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a b s t r a c t

The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has
generated considerable interest as a possible solution to problems arising in molecular dynamics.
Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need
to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a
novel algorithm that guarantees mass conservation, unconditional energy stability and second-order
accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional
simulations involving crystal growth are shown, highlighting the robustness of the method.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

While the tight connection between material processing, struc-
ture and properties has been known for years, a microstructural
model capable of accounting for the atomic scale features affecting
the macroscale properties of a material has not yet been estab-
lished. Progress has nonetheless been made in this direction, and
this work tackles one of the solution strategies that has recently
been proposed through the phase-field crystal equation (PFC).
Developed as an extension to the phase-field formalism in which
the fields take spatially uniform values at equilibrium [1,2], the
free energy functional in the case of the PFC equation is minimized
by periodic states. These periodic minima allow this particular
phase-field model to represent crystalline lattices in two and three
dimensions [3,4], and more importantly, to capture the interaction
of defects that arise at the atomic scale without the use of addi-
tional fields, as is done in standard phase-field equations [5]. This
model has also been shown to successfully cross time scales [6],
thanks in part to the phase-field variable that describes a coarse
grained temporal average (the number density of atoms). This dif-
ference in time scale with molecular dynamics, along with the
periodic density states that naturally give rise to elasticity,
multiple crystal orientations and the nucleation and motion of dis-
locations, are some of the reasons why this tool is being considered
for quantitative modeling [7,8].

Several challenges are unfortunately faced while simulating the
PFC numerically. It is a sixth-order, nonlinear, partial differential
equation, where the solution should lead to a time-decreasing free
energy functional. Recent work on this topic includes [9–14].
Inspired by the work presented for the Cahn–Hilliard equation in
the context of tumor-growth [15], we developed a formulation
capable of conserving mass, guaranteeing discrete energy stability
while having second-order temporal accuracy. The numerical
scheme achieves this through a convex splitting of the nonlinearity
present in the equation, along with the addition of a stabilization
term, while using a mixed form that segregates the partial differen-
tial equation into a system of three second order equations. This is
similar in a sense to what was done in [12], where a mixed form is
also used, but has the added advantage that the well-posedness of
the variational form does not require globally C1-continuous basis
functions. This presents an advantage in terms of computational
cost [16–18] as linear, C0 finite elements can be used.

We provide mathematical proofs for mass conservation, energy
stability and second-order accuracy, properties that the algorithm
possesses, along with two-dimensional numerical evidence that
corroborates our findings. We also present three dimensional
results that showcase the effectiveness and robustness of our algo-
rithm. The paper is structured as follows: In Section 2, we describe
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the phase field crystal equation. In Section 3, we present our
numerical scheme. Section 4 presents numerical examples dealing
with crystal growth in a supercooled liquid. We give concluding
remarks in Section 5.

2. Phase-field crystal model

By using a free energy functional that is minimized by periodic
density fields, the phase-field crystal equation is capable of
representing crystalline lattices [1], and more importantly, captur-
ing the interaction between material defects implicitly. The model
is characterized by a conserved field related to the atomic number
density, that is spatially periodic in the solid phase and constant in
the liquid phase. It has been related successfully to other contin-
uum field theories such as density-functional theory [6,19]. This
work will show examples related to crystalline growth, as the
PFC equation has found much of its success in modeling
microstructural evolution [2,6,20–22], while it has also been used
to model other physical phenomena such as foam dynamics [23],
glass formation [24], liquid crystals [25], elasticity [1] and in the
estimation of material properties [26].

Experimental and computational results can differ significantly,
but work is nonetheless being done to reduce the mismatch
[26–29]. The model that is considered in this work can be improved
by increasing the number of critical wavelengths one considers in
the free energy functional at the expense of computational cost,
as the partial differential equation becomes harder to solve [8,28].
Also, molecular dynamics in a multi-scale setting can be used to
estimate some of the parameters going into the phase-field crystal
equation [30], and inverse formulations of the problem could be
considered to validate the calculations [31]. Hopefully, these
multi-scale approaches will allow for more complete studies on
polycrystalline growth using the PFC equation, such as the ones
presented in [32,33] in the setting of phase-field modeling.

2.1. Model formulation

The phase-field crystal equation was developed to study the
evolution of microstructures, at atomic length scales and diffusive
time scales, by considering a conservative description of the
Rayleigh-Bénard convection problem [3]. The order parameter /
represents an atomistic density field in the model, which is
periodic in the solid state and uniform in the liquid one. The free
energy functional for the phase-field crystal equation in its
dimensionless form is given by [2,4,12]

F½/ðxÞ� ¼
Z

X
Wð/Þ þ 1

2
/2 � 2jr/j2 þ ðD/Þ2
� �� �

dX; ð1Þ

where X 2 Rd represents an arbitrary open domain, with d ¼ 2 or 3,
and W /ð Þ ¼ � �

2 /2 þ 1
4 /4. The parameter � represents a critical tran-

sition variable, which in the case of crystal growth is associated to
the degree of undercooling: the larger its value, the larger the
undercooling is. The free energy functional presented in Eq. (1) is
then minimized to achieve thermodynamical stability. To enforce
this mathematically, one solves the Euler–Lagrange equation for
the free energy, and takes its variational derivative with respect
to /. The variational derivative is given by

dF
d/
¼ @F
@/
�r � @F

@r/
þ D

@F
@D/

¼ ð1þ DÞ2/þW0ð/Þ; ð2Þ

where r�;r and D denote the divergence, gradient and Laplacian

operators, respectively, and W0ð/Þ ¼ ��/þ /3 with ð1þ DÞ2 ¼
1þ 2Dþ DD. The partial differential equation, considering that the
atomistic density field is a conserved quantity [2], is then
formulated as
@/
@t
¼ r � Mr dF

d/

� �
; ð3Þ

where / � / x; tð Þ represents the phase field, x and t represent space
and time, respectively, M is the mobility, and F is the free energy
functional of the system. The partial differential equation, after sub-
stituting Eq. (2) into (3), becomes

@/
@t
¼ r � r 1þ Dð Þ2/þW0ð/Þ

h i
¼ D 1þ Dð Þ2/þW0ð/Þ

h i
;

where the mobility M is assumed equal to a constant of value one.

