− φ) ln(1− φ))+ (1− φ)φ

)
dΩ, (6.1b)

Es =
∫
Ω

ψs dΩ =
∫
Ω

(
Cn

2Lm
∇φ · ∇φ

)
dΩ, (6.1c)

Ep =
∫
Ω

ep dΩ =
∫
Ω

Bo
We
φx2 dΩ. (6.1d)

Consider the material derivative ˙(·) of each energy involved in the problem, i.e. ė
where  = {k, φ, s, p}. Integrating these material derivatives over the domain results in
the total derivative d(·)/dt for each energy in (6.1). In the following, we consider the
equations formulated for a given, undeformed control volume Ω and boundary Γ ,

dE
dt
= S +Q =

∫
Γ

ε io
 dΓ +

∫
Ω

ε dΩ, (6.2)

where, as before,  = {k, φ, s, p} denotes the energy type. The term Q incorporates
the sources and sinks of the energy E in the control volume, and S is the total
diffusive flux of energy across the boundary of the control volume. Integrating over
time the total derivative of each energy, i.e. S +Q , we obtain the quantities that
describe energy exchanges. We denote the extensive (intensive) quantities by uppercase
(lowercase) letters, such as E(·) (e(·)) for the extensive (intensive) energies and E(·) (ε(·))
for the extensive (intensive) energy exchanges, i.e. extensive (intensive) sources/sinks
of energy.

6.2. Kinetic energy exchange
The form of the flux and source/sink terms in the case of the kinetic energy stemming
from (6.2) can be derived using the momentum equations and are given by

Qk = −
∫
Ω

D : [T visc + T s] dΩ −
∫
Ω

Bo
We
φv2 dΩ

= −
∫
Ω

D :
[

2c
Re

D − Cn
We
∇φ ⊗∇φ

]
dΩ −

∫
Ω

Bo
We
φv2 dΩ, (6.3a)

Sk =
∫
Γ

(v · T ) · n dΓ

=
∫
Γ

[
v ·
(

2c
Re

D − p
Re

1− Cn
We
∇φ ⊗∇φ

)]
· n dΓ. (6.3b)

Physical interpretation. Regarding the volumetric term Qk, the first term, D : T visc, is
the rate of work done by the viscous forces of the flow. Given the constitutive model
assumed for the viscous stress, (4.5), the system can be shown to lose kinetic energy
from the friction between fluid particles, as the inner product of the strain rate and the
viscous stress is always positive. The first term D : T visc is a sink, as can be inferred
from its negative sign.
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The second term D : T s is the rate of work done by the capillary forces in the
diffuse interface and can be thought of as follows. The vector ∇φ is parallel to the
normal n of the isosurfaces of φ. We define a local coordinate system at a point
on one of these surfaces. In this local coordinate system, the capillary tensor is
simply (∂φ/∂n)2, whereas the strain rate contribution is ∂vn/∂n, with vn denoting the
normal velocity. The contribution to the change of kinetic energy density around this
point is then (∂vn/∂n)(∂φ/∂n)2. Depending on the growth direction vn, the energy
exchange can behave as both a source and a sink of energy. Due to incompressibility,
the pressure does not play any role in Qk. Since we use divergence-conforming
discretizations, the orthogonality of the pressure and the strain rate is preserved at
the discrete level.

The first and second terms in the kinetic energy exchange can also be rewritten as
the power expenditures carried out in an infinitesimal increment of the strain rate dD
done by the stresses (T visc + T s) : dD, i.e. Qk is the rate of work done by the viscous
and capillary stresses to achieve an increment dD in strain rate. We give a detailed
description of the third term when we interpret the potential energy exchanges below.
Moreover, the boundary term Sk represents the rate of work on the boundary given by
the external power done by the total stress.

6.3. Bulk free energy exchange
The form of the terms in (6.2) for the bulk free energy is

Qφ =
∫
Ω

∇ηφ · j dΩ

= −
∫
Ω

1
PeLn
∇ηφ · [M(φ)∇(ηφ + ηs)+∇ηp] dΩ, (6.4a)

Sφ = −
∫
Γ

ηφ j · n dΓ

=
∫
Γ

1
PeLn

ηφ[M(φ)∇(ηφ + ηs)+∇ηp] · n dΓ. (6.4b)

Physical interpretation. In the volumetric term Qφ , the power expenditure carried out
in an infinitesimal increment of the bulk free energy gradient d∇ηφ done by the mass
flux is given by j · d∇ηφ . Given an infinitesimal increment d∇ηφ , the local exchange
of bulk free energy is proportional to the mass flux in the direction of that increment.
That is, Qφ is the rate of work done by the mass flux to achieve an increment in bulk
free energy gradient. This term may act as either a source or a sink of energy. The
boundary term Sφ represents the bulk free energy diffusion on the boundaries by the
mass flux.

Remark 4. Substituting the mass flux equation (3.3) into (6.4) and using the Gauss
divergence theorem, we find where the sources and sinks of bulk free energy come
from. The volumetric Qφ and boundary Sφ terms take the following form in terms
of φ:

Qφ = −
∫
Ω

1
PeLn

{
φ(1− φ)

(
−2+ 1

2ϑφ(1− φ)
)2

∇φ · ∇φ
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+ Cn
Lm

[(
−2φ(1− φ)+ 1

2ϑ

)
H : H − 2(1− 2φ)H : ∇φ ⊗∇φ

]
+ Bo

We

(
−2+ 1

2ϑφ(1− φ)
)
∇φ · e2

}
dΩ, (6.5a)

Sφ =
∫
Γ

1
PeLn

{(
1

2ϑ
ln

φ

1− φ + 1− 2φ
) [(
−2φ(1− φ)+ 1

2ϑ

)
∇φ

−Cn
Lm
φ(1− φ)∇ · H + Bo

We
e2

]
+ Cn

Lm

(
−2φ(1− φ)+ 1

2ϑ

)
∇φ · H

}
· n dΓ.

(6.5b)

The first term proportional to ∇φ · ∇φ of Qφ in (6.5) is always negative due to its
negative sign, i.e. this term is a sink of energy. Although H : H is always positive, the
function that multiplies it is indefinite if ϑ > 1. Otherwise, if ϑ < 1 this term is a sink
of energy. The last term involving f (φ)H : ∇φ ⊗∇φ is indefinite since both f (φ) and
the Hessian of φ are indefinite. Normalizing ∇φ, this quadratic form H : ∇φ ⊗∇φ
geometrically describes how the curvature in the ∇φ direction changes as we move
along this direction, i.e. how the curvature changes across the interface.

6.4. Interfacial free energy exchange
The exchanges (6.2) in interfacial free energy can be expressed as

Qs =
∫
Ω

Cn
Lm
[H : ∇j− D : ∇φ ⊗∇φ] dΩ

= −
∫
Ω

Cn
Lm

[
1

PeLn
H : ∇(M(φ)∇(ηφ + ηs)+∇ηp)+ D : ∇φ ⊗∇φ

]
dΩ, (6.6a)

Ss = −
∫
Γ

Cn
Lm
(∇φ · ∇j) · n dΓ

=
∫
Γ

1
PeLn

Cn
Lm
[∇φ · ∇(M(φ)∇(ηφ + ηs)+∇ηp)] · n dΓ. (6.6b)

Physical interpretation. The first term of the volumetric term Qs has a similar meaning
to that given for the kinetic and bulk free energy. The power expenditure carried out
in an infinitesimal increment in the curvature of the phase field, dH, done by the
mass flux gradient is given by ∇j : dH. Given an infinitesimal increment dH, the local
exchange of interfacial free energy is proportional to the mass flux gradient. That is,
Qs is the rate of work done by the mass flux gradient to achieve an increment in the
curvature of the phase field. This interfacial free energy exchange acts as a source or
a sink of energy.

