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Abstract Generalized-α methods are very popular in structural dynamics. They are1

methods of Newmark type and combine favourable stability properties with second2

order convergence for unconstrained second order systems in linear spaces. Recently,3

they were extended to constrained systems in flexible multibody dynamics that have4

a configuration space with Lie group structure. In the present paper, the convergence 15

of these Lie group methods is analysed by a coupled one-step error recursion for6

differential and algebraic solution components. It is shown that spurious oscillations7

in the transient phase result from order reduction that may be avoided by a perturbation8

of starting values or by index reduction. Numerical tests for a benchmark problem from9

the literature illustrate the results of the theoretical investigations.10

1 Introduction11

In R
3, the configuration of rigid body systems with large rotations can not be rep-12

resented globally and free of singularities by elements of a linear space. Lie group13

formulations provide an alternative to avoid these singularities. They can characterize14
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the rotational degrees of freedom for each body by a matrix of the rotation group15

SO(3) and result in nonlinear configuration spaces. This approach is not restricted to16

rigid body systems but has been used successfully as well in a finite element frame-17

work for the simulation of flexible multibody systems that is based on the set of nodal18

translations and rotations [19].19

For time integration, Simo and Vu-Quoc proposed in 1988 a Newmark type method20

that exploits such Lie group structure of the configuration space directly and does21

not rely on local parametrizations of the Lie group [37]. Starting with the work of22

Crouch and Grossman [15] and Munthe-Kaas [31,32], the time integration of ordinary23

differential equations (ODEs) on Lie groups found later also much interest in the24

numerical analysis community, see the comprehensive review paper by Iserles et al.25

[23] and the compact summary in Chapter IV of the monograph by Hairer et al. [20].26

In each time step of a Lie group method, elements of the Lie algebra are mapped27

to the Lie group resulting in a substantial numerical effort for evaluating exponential28

mappings, Cayley transforms or similar expressions [13,23]. Furthermore, the group29

action in the Lie group setting is in general not commutative and may result in a rapidly30

growing number of Lie brackets (in the case of matrix Lie groups: matrix commutators)31

that have to be evaluated to achieve high order in Lie group time integration [20,32,39].32

The application to mechanical multibody systems has always been an important33

special case of Lie group time integration since the tensor product structure of the34

configuration space and the low dimension of its factors allow substantial savings35

of computing time in the evaluation of matrix exponentials and commutators, see,36

e.g., [7,13]. Moreover, the rather large numerical effort of high order Lie group time37

integration methods is not relevant in a method of lines approach to the simulation of38

flexible multibody systems since second order methods are sufficient to keep the time39

discretization error in the range of the errors resulting from the space discretization of40

flexible bodies by finite elements [19].41

For these reasons, a new family of Lie group methods has recently been introduced42

that is tailored to the application in flexible multibody dynamics [9,10]. It is based on43

the generalized-α method for the time integration of unconstrained systems in linear44

spaces [14] that belongs to the class of Newmark type methods and exploits by con-45

struction the 2nd order structure of the equations of motion [34]. The generalized-α46

method is very popular in structural dynamics since it combines second order con-47

vergence with algorithmic damping of spurious high frequency oscillations resulting48

from the space discretization by finite elements [14,17,40].49

For the application in multibody dynamics, the generalized-α method has to50

be extended to constrained systems with differential-algebraic equations of motion51

[19,21,40]. Following the classical approach of Cardona and Géradin [11], the method52

is applied directly to the index-3 formulation of the equations of motion [21] to support53

a straightforward implementation in existing finite element codes for unconstrained54

systems, see also [6] and the discussion of implementation aspects in industrial multi-55

body system software in [33]. For the time integration in linear spaces, the combi-56

nation of Newmark type methods with index reduction techniques for differential-57

algebraic equations (DAEs) has found much interest in the literature [2,24–26,29,40]58

but requires the additional evaluation of hidden constraints and the implementation of59
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Error analysis of generalized-α Lie group

projection or stabilization techniques to avoid the drift-off effect [21] which might be60

non-trivial in an existing large scale simulation package.61

There is one generalized-α method from the family of DAE Lie group time inte-62

gration methods being proposed in [9] that proved to be especially attractive from the63

practical viewpoint. In the present paper, we analyse the convergence of this method64

in full detail. Considering local and global errors as elements of the corresponding65