2.2. Phase-field crystal equation: strong form

The problem is stated as follows: over the spatial domain X and
the time interval �0; T½, given /0 : X#R, find / : X� ½0; T�#R such
that

@/
@t ¼ D 1þ Dð Þ2/þW0ð/Þ

h i
on X��0; T�;

/ðx;0Þ ¼ /0ðxÞ on X;

(
ð4Þ

where /0ðxÞ represents a function that approximates a crystalline
nucleus, and periodic boundary conditions are imposed in all direc-
tions. We discuss the choices made to handle initial conditions in
Section 4.
3. Stable time discretization for the phase-field crystal equation

The phase-field crystal equation is a sixth-order, parabolic par-
tial differential equation. If an explicit time-stepping scheme were
employed to solve it, a time step size Dt on the order of the sixth
power of the grid size would be required. This restriction has moti-
vated research in implicit algorithms [9–12] and adaptive algo-
rithms [34]. On top of this, some properties need to be
guaranteed while solving the equation, such as mass conservation,
defined asZ

X

@/
@t

� �
dX ¼ 0 ð5Þ

due to the fact that density is conserved, as well as strong energy
stability [9], expressed as

F / tnþ1ð Þ½ � 6 F / tnð Þ½ � 8n ¼ 1;2; . . . ;N; ð6Þ

which translates to having the free energy be monotonically
decreasing. In this work, we develop an algorithm that extends
the ideas presented in [11,15], guarantees the properties presented
in Eqs. (5) and (6), while achieving second-order accuracy in time.
The discretization in space is done using isogeometric analysis
(IGA), a finite element method where NURBS are used as basis func-
tions [35]. The method not only allows to control the spatial resolu-
tion of the mesh (h-refinement) and the polynomial degree of the
basis (p-refinement), but also to increase their global continuity
(k-refinement). Isogeometric analysis has successfully been applied
to phase-field modeling [12,13,36–41]. The PFC model, being a non-
linear, sixth-order in space, first-order in time partial differential
equation, allows for many choices in terms of discretizations and
time stepping schemes. High-order, globally continuous basis func-
tions can be easily generated within the IGA framework. This is the
reason why it allows for the straightforward discretization of
high-order partial differential equations. Alternatively, mixed for-
mulations can be employed so as to reduce the continuity require-
ments down to standard C0 spaces used in traditional finite element
methods. This work makes use of a mixed form, where the system
that is solved involves a coupled system of three second-order
equations.
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3.1. Mixed form 2þ 2þ 2: triple second-order split

Eq. (4) can be written as a system that consists of three coupled
second-order equations, given by

@/
@t
¼ Dr in X��0; T�; ð7aÞ

r ¼ 1þ Dð ÞhþW0 /ð Þ in X��0; T�; ð7bÞ
h ¼ 1þ Dð Þ/ in X��0; T�: ð7cÞ
3.1.1. Weak form
Let us denote by V1 a functional space, which is a subset of H1,

where H1 is the Sobolev space of square integrable functions with
square integrable first derivatives. Assuming periodic boundary
conditions in all directions, a weak form can be derived by multi-
plying (7a)–(7c) by test functions q; s;w 2 V1, respectively, and
integrating the equations by parts. The variational problem can
then be defined as that of finding /; h;r 2 V1 such that for all
q; s;w 2 V1

0 ¼ q; _/
� �

X
þ ðrq;rrÞX þ s;r�W0 /ð Þ � hð ÞX þ rs;rhð ÞX

þ w; h� /ð ÞX þ rw;r/ð ÞX;

where the dependence of / on space and time is not explicitly
stated, the L2 inner product over the domain X is indicated by
ð:; :ÞX and _/ :¼ @/

@t .

3.1.2. Semi-discrete formulation
Splitting the equation with the help of the auxiliary variables r

and h allows us to use C0 finite elements, as only H1-conforming
spaces are needed. We let Vh

1 � V1 denote the finite dimensional

functional space spanned by these C0 B-spline basis functions in
two or three spatial dimensions. The problem is then stated as
follows: find /h; hh;rh 2 Vh

1 such that for all qh; sh;wh 2 Vh
1

0 ¼ qh;
_/h

� �
X
þ ðrqh;rrhÞX þ sh;rh �W0 /h

� �
� hh

� �
X

þ rsh;rhh
� �

X
þ wh; hh � /h
� �

X
þ rwh;r/h
� �

X
; ð8Þ

where the weighting functions qh; sh and wh, and trial solutions
rh; hh and /h can be defined as

qh ¼
Xnb

A¼1

qANA; sh ¼
Xnb

A¼1

sANA; wh ¼
Xnb

A¼1

wANA;

rh ¼
Xnb

A¼1

rANA; hh ¼
Xnb

A¼1

hANA; /h ¼
Xnb

A¼1

/ANA;

where the B-spline basis functions NA define the discrete space Vh
1 of

dimension nb and the coefficients qA; sA;wA;rA; hA and /A represent
the control variables.

3.1.3. Time discretization
The time discretization proposed in this work adapts what was

done in [15] for the Cahn–Hilliard equation, to the formulation pre-
sented in Eq. (8) for the phase-field-crystal equation. To do this, the

nonlinear term Wð/Þ ¼ /4

4
� e/2

2
is split as

Wð/Þ ¼ Wcð/Þ �Weð/Þ;

where Wcð/Þ ¼
/4

4
and Weð/Þ ¼

e/2

2
. Both of these functions are con-

vex, which allows us to discretize the nonlinearity in time using a
convex-implicit, concave-explicit treatment, giving the following
fully discrete system
0 ¼ qh;
s/h

nt

Dt

 !
X

þ rqh;rrh
� 	

X

þ sh;rh � hh � W0c /h
nþ1

� �
�W00c /h

nþ1

� � s/h
nt

2

 ! !
X

þ sh; W0e /h
n

� �
þW00e /h

n

� � s/h
nt

2

 ! !
X

þ rsh;rhh � anDtrs/h
nt

� �
X
þ wh; hh � f/h

ng
� �

X

þ rwh;rf/h
ng

� �
X
; ð9Þ

where

� s/h
nt ¼ /h

nþ1 � /h
n,

� f/h
ng ¼ 1

2 /h
nþ1 þ /h

n

� �
,

� W0cð/
h
nþ1Þ ¼ /h

nþ1

� �3
,

� W00c ð/
h
nþ1Þ ¼ 3 /h

nþ1

� �2
,

� W0eð/
h
nÞ ¼ �/

h
n,

� W00eð/
h
nÞ ¼ �,

and the stabilization parameter an needs to comply with

an P
sup W00c /h

nþ1

� �
þW00e /h

n

� �� �� �2

16
¼

sup 3 /h
nþ1

� �2
þ �

� �� �2

16
:

3.1.4. Properties of the numerical scheme
The discretization presented in Section 3.1.3 guarantees mass

conservation, is second-order accurate in time, and possesses
energy stability by construction.

3.1.4.1. Mass conservation. Mass conservation can be verified by
taking Eq. (9), and letting the test function qh be equal to one while
having sh ¼ wh ¼ 0, such that

0 ¼ 1;
s/h

nt

Dt

 !
X

þ 0;rrh
� 	

¼
Z

X

s/h
nt

Dt
dX;

which implies that mass is conserved at the discrete time levels,
that isZ

X
/nþ1dX ¼

Z
X
/ndX:
3.1.4.2. Second-order accuracy in time. A bound on the local trunca-
tion error can be obtained by comparing our method to the
Crank-Nicolson scheme, a well-known second-order accurate
time-stepping algorithm. If we do not spatially discretize (4), but
instead apply the Crank-Nicolson scheme to it, we obtain

s/nt

Dt
¼ D 1þ Dð Þ2f/ng þW0ðf/ngÞ

h i
:

Substituting the discrete time solution f/ng by the
time-continuous solution /ðtnÞ into the above equation gives rise
to the local truncation error. Indeed, we have

s/ðtnÞt
Dt

¼ D 1þ Dð Þ2f/ðtnÞg þW0ðf/ðtnÞgÞ
h i

þ sðtnÞ; ð10Þ

where sðtnÞ represents the global truncation error. It can be shown,
using Taylor series, that such a scheme will give a bound
sðtnÞ 6 CDt2, as was done in [13] in a similar context.



358 P. Vignal et al. / Computers and Structures 158 (2015) 355–368
To prove second-order accuracy in time for our scheme, we
compute the next time-step approximation via the scheme applied
to the exact solution and compare the result to Taylor expansions.
A similar procedure was performed in [15] in the context of
Cahn–Hilliard equations. By looking at only the time discretization
part of (9), and reorganizing the splitting into one equation, we
have that

/nþ1 ¼ /ðtnÞ þ DtD ð1þ DÞ2/ðftgÞ þW0cð/ðtnþ1ÞÞ �W0eð/ðtnÞÞ
�

� 1
2

s/ðtÞtW00c ð/ðtnþ1ÞÞ �
1
2

s/ðtÞtW00eð/ðtnÞÞ � anDtDs/ðtÞt
�
;

ð11Þ

where /ðftgÞ is defined as the Crank-Nicolson (mid-point rule)
approximation

/ðftgÞ ¼ /
tnþ1 þ tn

2

� �
¼ /ðtnþ1Þ þ /ðtnÞ

2
þOðDt2Þ:

We expand W0c / tnþ1ð Þð Þ such that

W0cð/ðtnþ1ÞÞ ¼ W0cð/ðftgÞÞ �W00c ð/ðtnþ1ÞÞ /ðftgÞ � /ðtnþ1Þð Þ þ OðDt2Þ

¼ W0cð/ðftgÞÞ þ
s/ðtÞt

2
W00c ð/ðtnþ1ÞÞ þ OðDt2Þ:

Thus,

W0cðf/gÞ ¼ W0cð/ðtnþ1ÞÞ �
s/ðtÞt

2
W00c ð/ðtnþ1ÞÞ þ OðDt2Þ: ð12Þ

Similarly, we have for the explicit part

W0eðf/gÞ ¼ W0eð/ðtnÞÞ þ
s/ðtÞt

2
W00eð/ðtnÞÞ þ OðDt2Þ: ð13Þ

The stabilization term is of order OðDt2Þ and can be written as

anDtDs/ðtÞt ¼ anðDtÞ2D s/ðtÞt
Dt

� �
¼ anðDtÞ2D @/

@t
þO Dtð Þ

� �
¼ OðDt2Þ: ð14Þ

Using (12)–(14), and substituting them into (11), we obtain

/nþ1¼/ðtnÞþDtD ð1þDÞ2/ðftgÞþW0cðf/gÞ�W0eðf/gÞþOðDt2Þ
� �

:

ð15Þ

Alternatively, by Taylor expansion of the solution, we have

/ðftgÞ ¼ /ðtnþ1Þ �
Dt
2

/0ðftgÞ � 1
2

Dt
2

� �
/00ðftgÞ þ OðDt3Þ;

/ðftgÞ ¼ /ðtnÞ þ
Dt
2

/0ðftgÞ � 1
2

Dt
2

� �
/00ðftgÞ þ OðDt3Þ:

Taking the difference of the above two equations and using (4)
yields

/ðtnþ1Þ�/ðtnÞ¼Dt
@/ðftgÞ
@t

þOðDt3Þ

¼DtD ð1þDÞ2/ðftgÞþW0cðf/gÞ�W0eðf/gÞþOðDt3Þ
� �

:

Finally, taking the difference of the above expression with (15),
we obtain the local truncation error

/ðtnþ1Þ � /nþ1 ¼ OðDt3Þ:

Thus, using the fact that the global truncation error sðtnÞ loses an
order of Dt, the scheme is second-order accurate in time.