We can interpret the first term in Qs in a simple way. Suppose that the isosurface
of φ is locally flat, and that the mass flux varies only along the normal direction
to the surface. Thus, the mass flux gradient leads to different numbers of particles
diffusing at different points along the normal, therefore displacing the isosurfaces of
φ. This in turn leads to a change in the magnitude of the gradient of φ, represented
by the corresponding components of H, thus changing the interfacial free energy. Now
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suppose that the mass flux varies along the surface of constant φ. Thus, the mass flux
gradient leads to a different number of diffusing particles along the tangential direction
of the isosurface. This in turn induces a change in the curvature of the isosurface, thus
changing the magnitude of the gradient of φ, which leads to a change in interfacial
free energy. This is represented by the components of the Hessian of φ describing the
curvature of phase isosurfaces.

The second term in Qs appears in the kinetic energy exchange. Even though it is
discussed there, we interpret it here in the context of the interfacial energy. Looking
at a small region on a phase field surface, if the normal velocity increases (decreases)
in the direction of the isosurface normal (which is parallel to ∇φ), then the interface
widens (narrows), thereby decreasing (increasing) |∇φ| and thus becoming a sink
(source) of interfacial energy. This term differs from that found in the kinetic energy
exchange in scale and sign. As a consequence of the change of sign, if this term
is a source (sink) of interfacial free energy, it will be a sink (source) of kinetic
energy. The boundary term Ss represents the interfacial free energy diffusion on the
boundaries by the mass flux.

Remark 5. By substituting the mass flux from (3.3) into (6.6) and using the Gauss
divergence theorem we find where the source and sink of interfacial free energy come
from. The volumetric Qs and boundary Ss terms take the following forms in terms
of φ:

Qs = −
∫
Ω

{
1

PeLn
Cn
Lm

[
−2(1− 2φ)H : ∇φ ⊗∇φ +

(
−2φ(1− φ)+ 1

2ϑ

)
H : H

+ Cn
Lm
φ(1− φ)(∇ · H) · (∇ · H)

]
+ Cn

Lm
D : ∇φ ⊗∇φ

}
dΩ, (6.7a)

Ss =
∫
Γ

1
PeLn

Cn
Lm

{
∇φ ·

[
∇φ ⊗

(
−2(1− 2φ)∇φ − Cn

Lm
(1− 2φ)∇ · H

)
+
(
−2φ(1− φ)+ 1

2ϑ

)
H − Cn

Lm
φ(1− φ)∇∇ · H

]
+ Cn

Lm
φ(1− φ)(∇ · H) · H

}
· n dΓ. (6.7b)

There is only one term that does not change its sign, that is, the contraction on
itself of ∇ · H. This term always acts as a sink. All the remaining terms that appear
in Qs in (6.7) are indefinite, i.e. they may be either a source or a sink of interfacial
free energy. The term ∝ f1(φ)H : H + f2(φ)H : ∇φ ⊗∇φ also appears in the bulk free
energy exchange Qφ , with the same sign and scales. Thus, its physical meaning is
exactly the same.

6.5. Potential energy exchange
Finally, the forms of the terms in (6.2) for the potential energy are

Qp =
∫
Ω

Bo
We

e2 · j dΩ +
∫
Ω

Bo
We
φv2 dΩ

= −
∫
Ω

1
PeLn

Bo
We

e2 · [M(φ)∇(ηφ + ηs)+∇ηp] dΩ +
∫
Ω

Bo
We
φv2 dΩ, (6.8a)
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Sp = −
∫
Γ

Bo
We

x2 j · n dΓ

=
∫
Γ

1
PeLn

Bo
We

x2[M(φ)∇(ηφ + ηs)+∇ηp] · n dΓ. (6.8b)

Physical interpretation. The sources and sinks of potential energy described by Qp

are related to relative motion in the e2 direction. The first term describes the diffusive
flux in this direction and therefore can be a source or a sink of potential energy. This
contribution acts as a source – if the flux points in the same direction as e2 – since it
leads to fluid particles diffusing against the pull of gravity (pointing towards −e2),
thereby gaining potential energy. This contribution acts as a sink of energy if the
direction of the mass flux is parallel to gravity, thus accepting the pull and losing
potential energy. The second term is related to the non-diffusive motion of the fluid
particles. If the velocity points towards e2 then the particle moves against gravity,
gaining potential energy and vice versa. This term cancels out the third term appearing
in the kinetic energy exchanges and therefore it does not play any role in the energy
budget equation.

Remark 6. As we did in Remarks 4 and 5, we obtain explicit expressions in terms of
φ for the volumetric Qp and boundary Sp terms:

Qp = −
∫
Ω

1
PeLn

Bo
We

[(
−2φ(1− φ)+ 1

2ϑ

)
∇φ · e2

+ Cn
Lm
(1− 2φ)H : ∇φ ⊗ e2 + Bo

We

]
dΩ +

∫
Ω

Bo
We
φv2 dΩ, (6.9a)

Sp =
∫
Γ

1
PeLn

Bo
We

{
Cn
Lm
φ(1− φ)e2 · H

+ x2

[(
−2φ(1− φ)+ 1

2ϑ

)
∇φ − Cn

Lm
φ(1− φ)∇ · H + Bo

We
e2

]}
· n dΓ.

(6.9b)

Despite identifying at least one negative-definite term (sink of energy) in the
energy exchanges discussed above, the definiteness of the potential energy exchanges
cannot be determined beforehand. Finally, normalizing ∇φ, the term H : ∇φ ⊗ e2
geometrically describes how the curvature in the ∇φ direction changes as we move
along the e2 direction.

6.6. Total energy budget
After detailing the different energy exchange terms in the system, we address the total
energy exchanges in the system. Integrating the source and sink terms along with the
fluxes over time leads to the total energy exchange terms, where the volumetric terms
are defined as

E =
∫

t
Q dt=

∫
t

∫
Ω

ε dΩ dt,  = {k, φ, s, p}, (6.10)
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and the input/output of energy diffused across the boundaries is

E io
 |diff =

∫
t
S dt=

∫
t

∫
Γ

ε io
 |diff dΓ dt,  = {k, φ, s, p}. (6.11)

If there exists a momentum flux across the boundaries, the energy must be advected
according to

E io
 |adv =−

∫
t

∫
Γ

ev · n dΓ dt,  = {k, φ, s, p}, (6.12)

and the sum E io
 |diff + E io

 |adv yields the total input/output of energy across the
boundaries.

Finally, the energy budget is defined as

Ek + Eφ + Es + Ep − (Ek + Eφ + Es + Ep + E io
k + E io

φ + E io
s + E io

p )=C, (6.13)

for an arbitrary constant C. We analyse the energy exchange over the whole domain
and use no-flux boundary conditions for all fields in the numerical examples discussed
in the following. Under such a set-up, the energy budget equation reads∑

={k,φ,s,p}
(E − E )(t)= Ek + Eφ + Es + Ep − (Ek + Eφ + Es + Ep)=C. (6.14)

As mentioned before, we relate E and E ,  = {k, φ, s, p}, to extensive energies and
their energy exchanges, whereas e and ε are associated with intensive energies and
their energy exchanges, respectively.