Lie algebra [38], the convergence analysis of generalized-α methods for constrained66

systems in linear spaces [3] has recently been extended to the Lie group setting [4,10].67

This analysis is based on an equivalent multi-step representation of the method [17]68

and proves second order convergence on finite time intervals. It is shown furthermore69

that the numerical results in long-term integration are not sensitive w.r.t. the definition70

of starting values since initial errors “are damped out rapidly” [3].71

Numerical tests with time step sizes in the range of practical interest have shown,72

however, that initial errors may strongly be amplified in a transient phase [8]. This73

phenomenon was even observed for generalized-α methods with exact starting values74

for position and velocity coordinates and optimal algorithmic parameters αm , α f , β,75

γ according to Chung and Hulbert [14]. Moreover, the transient spurious oscillations76

were found as well in the application to constrained systems in linear spaces. This77

strange transient behaviour of generalized-α methods depends strongly on the choice78

of starting values and could not be analysed by our previous approach that relies on79

the equivalent multi-step representation according to Erlicher et al. [17], see [3,4,10].80

Therefore, the convergence analysis in the present paper is strictly based on the81

original one-step formulation of the generalized-α method. For index-2 DAEs in lin-82

ear spaces that result from mechanical systems with non-holonomic constraints, the83

analysis of Jay [24] shows that such one-step error recursions for Newmark type meth-84

ods are on the one hand technically rather complicated but offer on the other hand deep85

insight in the convergence behaviour and provide the theoretical basis for developing86

variable time step size methods, see also [25].87

For holonomic constraints and direct application of the Lie group generalized-α88

method to the index-3 formulation of the equations of motion, the analysis of the89

one-step error recursion results in a set of consistency and stability conditions for the90

algorithmic parameters αm , α f , β, γ that guarantee convergence with a global error91

being composed of a second order error term that dominates in long-term integration92

and a first order error term that may be amplified in a transient phase but is finally93

damped out by algorithmic damping.94

For parameters αm , α f , β, γ that are optimal in the sense of Chung and Hulbert95

to achieve algorithmic damping with parameter ρ∞ ∈ [0, 1), see [14], the first order96

error terms in the starting values are amplified by powers of a 3 × 3 Jordan block97

with eigenvalue µ = −ρ∞ that grow like n2|µ|n/2. The first order error term may98

be eliminated perturbing the starting values for velocity and acceleration components.99

Alternatively, the generalized-α method could be applied to a Gear–Gupta–Leimkuhler100

like index reduced formulation of the equations of motion [4,18]. Here, the one-step101

error recursion shows second order convergence and the order reduction phenomenon102

does not appear.103

The remaining part of the paper is organized as follows: In Sect. 2, we discuss104

the Lie group setting in more detail and introduce the generalized-α Lie group time105
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integration method. Numerical test results for the simulation of the mathematical106

pendulum illustrate the spurious oscillations in the transient phase that are in the focus107

of interest of the present paper. The detailed convergence analysis in Sect. 3 is based108

on a coupled error recursion for differential and algebraic solution components and109

proves that the spurious oscillations in the transient phase result from order reduction.110

In Sect. 4, we discuss how to improve the transient behaviour by perturbed starting111

values or by index reduction. All results of the theoretical analysis are illustrated by112

simulation results for the Lie group representation of a rotating heavy top under the113

influence of gravity, see Sect. 5. The paper ends with a short summary and outlook in114

Sect. 6.115

2 Lie group time integration by generalized-α methods116

2.1 Lie group setting and equations of motion117

The dynamics of flexible multibody systems with large rotations may be studied con-118

veniently in a Lie group setting, see [19] and the more recent discussion in [9]. For119

this problem class, the equations of motion form a differential-algebraic equation120

q̇ = DLq(e) · ṽ, (1a)121

M(q)v̇ = −g(q, v, t) − B⊤(q)λ, (1b)122

�(q) = 0 (1c)123

on a k−m dimensional submanifold {q ∈ G : �(q) = 0} of a k-dimensional manifold124