3.1.4.3. Energy stability. To prove energy stability, we first consider
the time-discrete form of the scheme, given by

s/nt ¼ DtD~r; ð16Þ
~r ¼ 1þ Dð Þ~h� anDtDs/ntþW0c /nþ1

� 	
� 1

2
s/ntW

00
c /nþ1

� 	
�W0e /nð Þ �

1
2

s/ntW
00
e /nð Þ; ð17Þ

~h ¼ 1þ Dð Þf/ng: ð18Þ

Considering that for any smooth function W we have

sWt ¼ W0ð/nÞs/tþW00ðn1ð/nþ1;/nÞÞ
s/t

2

2

¼ W0ð/nþ1Þs/t�W00ðn2ð/nþ1;/nÞÞ
s/t

2

2
;

for some n1ð/nþ1;/nÞ in between /n and /nþ1, similarly for
n2ð/nþ1;/nÞ. The above formula is the exact Taylor series with
remainder term and no additional terms are required in the
expansion.

Applying these expansions to our particular form of the nonlin-
earity, by Taylor’s theorem, for some nc; ne in between /n and /nþ1,
we have that

sWt ¼ sWct� sWet

¼ W0cð/nþ1Þs/t�W00c ðncÞ
s/t

2

2
�W0eð/nÞs/t�W00eðneÞ

s/t
2

2
:

Since Wc and We are globally convex, we have that W00c ;W
00
e P 0.

Observe that

sWt ¼ W0cð/nþ1Þ �W0eð/nÞ
� 	

s/t� W00c ðncÞ þW00eðneÞ
� 	 s/t

2

2
6 W0cð/nþ1Þ �W0eð/nÞ
� 	

s/t: ð19Þ

Here, we use the fact that the second derivatives are non-negative
and the overall sign of the second derivative terms is negative.
Recalling Eq. (1), we have that the free energy is given by

F½/ðxÞ� ¼
Z

X
Wð/Þ þ 1

2
/2 � 2jr/j2 þ ðD/Þ2
� �� �

dX;

with which we can write, given Eq. (19), that

sF½/ðxÞ�t¼ sFt¼
Z

X
sW /ð Þtþ1

2
s /ð Þ2�2jr/j2þðD/Þ2t

� �
dX

6

Z
X

W0c /nþ1

� 	
�W0e /nð Þ

� 	
s/tdXþ1

2

Z
X

s /ð Þ2�2jr/j2þðD/Þ2
� �

tdX;

given that Wc and We are convex. From Eq. (17), we have that

W0c /nþ1

� 	
�W0e /nð Þ ¼ ~r� 1þ Dð Þ~hþ 1

2
s/ntW

00
c /nþ1

� 	
þ 1

2
s/ntW

00
e /nð Þ þ anDtDs/nt: ð20Þ

We now simplify the notation for the explicit–implicit treatment of
the second derivative and write

W00n;nþ1 ¼ W00c /nþ1

� 	
þW00e /nð Þ ¼ 3/2

nþ1 þ �: ð21Þ

We then multiply Eq. (20) by s/nt ¼ /nþ1 � /n, use Eq. (18), and
integrate over the domain, to obtainZ

X
W0c /nþ1

� 	
�W0e /nð Þ

� 	
s/ntdX

¼
Z

X

~rs/nt� 1þ Dð Þ2f/ngs/nt
� �

dX

þ
Z

X

1
2

s/nt W00n;nþ1

� �
s/nt

� �
dX

þ
Z

X
anDtDs/nts/ntð ÞdX: ð22Þ
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We now proceed to expand the different terms on the right-hand
side of Eq. (22). Integrating the first term by parts, we obtainZ

X
s/ntre dX ¼

Z
X
Dt Dre� �

re dX ¼ �
Z

X
Dtjrre j2dX: ð23Þ

Then, for the second term in Eq. (22), we haveZ
X

1þ Dð Þ2f/ngs/ntdX ¼
Z

X
1þ Dð Þf/ng 1þ Dð Þs/ntdX

¼ 1
2

Z
X

s /nð Þ
2 � 2jr/nj

2 þ ðD/nÞ
2
tdX: ð24Þ

Using s/nt ¼ DtD~r, taking the supremum, and integrating by parts
the third term of Eq. (22), we haveZ

X

1
2

s/nt
2 W00n;nþ1

� �
dX 6 sup W00n;nþ1

� �Z
X

Dt
2

s/nt
2dX

¼ sup W00n;nþ1

� �Z
X

Dt
2

s/ntDrdX

¼ �Dt
2

sup W00n;nþ1

� �Z
X
rs/ntrrdX: ð25Þ

Remark 1. Recalling Eq. (21), W00n;nþ1 ¼ 3/2
nþ1 þ �, which is always

positive. Thus, we may pull out a supremum without an absolute
value. Moreover, since we assume the existence of a solution at
each time step in H3ðXÞ, such a supremum exists.

Integrating the last term of Eq. (22) by parts results inZ
X
anDtDs/nts/ntdX ¼ �

Z
X
anDt rs/ntj j2dX: ð26Þ

Finally, by collecting the terms in Eqs. (23)–(26), and replacing
them in Eq. (22), we obtain

sFt6

Z
X
�Dtjr~rj2�anDt rs/ntð Þ2�Dt

2
sup W00n;nþ1

� �
rs/ntr~r

� �
dX:

ð27Þ

Using Young’s inequality, 2fg 6 bf 2 þ b�1g2, with f ¼ �rs/nt and
g ¼ r~r, we then have that

Dt
2

sup W00n;nþ1

� �
ð�rs/ntÞr~r 6

Dt
4

sup W00n;nþ1 /ð Þ
� �

� b rs/ntð Þ2 þ jr
~rj2

b

 !
;

such that inequality (27) becomes

sFt 6

Z
X
�Dtjr~rj2 � anDt rs/ntð Þ2 þ Dt

4b
sup W00n;nþ1 /ð Þ

� �
jr~rj2

�
þ Dt

4
sup W00n;nþ1 /ð Þ

� �
bðrs/ntÞ

2
�

dX; ð28Þ

which is verified as long as

b P
sup W00n;nþ1

� �
4

and an P
sup W00n;nþ1

� �� �2

16
: ð29Þ

Eq. (28) and the fulfilment of the conditions in (29), guarantee free
energy stability.