Remarks 4–6 show which terms work as sinks or as both sources and sinks of
energy, as functions of the phase field. Concluding, the sum of energy exchanges in
terms of the phase field reads∑

={k,φ,s,p}
ε = Cn(Lm−We)

WeLm
D : ∇φ ⊗∇φ − 2c

Re
D : D

− φ(1− φ)
PeLn

(
−2+ 1

2ϑφ(1− φ)
)2

∇φ · ∇φ

− φ(1− φ)
PeLn

(
Cn
Lm

)2

(∇ · H) · (∇ · H)

− 2
PeLn

Cn
Lm

(
−2φ(1− φ)+ 1

2ϑ

)
H : H

+ 4
PeLn

Cn
Lm
(1− 2φ)H : ∇φ ⊗∇φ

− 1+ φ(1− φ)
PeLn

Bo
We

(
−2+ 1

2ϑφ(1− φ)
)
∇φ · e2

− 1
PeLn

Bo
We

[
(1− 2φ)

Cn
Lm

H : ∇φ ⊗ e2 + Bo
We

]
. (6.15)

In the system governed by NSCH equations, there are three volumetric terms
that always work as energy sinks. They are the terms proportional to f1(φ)D : D,
f2(φ)∇φ · ∇φ and f3(φ)(∇ · H) · (∇ · H). If the critical temperature ratio ϑ is less
than one, the term proportional to f4(φ)H : H is also a sink. The functions f1, f2, f3



Energy exchange in droplet dynamics 405

x
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FIGURE 4. (Colour online) The plot depicts the function that appears in both the
bulk and the interfacial free energies, f (φ, ϑ)H : H = [−2φ(1− φ)+ 1/2ϑ]H : H, along
the φ axis for ϑ from 0.5 to ∞. The phase field is defined by a hyperbolic tangent,
φ(x)= 0.95[0.5 tanh(10x)+ 0.5] + 0.025. The grey region represents the interface length
l, whereas the red region depicts the region where this function lives when the phase
segregation is assumed, i.e. ϑ > 1.

and f4 are stated as

f1(φ)=− 2c
Re
, (6.16a)

f2(φ)=−φ(1− φ)PeLn

(
−2+ 1

2ϑφ(1− φ)
)2

, (6.16b)

f3(φ)=− 1
PeLn

(
Cn
Lm

)2

φ(1− φ), (6.16c)

f4(φ)=−2
1

PeLn
Cn
Lm

(
−2φ(1− φ)+ 1

2ϑ

)
. (6.16d)

Unfortunately, we cannot establish beforehand if the remaining terms work as sources
or sinks of energy, as these terms are indefinite.

Figure 4 depicts the behaviour of the term f (φ(x), ϑ)H : H = [−2φ(1 − φ) +
(1/2ϑ)]H : H that appears in both the bulk and the interfacial free energies, along
the φ axis for ϑ from 0.5 to ∞. The phase field is defined by a hyperbolic tangent,
φ(x)= 0.95[0.5 tanh(10x)+ 0.5] + 0.025. The grey region represents the interface
length, whereas the red region depicts the region where this function lives when
phase segregation takes place, i.e. ϑ > 1. The term f (φ(x), ϑ)H : H is always positive
if ϑ < 1. After scaling by −2(1/PeLn)(Cn/Lm), the energy exchange term becomes
negative definite, thus it is a sink of energy. However, if ϑ > 1 (red region depicted
in figure 4), the energy exchange term is indefinite, being a source of energy in the
middle region of the interface and becoming a sink of energy as we move away from
the interface. When the phase is segregated, far away from the interfaces, this term
does not play any role. In the extreme case, ϑ→∞, this term acts as a source of
energy.
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Finally, the sum of boundary sources and sinks of energies, as functions of the
phase field, reads

∑
={k,φ,s,p}

ε io
 |diff =

{
v ·
(

2c
Re

D − p
Re

1− Cn
We
∇φ ⊗∇φ

)
+ 1

PeLn

(
1

2ϑ
ln

φ

1− φ + 1− 2φ
) [(
−2φ(1− φ)+ 1

2ϑ

)
∇φ

− Cn
Lm
φ(1− φ)∇ · H + Bo

We
e2

]
+ 1

PeLn
Cn
Lm

(
−2φ(1−φ)+ 1

2ϑ

)
∇φ · H

− 1
PeLn

Cn
Lm
∇φ ·

[
∇φ ⊗

(
2(1− 2φ)∇φ + Cn

Lm
(1− 2φ)∇ · H

)
−
(
−2φ(1− φ)+ 1

2ϑ

)
H + Cn

Lm
φ(1− φ)∇∇ · H

]
+ φ(1− φ)

PeLn

(
Cn
Lm

)2

(∇ · H) · H + φ(1− φ)
PeLn

Bo
We

Cn
Lm

e2 · H

+ x2

PeLn
Bo
We

[(
−2φ(1− φ)+ 1

2ϑ

)
∇φ

−φ(1− φ) Cn
Lm
∇ · H + Bo

We
e2

]}
· n. (6.17)

In our numerical experiments, we present the energy terms using (6.1a–d) and
their related energy exchange terms using (6.3), (6.4), (6.6) and (6.8). We have
opted to compute energy exchanges using the expressions containing the mass flux
as a variable, in those terms related to bulk, interfacial and potential energies, i.e.
(6.4), (6.6) and (6.8) instead of (6.5), (6.7) and (6.9) presented in Remarks 4–6. The
reasons to opt for this approach are twofold. First, we take advantage of the mixed
formulation of Cahn–Hilliard equation, since the auxiliary variable is the chemical
potential. Second, at most second-order derivatives are required for the phase field,
whereas (6.5), (6.7) and (6.9) require fourth-order derivatives of the phase field, which
leads to lower-order approximations of the fields of interest.

To simplify the exposition of results, we split the volumetric energy exchange
terms. Three terms appear in the kinetic energy exchanges: the power expenditure
done by the viscous stress εvisc

k =−D : T visc, the power expenditure done by the
capillary stress εs

k =−D : T s and a term related to the Boussinesq approximation
ε

buoy
k =−(Bo/We)φv2. The bulk free energy exchange is described by only one term,

that is, the power expenditure done by the mass flux on the bulk free energy gradient,
εφ =∇ηφ · j. The interfacial free energy exchange is split into a term related to
changes in the curvature done by the mass flux gradient, εcurv

s = (Cn/Lm)H : ∇j, and
a term that relates the strain rate and capillary effects, εs

s =−(Cn/Lm)D : ∇φ ⊗∇φ,
similarly to εs

k. Finally, in the potential energy exchange, the first term describes
the mass flux in the vertical direction εmass

p = (Bo/We)e2 · j, while the second term
εbuoy

p =−εbuoy
k = (Bo/We)φ v2, which also appears in the kinetic energy exchange, is

related to the Boussinesq approximation. The same notation is employed for extensive
quantities. Finally, we employ the trapezoidal rule to integrate over time the energy
exchanges.
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7. Numerical scheme: divergence-conforming B-spline spaces

Isogeometric analysis has been used successfully to solve high-order phase-field
models, including the Cahn–Hilliard equation (Gómez et al. 2008; Vignal, Collier
& Calo 2013), the Navier–Stokes–Korteweg equations (Gomez et al. 2010), the
Swift–Hohenberg equation (Gomez & Nogueira 2012a) and the phase-field crystal
equation (Gomez & Nogueira 2012b; Vignal et al. 2013, 2015a). Stability conditions
in models for electromagnetism such as the Maxwell equations (Buffa, Sangalli &
Vázquez 2010) and flow models including the Stokes (Buffa, De Falco & Sangalli
2011a; Evans & Hughes 2013a) and Navier–Stokes equations (Evans & Hughes
2013b) have been solved exactly using curl- and divergence-conforming spaces,
respectively. Solving incompressible flow models using divergence-conforming spaces
produces discrete pointwise divergence-free velocity fields. The advantages of such
fields in the conservation of kinetic energy, vorticity, enstrophy and helicity are
discussed by Evans & Hughes (2013c) for the Navier–Stokes equations and are
extensively exploited herein.