G with Lie group structure, see [20, Section IV.6] for a compact introduction to matrix125

Lie groups and for further references. As discussed in [9], the coordinates q may, e.g.,126

represent the set of nodal translations and rotations in a finite element discretization of127

the flexible multibody system. It is important to observe that no local parametrization128

of the Lie group G is needed to formulate the equations of motion (1).129

In this Lie group setting, the composition operation G × G → G is denoted by130

qa ◦ qb ∈ G for any two elements qa, qb ∈ G. The configuration of the system is131

represented by q ∈ G with a time derivative q̇(t) being determined by the velocity132

vector v ∈ R
k in (1a). Here, the term DLq(e) · ṽ denotes the directional derivative of133

the left translation map Lq : G → G, y �→ q ◦ y evaluated at the identity element134

e ∈ G in direction ṽ ∈ g. The map DLq(e) is a bijection between the Lie algebra135

g of Lie group G and the tangent space Tq G of G at point q ∈ G. The Lie algebra136

g := TeG itself forms a linear space which is known to be isomorphic to R
k with an137

invertible linear mapping (̃•) : R
k → g, v �→ ṽ.138

The dynamic equations (1b) with the symmetric positive definite mass matrix M ∈139

R
k×k and the vector g of external, internal and complementary inertia forces are140

coupled to the m constraints (1c) by Lagrange multipliers λ ∈ R
m and by the matrix141

B ∈ R
m×k that represents the constraint gradients in the sense that142

D�(q) ·
(
DLq(e) · w̃

)
= B(q)w, ( w ∈ R

k) (2)143
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Error analysis of generalized-α Lie group

with D�(q) · (DLq(e) · w̃) denoting the directional derivative of � : G → R
m

144

evaluated at q ∈ G in the direction DLq(e) · w̃ ∈ Tq G.145

Throughout the present paper, we suppose that M(q), g(q, v, t) and �(q) are146

smooth in the sense that they are as often continuously differentiable as required147

by the convergence analysis.148

Hidden constraints Holonomic constraints like (1c) restrict the set of consistent posi-149

tion coordinates q ∈ G and imply so-called hidden constraints on velocity and accel-150

eration variables that are given by time derivatives of �(q(t)) = 0, see, e.g., [21].151

Differentiating the constraints (1c) once, we obtain the hidden constraints on the level152

of velocity coordinates:153

0 =
d

dt
�(q(t)) = D�(q(t)) · q̇(t) = D�(q) ·

(
DLq(e) · ṽ

)
= B(q)v, (3)154

see (1a) and (2). A second differentiation of (1c) results in155

0 =
d2

dt2
�(q(t)) =

d

dt
(B(q(t))v(t)) .156

To express this time derivative in compact form, the vector valued function157

� : G × R
k → R

m, �(q, z) = B(q)z (4)158

is introduced. Similar to the directional derivative of �(q) that could be represented159

by the matrix valued function B, there is a matrix valued function that represents the160

directional partial derivative of �(q, z) with respect to q ∈ G. This matrix valued161

function is linear with respect to z ∈ R
k since � is linear with respect to z by162

construction. For any z ∈ R
k , we get163

Dq�(q, z) ·
(
DLq(e) · w̃

)
= R(q)(z, w), (w ∈ R

k) (5)164

with a bilinear form R(q) : R
k × R

k → R
m . The hidden constraints on the level of165

acceleration coordinates166

0 =
d

dt
(B(q(t))v(t)) =

d

dt
� (q(t), v(t)) = B(q)v̇ + R(q) (v, v) (6)167

result from product and chain rule. A third differentiation of the holonomic constraints168

(1c) would result in a system of linear equations that could be solved for λ̇(t) provided169

that matrix B(q) has full rank along the solution curve q(t), see [21]. DAE (1) has170

differentiation index 3 and is called the index-3 formulation of the equations of motion.171