Remark 2. The above condition is effectively nonlinear, since the
choice of an depends on /nþ1. However, since the smoothness at
each time step is assumed to be H3, it is continuous and a global
supremum of W00n;nþ1 ¼ 3/2
nþ1 þ � exists at each time step. The

supremum of such a quantity is however a-priori unknown. Thus,
in our implementation the above stability condition is a lagging
condition where an is computed using the current time step.
Another approach involves truncating the second derivative of W
outside the regions ½�1;1�, and interpolating with polynomials as
in [15] in the context of Cahn–Hilliard to obtain a global bound,
such that an can be evaluated independently from Dt.
3.1.4.4. Alternative formulation. This stabilization procedure is also
suitable for the following alternative formulation

@/
@t
¼ Dr in X��0; T�; ð30aÞ

r ¼ 1þ Dð Þ2/þW0ð/Þ in X��0; T�: ð30bÞ

Let us denote by V2 a functional space belonging to H2, where H2 is
the Sobolev space of square-integrable functions with
square-integrable first and second derivatives. Assuming periodic
boundary conditions in all directions, a weak form can be derived
multiplying (30a) and (30b) by test functions q;w 2 V2, respectively,
and integrating the equations by parts. The problem can then be
defined as that of finding /;r 2 V2 such that for all q;w 2 V2

0 ¼ q; _/
� �

X
þ ðrq;rrÞX þ w;r�W0 /ð Þ � /ð ÞX

þ 2 rw;r/ð ÞX � Dw;D/ð ÞX: ð31Þ

This formulation requires the use of at least C1 continuity, but the
use of a convex-implicit and concave-explicit discretization of the
nonlinearity can also be done, such that the fully discrete formula-
tion becomes

0 ¼ qh;
s/h

nt

Dt

 !
X

þ rqh;rrh
� 	

X þ wh;rh � f/h
ng

� �
X

� wh;W0c /h
nþ1

� �
�W00c /h

nþ1

� � s/h
nt

2

 !
X

þ wh;W0e /h
n

� �
þW00e /h

n

� � s/h
nt

2

 !
X

þ rwh;2rf/h
ng � anDtrs/h

nt
� �

X
� Dwh;Df/h

ng
� �

X
;

where

� an P
sup W00n;nþ1ð Þ½ �2

16 ,

� W00n;nþ1 ¼ 3/2
nþ1 þ �.

3.1.5. Numerical implementation
With regards to the implementation, we let the global vectors of

degrees of freedom associated to /h
n;rh

n and hh
n be Un;Rn and Hn,

respectively. The residual vectors for this formulation are then
given by

R/ðUn;Unþ1;Rnþ1;Hnþ1Þ; R/ ¼ fR/
Ag; A ¼ 1; . . . ;nb;

RrðUn;Unþ1;Rnþ1;Hnþ1Þ; Rr ¼ fRr
Ag; A ¼ 1; . . . ;nb;

RhðUn;Unþ1;Rnþ1;Hnþ1Þ; Rh ¼ fRh
Ag; A ¼ 1; . . . ;nb;

where

R/
A ¼ NA;

s/h
nt

Dt

 !
þ rNA;rrh
� 	

;



t = 0 t =25 t =150

Fig. 1. Snapshots of the approximate dimensionless atomistic density field showing its evolution throughout the simulation, which was run using a computational mesh
composed of 256� 266 C0 linear elements, with a time step size of 1:0.

Fig. 2. Free energy evolution. The free energy is monotonically decreasing
throughout the simulation, which was run using a computational mesh composed
of 256� 266 C0 linear elements. A time step size of 1 was used, with an an value of
0.25.

Fig. 3. Mass evolution. The changes in mass are below the criterion for numerical
convergence, which validates numerically that mass is indeed conserved. The error
can be attributed to quadrature as well as the iterative solver.

(a) Free energy evolution of overkill and
              reference solutions.

(b) Relative error between reference and
       overkill free energy evolutions.

Fig. 4. Free energy evolutions of reference and overkill solutions. In (a), the free
energy evolution of an overkill solution using 128� 133½ � quartic C0 elements and a
time step size of 10�3 is shown along with the free energy evolution corresponding
to a reference solution obtained using 128� 133½ � quadratic C0 elements and a time
step size of 10�2. An inset plot is shown on the bottom right corner of (a), in the
region where the error is highest throughout the simulation as can be verified in (b),
where the relative error between the reference and overkill free energy evolutions
is shown.
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Fig. 5. Log of L2-norm of the error at time T ¼ 150 versus the log of time step size
Dt. The value of the slope confirms the method is second-order accurate in time. The
mesh used was made up of 128� 133½ � quadratic C0 elements, such that the spatial
error could be considered negligible in the simulations. The parameter an was given
a value equal to 0:25, which complies with the bound presented in Section 3.1.3 for
this problem.
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Rr
A ¼ NA;rh � hh � W0c /h

nþ1

� �
�W00c /h

nþ1

� � s/h
nt

2

 ! !

þ NA; W0e /h
n

� �
þW00e /h

n

� � s/h
nt

2

 ! !
þ rNA;rhh � anDtrs/h

nt
� �

;

Rh
A ¼ NA; h

h � f/h
ng

� �
þ rNA;rf/h

ng
� �

:

The resulting system of nonlinear equations for Unþ1;Rnþ1 and Hnþ1

is solved using Newton’s method, where UðiÞnþ1;R
ðiÞ
nþ1 and HðiÞnþ1 corre-

spond to the i-th iteration of Newton’s algorithm. The iterative pro-
cedure is specified in Algorithm 1.

Algorithm 1. Iterative procedure to solve the 2þ 2þ 2 mixed
form

Taking Uð0Þnþ1 ¼ Un;R
ð0Þ
nþ1 ¼ Rn, and Hð0Þnþ1 ¼ Hn, for i ¼ 1; ::; imax,

(1) Compute the residuals RðiÞ/ ;R
ðiÞ
r ;R

ðiÞ
h , using

UðiÞnþ1;R
ðiÞ
nþ1;H

ðiÞ
nþ1.