The discrete model is solved using the PetIGA-MF (Sarmiento et al. 2015; Vignal
et al. 2015b), a high-performance framework built on top of PetIGA (Côrtes et al.
2014; Dalcin et al. 2015), which uses structure-preserving B-spline basis functions.
This framework simplifies the solution of systems of high-order partial differential
equations, where multifield strategies can provide a high order of approximation and
smoothness in the basis functions, as well as structure-preserving discretizations that
allow exact fulfilment of discrete stability conditions (Buffa et al. 2011b; Côrtes et al.
2015).

The idea of structure-preserving spaces is based on satisfying the exact sequence
given by the discrete version of the de Rham diagram (Buffa et al. 2011b). Here, two
spaces are said to conform to an operator if they satisfy a step in the sequence that
corresponds to that particular operator. PetIGA-MF admits multifield discretizations
and provides gradient-, curl-, divergence- and integral-conforming discrete spaces,
allowing the user to discretize a specific problem in a stable manner.

We use a mixed formulation of the Cahn–Hilliard equation, taking the chemical
potential η as an auxiliary variable. We do this to reduce the computational cost
of using high-order and high-continuity basis functions (Collier et al. 2012, 2013;
Collier, Dalcin & Calo 2014), and to avoid complications with the imposition of
nonlinear boundary conditions that arise from the discretization of the mass flux
in the primal form. Thus, we have four variables, the velocity, pressure, phase and
chemical potential fields. We discretize the velocity and pressure variables using a
divergence- and integral-conforming conjugated pair of spaces that satisfy the inf-sup
stability condition exactly and render a pointwise divergence-free discrete velocity
field. The phase field and chemical potential variables are discretized using H1

spaces. No penetration and free-slip boundary conditions are imposed on the velocity
since we are not seeking to study boundary-layer effects in this work. In addition,
homogeneous Neumann boundary conditions are applied to all the other variables.

We employ the generalized-α time integrator presented by Chung & Hulbert (1993),
Jansen, Whiting & Hulbert (2000) and Espath et al. (2015a) to advance all fields in
time. In all examples presented here, we employ a spectral radius, ρ∞, equal to 0.9.
This means that we add a small amount of numerical dissipation in the system to
avoid numerical instabilities. We also use time step adaptivity based on keeping the
local truncation error of the method under a prescribed tolerance.
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Number Case 1, Case 2, Case 3, Case 4,
2-D 2-D 2-D 3-D

PeLn 103 103 103 103

Re 103 103 103 103

Bo/We 1 1 1 1
(Cn/Lm)−1 2× 104 2× 104 2× 104 104

(Cn/We)−1 103 102 103 103

µ2/µ1 = 10; ϑ = 3/2 (all cases)

TABLE 2. Physical parameters.

Case 1, Case 2, Case 3, Case 4,
2-D 2-D 2-D 3-D

(nx1 , nx2 , nx3) (256, 256) (256, 1024) (256, 1024) (96, 384, 96)

TABLE 3. Meshes.

8. Problem set-up
We perform four numerical experiments to investigate the energy exchanges in the

NSCH system. In addition, we analyse the main features of this kind of flow as
well as the time evolution of the half-distance between the meniscus, i.e. the bridge
length as defined in Eggers, Lister & Stone (1999). The first two-dimensional (2-D)
simulation (case 1) is performed without buoyancy effects, whereas the second and
third 2-D simulations (cases 2 and 3) take into account buoyancy effects to analyse
the merging of droplets when they are rising. The fourth simulation (case 4), which
is three-dimensional (3-D), includes buoyancy effects and deals with a rising droplet
that coalesces with a film of fluid.

Table 2 lists (in the first column, case 1) the physical parameters employed in
the simulation without buoyancy and (in the second and third columns, cases 2 and
3, respectively) the physical parameters employed in each simulation that takes into
account buoyancy. Cases 2 and 3 differ only in the dimensionless Cn/We ratio. We
employ (Cn/We)−1 = 102 and 103 for those simulations, respectively. The fourth
column of table 2 lists the parameters used in case 4.

The domains we consider are shown in figure 5, where the vertical axis is the x2
direction. Figure 5(a) shows the 2-D domain and the initial location of the droplets
employed in case 1. Figure 5(b) depicts the domain and the initial location of the
droplets employed in cases 2 and 3. Figure 5(c) shows the domain with the initial
configuration for the 3-D case 4. Due to symmetry, only a quarter of the domain is
considered in case 4.

Table 3 lists (from the first to third columns) the number of mesh nodes used in the
2-D cases 1, 2 and 3, respectively. The last column lists the number of mesh nodes
employed in the 3-D case 4. Table 4 shows the polynomial degree and continuity
employed. All meshes are uniform.

In the first simulation, case 1, the droplets and the interstitial fluid are endowed
with the same density, but the droplet is less viscous than the interstitial fluid. In the
remaining cases, 2–4, droplets are lighter and less viscous (endowed with density ρ1
and viscosity µ1) than the interstitial fluid (endowed with density ρ2 and viscosity µ2).
To represent the phobic interactions between the phases, ϑ = 3/2> 1 is employed.
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vi p, φ, η

(p, k)d (3, 2)xi , (2, 1)xj6=i (2, 1)

p – degree; k – continuity; d – direction

TABLE 4. Discrete spaces.

Finally, the initial condition in case 1 is given by

h= 0.01; b1 = 1.0; b2 = 0.75;

a1 = tanh

{[(
x1 − 0.375

b1

)2

+
(

x2 − 0.375− 0.15
b2

)2

− 0.152

]
h−1

0.3+ h

}
0.499− 0.5;

a2 = tanh

{[(
x1 − 0.375

b1

)2

+
(

x2 − 0.375+ 0.15
b2

)2

− 0.152

]
h−1

0.3+ h

}
0.499− 0.5;

φ(x1, x2, t= 0)= a1(x1, x2)+ a2(x1, x2)+ 1;


(8.1)

while in cases 2 and 3 they are

h= 0.01;

a1 = tanh
{
[(x1 − 0.375)2 + (x2 − 0.65)2 − 0.152] h−1

0.3+ h

}
0.499− 0.5;

a2 = tanh
{
[(x1 − 0.375)2 + (x2 − 0.30)2 − 0.102] h−1

0.2+ h

}
0.499− 0.5;

φ(x1, x2, t= 0)= a1(x1, x2)+ a2(x1, x2)+ 1.


(8.2)

In case 4, the initial condition is defined as

h= 0.02;

a1 = tanh
{
[(x1 − 0.375)2 + (x2 − 0.5)2 + (x3 − 0.375)2 − 0.152]

× h−1

0.3+ h

}
0.499− 0.5;

a2 =−tanh
(

x2 − 1.25
h

)
0.499+ 0.5;

φ(x1, x2, x3, t= 0)= a1(x1, x2, x3)+ a2(x2)+ 1.


(8.3)

9. Numerical investigations
In this section, we present the four numerical experiments described in the

previous section. These use simple domains and focus on the physical aspects of
the energy exchanges. The first simulation deals with the merging of droplets without
gravitational effects in two dimensions. The second and third simulations deal with
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FIGURE 5. (Colour online) Initial conditions in: (a) the 2-D domain without buoyancy
effects, case 1; (b) the 2-D domain with buoyancy effects, cases 2 and 3; and (c) the 3-D
domain with buoyancy effects, case 4.

rising droplets that merge as they evolve. The fourth and final simulation is 3-D
and deals with a single droplet rising to merge with a thin film of fluid. In the first
simulation, the droplets are less viscous than the interstitial fluid and both fluids
have the same density. In the remaining simulations, the droplets are lighter and less
viscous than the interstitial fluid.