Consistent initial values Initial values q(t0), v(t0) for (1) have to be consistent with172

the (hidden) constraints (1c), (3), i.e., �(q(t0)) = B(q(t0))v(t0) = 0. Then, v̇(t0)173

and λ(t0) are uniquely defined by the non-singular system of k + m linear equations174

(1b), (6):175

123

Journal: 211 Article No.: 0633 TYPESET DISK LE CP Disp.:2014/4/25 Pages: 31 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

M. Arnold et al.

(
M0 B⊤

0

B0 0

)(
v̇(t0)

λ(t0)

)
=

(
−g0

−R0

)
(7)176

with M0 := M(q(t0)), etc.177

2.2 Generalized-α methods for constrained systems on Lie groups178

The time integration of (1) by generalized-α Lie group methods is based on the obser-179

vation that (1a) implies180

q(t + h) = q(t) ◦ exp

(
hṽ(t) +

h2

2
˜̇v(t) + O(h3)

)
, (h → 0) (8)181

with the exponential map exp : g → G that has the series expansion exp(w̃) =182 ∑
i w̃i/ i ! for matrix Lie groups G and may be evaluated efficiently for typical appli-183

cations in flexible multibody dynamics, see [8,9].184

As proposed in [9], we consider a generalized-α method for the index-3 formulation185

(1) of the equations of motion that updates the numerical solution (qn, vn, an,λn) in186

a time step tn → tn + h of step size h according to187

qn+1 = qn ◦ exp(h�̃qn), (9a)188

�qn = vn + (0.5 − β)han + βhan+1, (9b)189

vn+1 = vn + (1 − γ )han + γ han+1, (9c)190

(1 − αm)an+1 + αman = (1 − α f )v̇n+1 + α f v̇n (9d)191

with vectors v̇n+1, λn+1 satisfying the equilibrium conditions192

M(qn+1)v̇n+1 = −g(qn+1, vn+1, tn+1) − B⊤(qn+1)λn+1, (9e)193

�(qn+1) = 0. (9f)194

The method is initialized by starting values q0, v0, v̇0 that are close to consistent195

initial values q(t0), v(t0), v̇(t0), see (7), and by a starting value a0 ≈ v̇(t0). A more196

sophisticated choice of starting values v0, a0 will be discussed in Sect. 4.2 below.197

Method (9) is characterized by real parameters αm , α f , β and γ that are selected198

based on a linear stability analysis and on order conditions to guarantee second order199

convergence, see also [9,14]. In (9), the numerical solution (qn+1, vn+1, an+1,λn+1)200

is implicitly defined by a system of nonlinear equations that may be solved by a201

Newton–Raphson iteration in terms of (�q⊤
n ,λ⊤

n+1)
⊤ ∈ R

k+m , see [10, Section 4]. For202

sufficiently small time step sizes h > 0 and any qn ∈ G, vn ∈ R
k with �(qn) = O(h2),203

B(qn)vn = O(h), we may use ideas of the proof of Theorem VII.3.1 in [21] to204

show that (9) defines locally uniquely a vector �qn ∈ R
k with �qn = vn + O(h).205

Therefore, the argument h�̃qn = O(h) of the exponential map in (9a) remains in a206

small neighbourhood of 0̃ ∈ g on which exp is a diffeomorphism.207

In the long-term simulation of conservative mechanical systems, Newmark type208

methods like (9) do not share the excellent nonlinear stability properties of variational209
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Fig. 1 Mathematical pendulum: Global error in λ for x0 = 0 (. . . ) and x0 = 0.2 (+)

integrators [28] and of structure preserving algorithms in the sense of Simo and Tarnow210

[36], see also the detailed analysis of energy conservation in Newmark type methods211

for linear unconstrained systems in [27]. On the other hand, the collocation conditions212