(2) Compute the Jacobian matrix KðiÞ using the i-th iterates.
This matrix is given by
KðiÞ ¼
K// K/r K/h

Kr/ Krr Krh

Kh/ Khr Khh

0B@
1CA
ðiÞ

; ð32Þ

where the individual components of each submatrix of the Jacobian
are defined in the Appendix in Eqs. (38)–(46).
(3) Solve the linear system
Fig. 6. Mass conservation. The maximum relative error over the entire evolution of
the system remained below 10�9 for the simulations considered in this work. The
mesh used was made up of 128� 133½ � quadratic C0 elements, such that the spatial
error could be considered negligible in the simulations. The parameter an was given
a value equal to 0:25, which complies with the bound presented in Section 3.1.3 for
this problem.
K// K/r K/h

Kr/ Krr Krh

Kh/ Khr Khh

0B@
1CA
ðiÞ

DU

DR

DH

0B@
1CA
ðiþ1Þ

¼
R/

Rr

Rh

0B@
1CA
ðiÞ

:

(4) Update the solution such that

Unþ1

Rnþ1

Hnþ1

0B@
1CA
ðiþ1Þ

¼
Unþ1

Rnþ1

Hnþ1

0B@
1CA
ðiÞ

�
DU

DR

DH

0B@
1CA
ðiþ1Þ

:

Steps (1) through (4) are repeated until the norms of
the global residual vector are reduced to a certain
tolerance (10�8 in all the examples shown in this
work) of their initial value. Convergence is usually
achieved in 2 or 3 nonlinear iterations per time step.
4. Numerical results

The implementation of the numerical scheme described in
Section 3 was done using PetIGA [42–44], which is a software
framework built on top of PETSc [45,46], that delivers a
high-performance computational framework for IGA. Tutorials for
the framework are being developed and can be found in [47].
This section describes the calculation of the free energy for the dis-
cretization, presents numerical evidence to verify the results in
Section 3.1.3 in two dimensions, and shows the performance of
the method on some more challenging three-dimensional prob-
lems related to the growth of crystals in a supercooled liquid.

4.1. Free-energy computation

If one uses spaces that are at least C1-continuous, the free
energy can be computed as
F½/h
n� ¼

Z
X

Wð/h
nÞ þ

1
2

/h
n

� �2
� 2jr/h

nj
2 þ ðD/h

nÞ
2

� �� �
dX:
Modifications are needed in the 2þ 2þ 2 case though, as the dis-
crete atomistic density /h lives in H1 only. As such, D/h

n is unde-
fined. This obstacle can be overcome by making use of the
auxiliary variable h, as
h ¼ 1þ Dð Þ/ () D/ ¼ h� /;
such that the free energy functional can be computed as
F½/h
n� ¼

Z
X

Wð/h
nÞ þ

1
2

/h
n

� �2
� 2jr/h

nj
2 þ ðhh

n � /h
nÞ

2
� �� �

dX:



Fig. 7. Free energy monotonicity. The free energy functional of the system exhibits
strong energy stability, such that F / tnþ1ð Þ½ � 6 F / tnð Þ½ �. This is independent of the
time step size used as can be observed in the plot. The mesh used was made up of
128� 133½ � quadratic C0 elements, such that the special error could be considered

negligible in the simulations. The parameter an was given a value equal to 0:25,
which complies with the bound presented in Section 3.1.3 for this problem.

(a) Δt = 0.25

(c) Δt= 0.75

Fig. 8. Stabilization parameter variation in two dimensions. The free energy is plotted as
(d) Dt ¼ 1:0, respectively. Increasing the stabilization parameter an or the time step size
steady state solution. The mesh consists of 128� 133½ � quadratic C0 elements, such that
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Remark 3. The use of the auxiliary variables means that they
also have to be initialised, as the initial condition is only specified
for /. A nonlinear L2 projection is performed to solve the
semidiscrete versions of Eqs. (7b) and (7c), shown in the last two
lines of Eq. (8).
4.2. Numerical validation of the stable scheme

As a test example, we simulate the two-dimensional growth of
a crystal in a supercooled liquid, using one-mode approximations
for the density profiles of the crystalline structures [1,2]. The
one-mode approximation corresponding to a triangular configura-
tion is defined as

/S xð Þ ¼ cos
qffiffiffi
3
p y
� �

cos qxð Þ � 1
2

cos
2qffiffiffi

3
p y
� �

; ð33Þ

where q represents a wavelength related to the lattice constant [3],
and x and y represent the Cartesian coordinates. A solid crystallite is
initially placed in the center of a liquid domain, which is assigned
an average density �/. The initial condition becomes

/0 xð Þ ¼ �/þxðxÞ A/S xð Þð Þ; ð34Þ
(b) Δt = 0.5

(d) Δt = 1.0

a function of time using time step sizes (a) Dt ¼ 0:25, (b) Dt ¼ 0:5, (c) Dt ¼ 0:75 and
Dt results in a less accurate dynamical representation, but converges to the correct
the spatial error could be considered negligible in the simulations.



(a) t = 0

(b) t = 100

(c) t = 250 (steady state)

Fig. 9. Crystal growth in a supercooled liquid in three dimensions. The images show the evolution of one crystallite surrounded by an undercooled liquid. The labels indicate
the computational time. On the left-hand side, we show isosurfaces of the solution, in the middle we present the same isosurfaces where a thresholding filter has been applied
to only show the atoms, such that the periodic nature of the lattice is clear, while on the right-hand side we present slices of the solution across the indicated planes.
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where A represents an amplitude of the fluctuations in density, and
the scaling function xðxÞ is defined as

xðxÞ ¼ 1� jjx�x0 jj
d0

� �2
� �2

if jjx� x0jj 6 d0

0 otherwise

8><>:
where x0 is the coordinate of the center of the domain, and d0 is 1=6

of the domain length in the x-direction. Different lattices can be
reproduced, depending on the values used for � and the average
atomistic density �/. Phase diagrams have been developed in both
two [3] and three [29] dimensions. In order to avoid mismatches
on the boundaries when the grain boundaries meet, the