9.1. Two-dimensional investigation: case 1

In the absence of gravity, the flow is driven by surface tension and liquid droplets in
close proximity immersed in a liquid continuum merge into a single bigger droplet.

9.1.1. General flow features in droplet dynamics: case 1
Let us define two characteristic regions in the merging of droplets. The first one

is the region where the interface of the droplets breaks down to combine them into
a single entity. This region does not contain the interface, only the region between
the broken interfaces. We call it the confluence region. The second one is the broken
interface, which has the highest curvature. We call it the meniscus region. These
regions are depicted of figure 6(b). In figure 6(a), we depict the bridge length and
the meniscus curvature, following the usual definition by Eggers et al. (1999).

Initially, both droplets are elliptical. To achieve a state that requires minimum
energy, they merge into a bigger droplet, which minimizes the surface area. This
results in a circular droplet. Figure 7 shows isocurves of the phase-field evolution,
including the initial state, two elliptical droplets and the final state, a steady bigger
circular droplet.
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FIGURE 6. A schematic representation of the meniscus and confluence regions defined
over the isocurve φ = 0.5 during the merging of droplets.

FIGURE 7. Isocurves for φ = 0.1, 0.5 and 0.9.

9.1.2. Meniscus and bridge evolution: case 1
According to the theory presented by Eggers et al. (1999), at early stages of the

merging process, the bridge length (half the distance between the menisci) scales with
t ln t, i.e. r(t)∝ t ln t, and this scaling holds up to r(t). 0.03R, where t is the time
from the initial contact between the droplets and R is the droplet radius. In Eggers
et al. (1999), the authors used the Stokes system together with the sharp-interface
method to track the interface and model the viscous motion. If r & 0.03R the scaling
law changes and the bridge length scales with

√
t, i.e. r(t)∝√t. Although the

theoretical scaling law at early stages of the merging is ∼ t ln t, a linear growth has
been reported by Aarts et al. (2005) and Thoroddsen, Takehara & Etoh (2005) in
experimental analyses.

Figure 8 depicts the meniscus evolution defined on the isocurve φ = 0.5 during the
merging. Figure 9 shows the bridge length evolution, measured from the symmetry
axis to the meniscus point. Due to the fact that the scaling law for the early stage,
r . 0.03R, holds for a very tiny period of time, we restrict ourselves to analysing
the bridge length for r & 0.03R. Thus, we fit the bridge length obtained numerically,
depicted by the red line in figure 9, with a fitted function proportional to

√
t, depicted

by the green line in the same figure.
The simulation results, obtained from the NSCH equations, fit with the scaling

law ∼√t, also verified by the Stokes equation coupled to a sharp-interface method
(Eggers et al. 1999) and by experimental results (Aarts et al. 2005; Thoroddsen et al.
2005). To further verify our model, we also fit the bridge length r(t) with a function
proportional to tb, b being a coefficient to be determined. The resulting coefficient
is b= 0.504. As mentioned before, the theoretical prediction is b= 0.5 to yield the
function ∼√t. This allows us to conclude that there is excellent agreement between
our model and the theoretical/experimental models in the available literature.
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FIGURE 8. Visualization of the meniscus and bridge evolution on φ = 0.5, for case 1,
from ti = 0.2698 to tf = ti + 0.055 using equally spaced isocurves over time.
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FIGURE 9. (Colour online) Bridge length evolution r(t) in case 1. Red line is the
numerical result obtained herein, r(t). Green line is the fitted square root curve, r̄(t)∝√t.

9.1.3. Energy budget of the flow: case 1
Figure 10 presents the extensive energies and their respective energy exchanges

versus time, for case 1. In figure 10(a) the kinetic energy and its energy exchanges
are shown. During the merging, the kinetic energy (solid blue line, Ek) shows a
peak which is quickly damped. The source of kinetic energy yielding that peak is
provided by capillary effects and damped by the viscous ones. Energy exchange terms
are depicted using dashed lines. The sink of the energy done by the viscous stress
is depicted by the dashed red line, −E visc

k , related to D : T visc, while the source of
energy is provided by the capillary stress and depicted by the dashed green line, −E s

k ,
related to D : T s. The term −E visc

k is always a sink of energy, thus its behaviour is
monotonic. In this experiment, the term −E s

k acts as a source of energy. Nevertheless,
its behaviour is non-monotonic, meaning that the overall behaviour of the capillarity
is not only a source but also a sink of energy.
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FIGURE 10. (Colour online) Energy budget for case 1 2-D simulation. (a) Kinetic energy
and its energy exchanges. (b) Bulk free energy and its energy exchange. (c) Interfacial
free energy and its energy exchanges. Energies are depicted in solid lines and their energy
exchanges in dashed lines.

In figure 10(b) we depict the bulk free energy (solid blue line, Eφ) with its energy
exchange term (dashed red line, −Eφ) related to ∇ηφ · j. The bulk free energy is
decreasing and its energy exchange shows a monotonic increase. The overall behaviour
of this energy exchange is dissipative, i.e. it acts as a sink of energy. This means that
the overall behaviour of the mass flux has a positive inner product with the steepest
descent direction of the phase field almost everywhere. This confirms our theoretical
prediction (see Remark 1).

In figure 10(c) we depict the interfacial free energy (solid blue line, Es) with its
energy exchange terms (dashed red line, −E curv

s ) related to H : ∇j and (dashed green
line, −E s

s ) related to D : ∇φ ⊗∇φ. The interfacial free energy decreases in a non-
monotonic manner due to hydrodynamic effects, since the minimum surface area is not
achieved monotonically. That is, the droplet oscillates around the circular configuration
before settling at the steady configuration. A similar phenomenon is observed when
an under-damped system oscillates around equilibrium. Both energy exchange terms
appear as energy sinks. Regarding −E curv

s , this means that the Hessian of φ, H, and
the mass flux gradient, ∇j, have a positive inner product. Finally, the term −E s

s has
the same meaning as −(−E s

k ).
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FIGURE 11. Visualization of the meniscus and bridge evolution on φ = 0.5. (a) Case 2,
from ti = 4.12142 to tf = ti + 0.04. (b) Case 3, from ti = 4.11107 to tf = ti + 0.11. The
isocurves are equally spaced over time.

The total energy should be constant. However, due to numerical errors and
dissipation introduced by the time integrator, we observe a decrease of approximately
0.07 % in the total energy. Mass though is preserved exactly to machine precision.

9.2. Two-dimensional investigation: cases 2 and 3
In these examples, a gravitational field induces a density-driven flow and thus the
droplets we consider in a liquid continuum rise and merge into a single bigger droplet.

9.2.1. Meniscus and bridge evolution: cases 2 and 3
Since this experimental set-up is beyond the assumptions of Eggers et al. (1999),

we fit the evolution of the bridge length with a function proportional to tb. In figure 11
we depict the meniscus evolution defined on the isocurve φ = 0.5 during the rising and
merging. Figure 12 shows the bridge length evolution, measured from the symmetry
axis to the meniscus point. The scaling law obtained by Eggers et al. (1999) (∼√t)
does not hold for cases 2 and 3 due to buoyancy effects and different droplet radii.
However, by using a least-squares fitting of the function ∼tb for the exponent b, we
find that the bridge length can be approximated by ∼t0.57 and ∼t0.62 for cases 2 and 3,
respectively. This suggests that the exponent b departs from 0.5 once buoyancy and
non-uniform radii are considered. In case 1 the flow is driven by capillary effects,
whereas in cases 2 and 3 the motion is mainly driven by buoyancy effects. This fact
suggests that the flow may have different behaviours, i.e. different scaling laws.