(9e) allow a straightforward and efficient implementation of the generalized-α Lie213

group method in large scale simulation tools for flexible multibody systems with214

structural damping and other dissipative terms resulting, e.g., from friction or control215

structures. Furthermore, the method may be generalized directly to more complex216

model equations of constrained systems that are typical of industrial applications in217

multibody dynamics [2,5].218

For kinematically excited systems (1) with time dependent constraints �(q(t)) =219

c(t), constraint (9f) is substituted by �(qn+1) = c(tn+1). Moreover, the convergence220

analysis of the present paper may be extended to constrained systems with joint friction221

that are characterized by force vectors g in (1b) and (9e) depending on the constraint222

forces −B⊤(q)λ. To keep the presentation compact we omit the technical details223

of these more general investigations that require that matrix BM−1((∂g/∂λ) + B⊤)224

remains non-singular along the solution, see [2,5].225

2.3 Spurious oscillations in the transient phase: example226

Second order convergence of generalized-α methods for constrained systems (1) has227

been studied for several benchmark problems from mechanical engineering [8–10]. In228

[8], we observed in a transient phase spurious oscillations in λ that “are damped out229

rapidly” [3]. In the present section we study this problem in more detail for a simple230

test problem in a linear space, G = R
2.231

Example 1 Consider a mathematical pendulum of mass m and length l in Cartesian232

coordinates q = (x, y)⊤ that are constrained by (x2 + y2 − l2)/2 = 0, see (1c). In233

(1), we have M = mI2, g = (0, g)⊤ with m = l = 1, g = 9.81 (physical units are234

omitted). We fix the total energy E = m(ẋ2
0 + ẏ2

0 )/2 + mgy0 to E = m/2 − mgl and235

determine the consistent initial values x0, y0, ẋ0, ẏ0 and λ0 by the initial deviation x0236

from the equilibrium position.237

Method (9) is applied with parameters according to (52) and damping parameter238

ρ∞ = 0.9, see [14]. Figure 1 shows on a short time interval the global error in λ239

for initial values x0 = 0 (marked by dots) and x0 = 0.2 (marked by “+”) for two240

different step sizes h. If we start in the equilibrium position, the error is very small but241
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for x0 = 0.2, the oscillating error in λ reaches a maximum amplitude of 2.48 × 10−1
242

for h = 2.0 × 10−2 and 1.23 × 10−1 for h = 1.0 × 10−2. After about 100 time steps243

these transient errors are damped out.244

The numerical results in Fig. 1 show that in the transient phase the generalized-α245

method (9) may suffer from spurious oscillations of amplitude O(h) which seems to246

contradict the second order convergence results in [3,10]. Spurious oscillations and247

order reduction disappear if we start at the equilibrium position x0 = 0. Reducing248

the damping parameter ρ∞ in (52), the oscillations are damped out more rapidly but249

may still be observed. The results are not sensitive to the definition of a0 that was in250

Fig. 1 set to a0 = (ẍ0, ÿ0)
⊤. We repeated the numerical test for the less obvious but251

theoretically more favourable setting a0 = (ẍ(t0 + �αh), ÿ(t0 + �αh))⊤ + O(h2),252

see [25] and Lemma 1 below, and obtained up to plot accuracy identical results.253

3 Convergence analysis254

The convergence analysis of the generalized-α Lie group method (9) in our recent255

work [10] was guided by the convergence analysis of the (classical) generalized-α256

method for index-3 DAEs in linear spaces, see [3], that uses an equivalent multi-step257

representation according to Erlicher et al. [17]. As proposed by Wensch [38], the Lie258

group structure of the configuration space in (1) was addressed considering the errors259

in components q ∈ G as elements of the Lie algebra g.260

The multi-step representation allows a compact proof of second order convergence261

that ignores, however, the precise influence of starting values q0, v0, v̇0, a0 on the262

transient behaviour [3,10,17]. Therefore, we develop in the present section a pure263

one-step error recursion for (9) resulting in a convergence theorem that highlights the264

source of spurious oscillations and order reduction in the transient phase and shows265

how to fix these problems by modified starting values v0, a0, see Sect. 4.2. It explains266

furthermore, why the spurious oscillations may disappear for certain initial values, see267