Fig. 10. Free energy evolution of a single crystal. The free energy is monotonically
decreasing while the mass remains constant throughout the simulation (the
maximum relative error stays below 10�9), which was run using a mesh composed
of ½150�3 linear elements. A time step size of 0:5 was used, with an an value of 0.5.
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computational domain X is dimensioned in such a way as to make it
periodic along both directions. To do this while keeping the prob-
lem within a reasonable size, we use the frequency present in Eq.
(33) to define the domain X as

X ¼ 0;
2p
q

a
� �

� 0;

ffiffiffi
3
p

p
q

b

" #
;

where a and b are assigned values of 10 and 12, respectively. These
numbers are chosen so that the domain is almost square. The num-
ber of elements in the y-direction, Ny, is then defined as

Ny ¼
b
ffiffiffi
3
p

2a
Nx þ

1
2

$ %
;

where Nx represents the number of elements in the x-direction. This
adjustment is made to account for the difference in length between
both directions, and to have the element size h in both directions be
approximately equal. The variables q and A are assigned their corre-
sponding equilibrium values, obtained by minimizing the free
energy presented in Eq. (1), with respect to both A and q, while
using the approximation of Eq. (33) to define the atomistic density.
For the results presented in this section, the values used are

� ¼ 0:325; �/ ¼
ffiffiffi
�
p

2
; A ¼ 4

5
�/þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15�� 36�/2

p
3

 !
; q ¼

ffiffiffi
3
p

2
:

The parameter � is chosen such that the triangular structure is
stable [3,29]. Snapshots of the simulation are shown in Fig. 1. The
initial crystallite placed in the center of the domain grows at the
expense of the supercooled liquid, a state which is enforced by
the degree of undercooling �. The non-increasing free energy and
mass conservation properties that need to be satisfied for a numer-
ical scheme to be valid when solving this equation, can be verified
in Figs. 2 and 3, respectively.

This same example was used to perform the numerical valida-
tion of the results presented in Section 3.1.3. The stabilization term
an was assigned a value of 0:25 for the range of time and space res-
olutions covered in this section. This choice of an was made after a
priori numerical experimentation for this specific example using
Eqs. (29) and (21).

In order to study the convergence in time of the proposed
method, a reference solution is required. We obtain this reference
solution using a grid with 128� 133½ � elements, p2C0 basis func-
tions, and a time step size Dt ¼ 10�2. This solution was obtained
within a matter of hours using a workstation with 32 processor
cores. The order of the basis function p was elevated in the case
of this solution, as it is a more sensible choice than going for
h-refinement with p1C0 basis functions, as shown in [48]. Then, to
assess the quality of this reference solution in terms of the error
in the free energy, an overkill solution was calculated using a grid
with 128� 133½ � elements, p4C0 spaces, and an order of magnitude
smaller time step size Dt ¼ 10�3. Using the same machine as before,
the overkill solution took a week and a half to be completed. The
free energy evolutions of the reference and overkill solutions are
compared in Fig. 4(a), while the relative error evolution between
the free energies is shown in Fig. 4(b). This comparison allows us
to conclude that the reference solution is refined enough in space
and time to proceed with the study of convergence in time.

We proceed to study the temporal order of accuracy of the
method. Using the same spatial resolution as our reference solu-
tion, we perform simulations over a range of time step sizes, and
focus on the L2-error norm in space

jjejj2 ¼
Z

X
/h � /h

	

� �2
dX

� �1=2

;

where /h are the coarse-in-time solutions and /h
	 corresponds to the

reference solution. We compute this error at t ¼ 150, point in time
at which the crystal lattice has already grown over the whole
domain. The convergence in time is shown in Fig. 5, where we
can observe that the numerical scheme is indeed second-order
accurate. The maximum relative error in mass with different time
step sizes is shown in Fig. 6. We conclude that the mass is indeed
conserved in all cases, as the maximum relative error in mass for
different time step sizes stays below 10�9. Fig. 7 shows the time
evolution of free energy with different time step sizes.
Free-energy monotonicity is verified for all the cases, as no
increases in free energy are observed. The increase in time step size
nonetheless leads to a poorer dynamical representation of the free
energy evolution, which is consistent with other published results
[34,38]. Care has to be taken when choosing an, as increasing the
stabilization parameter has a negative effect on the free energy
approximation. This can be seen in Fig. 8(a)–(d), where free energy
is plotted for different values of an and Dt. Nonetetheless, as long as
the stabilization parameter an complies with the bound presented
in equation ð29Þ, free energy is dissipated. Even though the dynam-
ics of the equation are influenced by the time step size, the method
converges to the right steady state solution. This could be an advan-
tage if what is looked for is the steady state solution to a problem,
such as in control of dynamical systems [49]. The use of an slows
down the dynamics of the equation, and an effective time-step size
needs to be determined. We plan to study this point further in
future work [48].

The results in this section validate numerically the theoretical
results presented in Section 3.1.3 with regards to this numerical
formulation, and prove that it is indeed mass conserving, uncondi-
tionally energy-stable, and is second-order accurate in time.
4.3. Three dimensional simulations: crystalline growth in a
supercooled liquid

In this section, we deal with the three dimensional version of
the example described in Section 4.2, as well as a more challenging
case, where two crystallites oriented in different directions are
grown in the same domain. The PFC equation in this latter case is
able to capture the emergence of grain boundaries.
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4.3.1. Crystalline growth in a supercooled liquid
In this example, the growth of a single crystal with a BCC structure

is simulated. Mathematically, the crystallite is now defined as [3,4]

/BCC xð Þ ¼ cos xqBCCð Þ cos yqBCCð Þ þ cos xqBCCð Þ cos zqBCCð Þ
þ cos yqBCCð Þ cos zqBCCð Þ; ð35Þ
Fig. 11. Polycrystalline growth in a supercooled liquid in three dimensions. The images
placed in a domain with different orientations. Grain boundaries emerge once the crystals
elements. A time step size of 0:5 was used, with an an value of 0.5.
where x; y and z represent the three-dimensional Cartesian coordi-
nates and qBCC represents a wavelength related to the BCC crys-

talline structure. The computational domain is X ¼ ½0;20p�3, with
periodic boundary conditions being assumed again in all directions.
Similarly to what is done in Eq. (34) for the two-dimensional case,
the initial condition is defined as
show isocontours of the atomistic density field, where two crystallites are initially
meet. The labels indicate the computational time, while the mesh used ½150�3 linear