9.2.2. General flow features in droplet dynamics: cases 2 and 3
The temporal evolution of the phase field depicted in figures 13 and 14 shows

the phase-field dynamics during the merging and rising of droplets. In case 2,
hydrodynamic effects lead to a variable interface thickness and a deformed shape
as the droplets rise (cf. figure 13). The leading zone shows a narrower interface,
whereas the trailing zone shows a thicker one. The droplet obtained after the merging
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FIGURE 12. (Colour online) Bridge length evolution r(t) (red lines), in (a) case 2 and
(b) case 3. Curves are fitted with a polynomial function r̄(t)∝ tb.
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FIGURE 13. (Colour online) Phase-field time evolution: case 2. (a–e) Snapshots related
to times t= 0, ≈ 4.09, ≈ 4.19, ≈ 4.83 and ≈ 8.70.

shows a double-elliptic shape, the lower ellipse being flatter than the upper one.
Additionally, in case 3, as the (Cn/We)−1 ratio increases (cf. figure 14), the surface
tension dominates over the inertial effects, thus yielding a droplet which is almost
spherical with constant interface thickness.

To characterize the hydrodynamics, the phase, vorticity, pressure and velocities are
presented in figures 15 and 16 for cases 2 and 3, respectively. Relevant flow features
are shown when the merging of the droplets starts. The highest vorticity occurs in
the meniscus zone. Case 3, with the highest (Cn/We)−1 ratio, shows a vorticity that
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FIGURE 14. (Colour online) Phase-field time evolution: case 3. (a–e) Snapshots related
to times t= 0, ≈ 4.07, ≈ 4.10, ≈ 4.25 and ≈ 9.31.

is seven times larger than that of case 2. The pressure jump across the interface of
the biggest droplet is an order of magnitude higher as (Cn/We)−1 grows by an order
of magnitude. This jump grows from 103 to 104 as the (Cn/We)−1 ratio grows from
102 to 103. Likewise, the velocities increase as the (Cn/We)−1 ratio increases. The
horizontal velocity, v1, increases by a factor of five, while the vertical velocity, v2,
increases modestly by a factor of at most two.

The droplet merging process is essentially modified (from case 2 to case 3) as the
(Cn/We)−1 ratio increases by an order of magnitude. In case 2, the smaller (bottom)
droplet pushes the larger (top) droplet, which accompanies the motion. In case 3,
the droplets push against each other at the time of merging. The vertical velocities
evidence these phenomena. In case 2, the vertical velocities inside the droplets are
positive, whereas in case 3, the highest positive vertical velocity occurs in the northern
hemisphere of the smaller (bottom) droplet and the highest negative vertical velocity
is encountered at the southern hemisphere of the larger (top) one.

Stress profiles depicted in the last two snapshots of figures 17 and 18 for
cases 2 and 3, respectively, show the cross-section integrals

∫
Tvisc

22 dA2 and
∫

T s
22 dA2

along the vertical axis x2, with dA2 = dx1dx3. The capillary stress is higher at the
interface, having its peak value at the leading zone during the merging and rising.
The magnitude of the capillary stress is roughly five times higher for the highest
(Cn/We)−1 ratio, in case 3, also showing a smaller difference in magnitude between
the leading and trailing zones after merging (this difference decreases as the droplet
takes a constant interface thickness). During the merging, the viscous stress is higher
at the merging region for both cases. As the (Cn/We)−1 ratio increases, in case 3,
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FIGURE 15. (Colour online) Features of the flow: case 2. (a–e) Snapshots of the phase
field φ, vorticity (1/2)∇× v, pressure p, horizontal v1 and vertical v2 velocities at
t≈ 4.09.
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FIGURE 16. (Colour online) Features of the flow: case 3. (a–e) Snapshots of the phase
field φ, vorticity (1/2)∇× v, pressure p, horizontal v1 and vertical v2 velocities at
t≈ 4.07.
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FIGURE 17. (Colour online) Intensive energies and stress profiles at (a–e) t≈ 4.09 and
( f –j) t≈ 8.70 for case 2. From left to right, the panels in each row show the intensive
kinetic energy ek, bulk free energy eφ , interfacial free energy es, capillary stress profile
Tvisc

22 and viscous stress profile T s
22 (dA2 = dx1dx3).

the viscous stress increases by a factor of two, whereas during the rising process this
difference is five times. During the rising, the resultant viscous stress takes positive
values in the leading zone and negative ones in the trailing zone of the droplet. The
local viscous stress is negative in the northern hemisphere of the droplet, but the
viscous stress that lies outside of the droplet is positive and higher in magnitude.
This is due to the higher viscosity of the interstitial fluid, which results in a positive
viscous stress profile. The opposite behaviour is observed in the southern hemisphere,
which has a negative resultant viscous stress profile.

9.2.3. Energy exchange in the merging and rising of droplets: cases 2 and 3
During the merging of droplets, the highest intensive kinetic energy is located

where the curvature of φ is highest, i.e. in the meniscus region (see figures 17
and 18 for cases 2 and 3, respectively). The source of this kinetic energy is given
by the capillary stress. Evidence for this is taken from the second snapshot depicted
in figures 19 and 20 for cases 2 and 3, respectively, which correspond to the energy
exchange εs

k. It is the source/sink given by the capillary stress D : T s acting as a
source of kinetic energy in the meniscus zone. Although the highest (Cn/We)−1 ratio,
in case 3, shows the highest kinetic energy (approximately 20 times greater than
that observed for a lower (Cn/We)−1 ratio, case 2) after the merging, the resultant
droplets in both cases have similar values of intensive kinetic energy. This intensity
decreases by one and two orders of magnitude after the merging phenomenon, for
cases 2 and 3, respectively (cf. the second snapshot in figures 17 and 18).

The viscous sink of kinetic energy D : T visc, i.e. the energy exchange εvisc
k (first

snapshot depicted in figure 19 and figure 20 for cases 2 and 3, respectively) is also
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FIGURE 18. (Colour online) Intensive energies and stress profiles at (a–e) t≈ 4.07 and
( f –j) t≈ 9.31 for case 3. From left to right, the panels in each row show the intensive
kinetic energy ek, bulk free energy eφ , interfacial free energy es, capillary stress profile
Tvisc

22 and viscous stress profile T s
22 (dA2 = dx1dx3).

high in the confluence and meniscus zones. Increasing the (Cn/We)−1 ratio by an
order of magnitude (case 2 ⇒ case 3) yields a viscous sink greater by two orders
of magnitude. Nonetheless, just before and after the merging, the region of highest
viscous dissipation is located outside the droplet, in the interstitial fluid, near the
equatorial region of the droplet (cf. figure 21), as is usual in a flow around a sphere,
with the same intensity in both cases. The capillary source/sink of kinetic energy
D : T s (second snapshot depicted in figures 19 and 20 for cases 2 and 3, respectively)
acts as a sink of energy in the confluence region while in the meniscus region it acts
as a source of energy. During the rising of the resultant droplet in the case of the
lowest (Cn/We)−1 ratio, the capillary source of kinetic energy is located along the
leading zone, whereas capillarity acts as a sink of kinetic energy on the trailing zone.
However, in the case of the highest (Cn/We)−1 ratio, at the leading zone the capillarity
acts as a source (sink) of kinetic energy just inside (outside) the droplet. At the trailing
zone, the opposite behaviour is observed.

In the merging of droplets, the intensity of the bulk free energy is greater by
an order of magnitude for the lowest (Cn/We)−1 ratio, case 2. After the merging,
the maximum and minimum values are equal for both cases. Meanwhile, the bulk
free energy experiences a reduction by an order of magnitude for case 2 (lowest
(Cn/We)−1 ratio), whereas for case 3 (highest (Cn/We)−1 ratio) the maximum and
minimum values remain the same during the merging and rising. The bulk free
energy density shows its highest value at the interface, whereas its lowest values
define a hydrodynamic wake below the droplets as they rise (see the third snapshot
in figures 17 and 18 for cases 2 and 3, respectively).

The source/sink of bulk free energy occurs mainly at the interface (see the third
snapshot in figures 19 and 20 for cases 2 and 3, respectively). However, there is a
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FIGURE 19. (Colour online) Intensive energy exchanges at (a–e) t≈ 4.09 and ( f –j)
t≈ 8.70 for case 2. From left to right, the panels in each row show the intensive energy
exchanges εvisc

k , εs
k, εφ , εcurv

s and εs
s .

region of energy production contouring the trailing zone that goes down towards the
wake. This region arises due to hydrodynamic effects. In case 2 (lowest (Cn/We)−1

ratio) the bulk free energy exchange is a source and a sink at the trailing and leading
zones, respectively. Nevertheless, in case 3 (highest (Cn/We)−1 ratio) the bulk free
energy exchange is a sink at the interface.

As expected, the interfacial free energy is concentrated along the interface. During
the merging, when the interfaces are coalescing, the interfacial energy decreases. In
addition, at that time and place, the highest source of energy is provided by the first
term in the interfacial energy exchange, εcurv

s ∝ H : ∇j. The second term has the same
effect as the capillary power for kinetic energy exchanges with the opposite sign.

To understand the overall instantaneous behaviour of the energy exchanges,
figure 21 uses blue to indicate regions of energy sources and red to indicate regions
of energy sinks.

9.2.4. Energy budget of the flow: cases 2 and 3
Figure 22 presents the extensive energies and their related energy exchanges over

time for cases 2 and 3. In figure 22(a,e) the potential energy and its energy exchanges
are shown. The potential energy (solid blue line, Ep) shows a linear decay. Its first
term (dashed red line, −E mass

p ) related to e2 · j in the energy exchange is almost zero.
The second term (dashed green line, −E buoy

p ) related to φ v2 in the potential energy
exchange works as a sink of energy, but it cancels out with the third term of the
kinetic energy exchange, −E buoy

k .
In figure 22(b, f ) the kinetic energy and its energy exchanges are shown. During the

merging, the kinetic energy (solid blue line, Ek) shows a smooth (sharp) peak in case
2 (case 3) which is quickly damped. The energy exchange terms are depicted using
dashed lines. The sink of energy done by the viscous stress is depicted by the dashed
red line, −E visc

k , related to D : T visc, while the sink (source) of energy in case 2 (case
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FIGURE 20. (Colour online) Intensive energy exchanges at (a–e) t≈ 4.07 and ( f –j)
t≈ 9.31 for case 3. From left to right, the panels in each row show the intensive energy
exchanges εvisc

k , εs
k, εφ , εcurv

s and εs
s .

Red sink of energy Blue source of energy(a)
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FIGURE 21. (Colour online) Intensive energy exchanges, source (blue regions) and sink
(red regions) of energy: (a) case 2; (b) case 3.

3) is provided by the capillary stress and depicted by the dashed green line, −E s
k ,

related to D : T s. The overall contribution −E s
k changes its behaviour from a sink to

a source of energy when the (Cn/We)−1 ratio increases. Nevertheless, in both cases
the kinetic energy peak is provided by the energy exchange −E s

k .
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FIGURE 22. (Colour online) Energy budget: (a,e) potential energy and its energy
exchange. (b, f ) Kinetic energy and its energy exchanges. (c,g) Bulk free energy and its
energy exchange. (d,h) Interfacial free energy and its energy exchanges, for cases 2 and
3, respectively. Energies are depicted in solid lines and their energy exchanges in dashed
lines.
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FIGURE 23. (Colour online) (a) Q-criterion evolution. (b) Phase-field evolution.

In figure 22(c,g), the bulk free energy (solid blue line, Eφ) is depicted with its
energy exchange term (dashed red line, −Eφ) related to ∇ηφ · j. In all examples
presented here, the overall behaviour of these energies is quite similar: the bulk free
energy has a monotonic decay and its energy exchange acts as a sink of energy.

In figure 22(d,h), the interfacial free energy (solid blue line, Es) is depicted with
its energy exchange terms (dashed red line, −E curv

s ) related to H : ∇j and (dashed
green line, −E s

s ) related to D : ∇φ ⊗∇φ. The interfacial free energy experiences a
sudden drop during the merging. This drop increases as the (Cn/We)−1 ratio increases.
Regarding −E curv

s , this means that the Hessian of φ, H, and the mass flux gradient,
∇j, have a positive inner product considering the overall behaviour. Finally, the term
−E s

s has the same meaning as −(−E s
k ).

Due to numerical errors and dissipation introduced by the time integrator, we
observe a decrease of less than 3.8 % and 3.6 % in the total energy, for cases 2 and
3, respectively. As in case 1, mass is preserved exactly to machine precision.

9.3. Three-dimensional investigation: case 4
In the 3-D case, the flow is also driven by buoyancy effects. The droplet is lighter
and less viscous than the interstitial fluid.

9.3.1. General flow features in droplet dynamics: case 4
The Q-criterion is defined by the scalar Q= 1/2(W :W − D : D), where D is the

symmetric part of the velocity gradient, i.e. the strain rate tensor, and W the anti-
symmetric part of the velocity gradient, i.e. the spin rate tensor. Figure 23 depicts at
the top two isosurfaces of the Q-criterion, i.e. Q=−0.05 and 0.05. Positive (negative)
values show regions where the spin (strain) rate overcomes the strain (spin) rate.

9.3.2. Energy budget of the flow: case 4
Figure 24 presents the extensive energies and their related energy exchanges over

time for this 3-D simulation, case 4. In figure 24(a) the potential energy and its energy
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FIGURE 24. (Colour online) Energy budget: case 4 3-D simulation. (a) Potential energy
and its energy exchange. (b) Kinetic energy and its energy exchanges. (c) Bulk free energy
and its energy exchange. (d) Interfacial free energy and its energy exchanges. Energies are
depicted in solid lines and their energy exchanges in dashed lines.

exchanges are shown. The potential energy (solid blue line, Ep) shows a linear decay
until the droplet merges in a thin film of fluid above the interstitial one, while its first
term (dashed red line, −E mass

p ), related to e2 · j in the energy exchange, is almost zero.
The second term (dashed green line, −E buoy

p ), related to φv2, works in the potential
energy exchange as a sink of energy, but it cancels out with the third term of the
kinetic energy exchange −E buoy

k , as mentioned in cases 2 and 3.
In figure 24(b) the kinetic energy and its energy exchanges are shown. Before

the merging between the droplet and the thin film of fluid, the kinetic energy (solid
blue line, Ek) grows. When the droplet is close to the thin film the kinetic energy
decreases. During the merging, the kinetic energy shows a smooth peak which is
quickly damped by viscous effects. The energy exchange terms are depicted using
dashed lines. The sink of energy contribution done by the viscous stress is depicted
by the dashed red line, −E visc

k , related to D : T visc, while the source/sink of energy
provided by the capillary stress is depicted by the dashed green line, −E s

k , related
to D : T s. Before the merging process, capillary acts as a sink of energy. During the
merging, capillary changes behaviour to act as a source of energy.

In figure 24(c) the bulk free energy (solid blue line, Eφ) is depicted with its energy
exchange term (dashed red line, −Eφ) related to ∇ηφ · j. In all examples presented
here, the overall behaviour of these energies is quite similar.