Fig. 11 (continued)
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/o xð Þ ¼ �/BCC þx xð Þ A/BCC xð Þð Þ; ð36Þ

where �/BCC represents again the average density of the liquid
domain, and A represents an amplitude of the fluctuations in den-
sity. To ensure the stability of the BCC phase, the parameters of
the equation are given the following values

� ¼ 0:35; �/BCC ¼ �0:35; qBCC ¼
1ffiffiffi
2
p ; A ¼ 1:
The initial crystallite is placed in the center of the domain. Similarly
to what happens in the two dimensional case, the crystal grows at
the expense of the liquid. Snapshots of the solution can be observed
in Fig. 9. The figure shows that the initial BCC pattern is repeated
over the whole domain, until reaching a steady state. The simula-

tion uses a uniform grid composed of ½150�3 linear elements, and
a time step size Dt ¼ 0:5. The stabilization parameter an is set to
0:5. The free energy evolution for the simulation is shown in
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Fig. 10. There are no increases in free energy. The mass also remains
constant throughout the simulation.

4.3.2. Polycrystalline growth of BCC crystals
As a more challenging example, we present a case of polycrys-

talline growth, where two initial crystallites with a BCC configura-
tion oriented in different directions are placed in the domain. They
are set at different angles, so as to eventually observe the emer-
gence of grain boundaries when both crystallites meet. The compu-

tational domain is X ¼ 0;40p½ �3, and periodic boundary conditions

are imposed in all directions. A uniform mesh comprised of ½150�3

linear elements is used, along with a time step size Dt ¼ 0:5. The
stabilization parameter an is set to 0:5. A system of local
Cartesian coordinates ðxC ; yC ; zCÞ was used to generate the crystal-
lites in different directions, by doing an affine transformation of
the global coordinates ðx; y; zÞ to produce a rotation b along the z
axis, with

xC

yC

zC

0B@
1CA ¼ cos bð Þx� sin bð Þy

cos bð Þxþ sin bð Þy
z

0B@
1CA: ð37Þ
Fig. 12. Free energy evolution of two crystals. The free energy is monotonically
decreasing while the mass remains constant throughout the simulation (the
maximum relative error stays below 10�9), which was run using a mesh composed
of 1503C0 linear elements. A time step size of 0:5 was used, with an an value of 0.5.

Time

Fig. 13. Effect of rotation angle on the crystallites. The plotted solutions use a time
step size Dt ¼ 0:5, a stabilization parameter an ¼ 0:5, and ½150�3 linear elements.
Three different rotation angles b are considered.
The first crystallite was defined as in Eq. (35), with b ¼ 0, while

the second one was rotated by an angle b ¼ p
8

. The same equation

parameters that were used in Section 4.3.1 are used in this exam-
ple, and result in the simulation shown in Fig. 11. Grain boundaries
appear when the two crystals meet while growing, given the orien-
tation mismatch. The free energy evolution is shown in Fig. 12,
where no increases in free energy are seen.

Changing the rotation angle b can have an effect on the free
energy of the system, as it influences the grain boundary that is
formed. The free energy evolution is plotted in Fig. 13 for three dif-
ferent values of b. In the two cases where the rotation angle is rela-

tively small (i.e., b ¼ p
8

and b ¼ p
16

), the same steady state is reached,

as the equation leads both systems to the same energetically mini-

mal state. On the other hand, when the change in b is larger (
p
2

), the

free energy value at steady state differs significantly. The grain
boundary formed is considerably different than the ones considered
before, as the two grains meet at a significantly different position.
Further studies are needed to conclude if the free energy differences
are qualitatively accurate and compare well with experiments.

5. Conclusion

In this work we present a provably, unconditionally stable algo-
rithm to solve the phase-field crystal equation. This algorithm con-
serves mass, possesses strong energy stability and is second-order
accurate in time. Theoretical proofs are presented, along with
numerical results that corroborate them. The numerical formula-
tion recurs to a mixed finite element formulation that deals with
a system of three coupled, second-order equations. Three dimen-
sional results involving polycrystalline growth are also presented,
showcasing the robustness of the method. The implementation
was done using PetIGA, a high performance isogeometric analysis
framework, and the codes are freely available to download.1
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Appendix A

A.1. Jacobian for the 2þ 2þ 2 mixed form

The Jacobian components of K in Eq. (32) are defined as

K//
AB ¼ NA;

NB

Dt

� �
X

; ð38Þ

K/r
AB ¼ rNA;rNBð ÞX; ð39Þ

K/h
AB ¼ 0; ð40Þ

Kr/
AB ¼

1
2

NA;NBð ÞX W000c /h
nþ1

� �
s/h

nt�W00c /h
nþ1

� �
þW00e /h

n

� �� �
� anDt rNA;rNBð ÞX; ð41Þ

Krr
AB ¼ NA;NBð ÞX; ð42Þ

Krh
AB ¼ � NA;NBð ÞX þ rNA;rNBð ÞX; ð43Þ

Kh/
AB ¼ �

1
2

NA;NBð ÞX þ
1
2
rNA;rNBð ÞX: ð44Þ

Khr
AB ¼ 0; ð45Þ

Khh
AB ¼ NA;NBð ÞX: ð46Þ
1 https://bitbucket.org/dalcinl/petiga.
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A.2. Running the code

Both PETSc and PetIGA are regularly maintained and updated,
so it is worthwhile to download their respective repositories
through the version control systems Git2 and Mercurial.3 These
tools can be used to clone the PETSc and PetIGA repositories with
the following commands

� git clone http://bitbucket.org/petsc/petsc
� hg clone http://bitbucket.org/dalcinl/PetIGA

PETSc must be configured and installed before installing PetIGA.
After completing the PetIGA installation, the igakit repository can
be cloned.

� hg clone https://bitbucket.org/dalcinl/igakit

Igakit is a Python-based pre-processing and post-processing
tool for PetIGA. Further information on these software packages
can be found in [42,43,45–47], and the discretization proposed in
this work can be found in the demo/ directory of the PetIGA
sources.
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