In figure 24(d) the interfacial free energy (solid blue line, Es) is depicted with its
energy exchange terms (dashed red line, −E curv

s ) related to H : ∇j and (dashed green
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line, −E s
s ) related to D : ∇φ ⊗∇φ. Before the merging, the interfacial free energy

grows to a stable baseline. However, the interfacial free energy experiences a sudden
drop during the merging. The energy exchange term −E curv

s acts as a source of energy
up to the merging, and changes its behaviour during the merging to act as a sink of
energy. A similar behaviour is observed in the second term of the energy exchange,
−E s

s . Finally, the term −E s
s has the same meaning as −(−E s

k ).
Due to numerical errors and dissipation introduced by the time integrator, we

observe a decrease of less than 0.7 % in the total energy. The error in the mass
conservation is 0.002 %.

10. Conclusions
We develop the energy budget equation of the coupled NSCH flow, the chief result

of this work. We derive two new dimensionless numbers and denote these by Lm
and Ln, which relate the critical free energy density to the capillary energy and
the kinetic energy at the molecular scale to the critical free energy, respectively. In
addition, we describe how the mass flux behaves in simple configurations, in one
and two dimensions. We perform highly resolved simulations, showing the energy
exchanges and the energy budget of the flow. As a particular result, we show how
the merging phenomenon of droplets is essentially modified when the (Cn/We)−1

ratio increases. To achieve such a detailed reproduction of the physical features of
these multiphase flows we relied on robust and efficient (in-house and open-source)
software tools, such as PetIGA and PetIGA-MF, to implement a robust discretization
based on isogeometric analysis. We describe and analyse all energetic interactions
at the discrete level as direct counterparts of those derived at the continuous level.
We are able to achieve this by using divergence-conforming discretizations for the
velocity–pressure pair and a mixed form for the phase field and chemical potential.
Finally, we show that our numerical simulations are in good agreement with the
available analytical predictions and experimental results, concluding that employing
NSCH equations to model droplet dynamics is a sensible approach worthy of further
research.
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Appendix A. First and second laws of thermodynamics
A.1. First law

Here, we develop the first law in the classical manner, i.e. directly from the governing
equations of momenta and mass transfer, cf. Guo & Lin (2015). The inner product
between the material derivative of the velocity and the velocity yields the balance

http://dx.doi.org/10.1017/jfm.2016.277
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between the external and internal mechanical rates of work done by the stress tensor.
The product between the material derivative of the phase field and the chemical
potential yields the balance between the external and internal chemical rates of work
done by the mass flux, including buoyancy effects.

We look for the following form:

ėk + ẇint
m = ẇext

m , (A 1a)

∂φψφ̇ + ∂∇φψ · (∇φ)· + ẇint
c = ẇext

c , (A 1b)

where ẇint
m and ẇext

m (ẇint
c and ẇext

c ) account for the internal and external mechanical
power (internal and external chemical power), respectively. Here, ∂φ is the partial
derivative with respect to φ and ∂∇φ is the partial derivative with respect to ∇φ.
Consider the free energy in the form (3.4), i.e. ψ =ψφ +ψs + ep. In the general case
ψ̇ = ∂φψ φ̇ + ∂∇φψ · (∇φ)· + ∂θψ θ̇ , where ∂θ is the partial derivative with respect to
θ , whereas in the absence of heat transfer ψ̇ = ∂φψ φ̇ + ∂∇φψ · (∇φ)·. Thus, (A 1b) is
ψ̇ + ẇint

c = ẇext
c .

In the dimensional form, the internal and external powers are

ẇint
m = D : T , (A 2a)

ẇext
m =∇ · (v · T )− φJρKgv2, (A 2b)

ẇint
c =−∇η · j+ γφD : ∇φ ⊗∇φ, (A 2c)

ẇext
c =−∇ · (η j− γφφ̇∇φ)+ φJρKgv2; (A 2d)

for a general framework, we may include a mass supply j in the right-hand side in
both (2.1b) and (A 2d).

The first law of thermodynamics represents an energy balance and states the
interplay between the kinetic energy ek, the internal energy ei, the rate at which
(mechanical and chemical) power is expended and the rate at which energy in the
form of heat is transferred, i.e.

ėT = ėk + ėi = ẇext
m + ẇext

c −∇ · q+ q, (A 3)

where q is the heat flux and q is a heat sink/source.
Finally, using (A 2), we obtain the first law of thermodynamics

ėi = ∂φψφ̇ + ∂∇φψ · (∇φ)· + D : T visc −∇η · j−∇ · q+ q. (A 4)

In the absence of heat transfer the first thermodynamic law is

ėi = ψ̇ + D : T visc −∇η · j. (A 5)

A.2. Second law
The second law of thermodynamics (in the form of the Clausius–Duhem inequality or
entropy imbalance) states that the entropy s should grow at least with a rate given by
the entropy flux q/θ added to the entropy supply q/θ , i.e.

ṡ >−∇ ·
(q
θ

)
+ q
θ
= 1
θ

(
−∇ · q+ 1

θ
∇θ · q+ q

)
, (A 6)
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where s is the entropy. By definition, the free energy is

ψ = ei − θs. (A 7)

Taking the material derivative, we obtain

ψ̇ = ėi − θ̇s− θ ṡ. (A 8)

Substituting the first law (A 4) and (A 8) into (A 6), and considering that the entropy
is s=−∂θψ , the second law of thermodynamics is obtained in the form of the entropy
imbalance, i.e.

ṡ= 1
θ

(
D : T visc −∇η · j− 1

θ
∇θ · q

)
> 0. (A 9)

In the absence of heat transfer, the entropy imbalance yields

2µ(φ)D : D + α(φ)∇η · ∇η> 0. (A 10)

Finally, this shows that our model guarantees the entropy production if µ(φ), α(φ)> 0.

Appendix B. Identities used in the energy budget
To obtain the energy dissipation related to each energy, we employ some identities

coupled with the governing equations as well as the constitutive relations. We include
the ones used in our derivations here. It is worth noting that all identities have been
derived considering that both second-order tensors D and H are symmetric.

Finally, in the kinetic energy (
1
2v · v

)· = v · v̇, (B 1a)
∇ · (D · v)= (∇ · D) · v + D : D, (B 1b)

∇ · (∇φ ⊗∇φ · v)=∇ · (∇φ ⊗∇φ) · v + D : ∇φ ⊗∇φ. (B 1c)

In the bulk free energy

ψ̇φ(φ)=ψ ′φφ̇ = ηφφ̇, (B 2a)
∇ · ( f (φ)H · ∇φ)= f ′(φ)H : ∇φ ⊗∇φ + f (φ)(H : H + (∇ · H) · ∇φ). (B 2b)

In the interfacial free energy(
1
2∇φ · ∇φ

)· =∇φ · ∇φ̇ − D : ∇φ ⊗∇φ, (B 3a)

∇φ̇ = (∇φ)· +∇v · ∇φ, (B 3b)
∇ · (∇φ · ∇j)= H : ∇j+∇φ ·1j, (B 3c)

∇ · ( f (φ)H · (∇ · H)) = f ′(φ)H : ∇φ ⊗∇ · H
+ f (φ)[(∇ · H) · (∇ · H)+ H : (∇∇ · H)]. (B 3d)

In the potential energy

(φx2)
· = x2φ̇ + φv2, (B 4a)

∇ · (x2 j)= (∇ · j)x2 + j · e2, (B 4b)
∇ · ( f (φ)e2 · H)= f ′(φ)H : ∇φ ⊗ e2 + f (φ)e2 · (∇ · H). (B 4c)
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