Example 1, and for alternative Lie group settings [8].268

3.1 Local and global errors269

Local truncation error The convergence analysis will show that the numerical solution270

qn , vn , an , v̇n , λn approximates q(tn), v(tn), v̇(tn + �αh), v̇(tn), λ(tn) with tn = nh271

and a shift parameter �α ∈ R that will be fixed in Lemma 1 below. Inserting these272

function values in (9), we get non-vanishing residuals l
(•)
n (local truncation errors) in273

(9a,c,d):274

q(tn+1) = q(tn) ◦ exp(h�̃q(tn)) ◦ exp(̃l
q
n), (10a)275

�q(tn) = v(tn) + (0.5 − β)hv̇(tn + �αh) + βhv̇(tn+1 + �αh), (10b)276

v(tn+1) = v(tn) + (1 − γ )hv̇(tn + �αh) + γ hv̇(tn+1 + �αh) + lvn, (10c)277

(1 − αm)v̇(tn+1 + �αh) + αm v̇(tn + �αh) = (1 − α f )v̇(tn+1) + α f v̇(tn) + lan .278

(10d)279
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Error analysis of generalized-α Lie group

In (10a), we followed the approach of Wensch [38] who studied local and global errors280

of Lie group integrators for first order ordinary differential equations in the correspond-281

ing Lie algebra g. Lemma 1 below shows that (10a, b) defines for sufficiently small282

time step sizes h > 0 a locally unique local truncation error l̃
q
n ∈ g with l

q
n = O(h3)283

since q(tn)◦exp(h�̃q(tn)) ∈ G coincides up to terms of size O(h3) with q(tn+1) ∈ G284

and the exponential map exp is a diffeomorphism between neighbourhoods of 0̃ ∈ g285

and e ∈ G.286

Lemma 1 With �α := αm − α f , the local truncation errors are bounded by287

‖l
q
n‖ = O(h3),

1

h
‖l

q
n+1 − l

q
n‖ = O(h3), ‖lvn‖ = O(h3), ‖lan‖ = O(h2) (11)288

if the parameters γ , αm , α f satisfy the order condition289

γ =
1

2
− �α =

1

2
+ α f − αm . (12)290

Proof The estimates for lvn , lan follow straightforwardly by Taylor expansion of v(t),291

v̇(t) at t = tn . To estimate l
q
n , we consider the flow of q̇(t) = DLq(e) · ṽ(t) that292

is locally represented by a smooth function ν̃ : [−h0, h0] × R × G → g with an293

appropriate constant h0 > 0 and ν(0; t, q(t)) = v(t), ( t ∈ R ):294

q(t + h) = q(t) ◦ exp (hν̃(h; t, q(t))) . (13)295

For a given smooth function v(t), the Magnus expansion [20], see also [30], of hν̃ is296

given by297

hν̃(h; t, q(t)) = hṽ(t) +
h2

2
˜̇v(t) +

h3

6
˜̈v(t) +

h3

12
[̃v(t),˜̇v(t)] + O(h4) (14)298

with the commutator [A, C] := AC − CA that vanishes identically in linear spaces299

but introduces an additional error term in the Lie group integrator whenever ṽ(t) and300

˜̇v(t) do not commute. With q(tn+1) = q(tn + h), we obtain from (10a) and (13)301

q(tn) ◦ exp (hν̃(h; tn, q(tn))) = q(tn) ◦ exp(h�̃q(tn)) ◦ exp(̃l
q
n),302

303

exp(̃l
q
n) = exp(−h�̃q(tn)) ◦ exp(hν̃(h; tn, q(tn))). (15)304

This product of matrix exponentials is studied by the Baker–Campbell–Hausdorff305

formula that results in306

exp(A) ◦ exp(C) = exp

(
A + C +

1

2
[A, C] + O(h)‖[A, C]‖

)
(16)307

for matrices A, C with A = O(h), C = O(h), see [20, Section III.4.2]. With A :=308

−h�̃q(tn) and C := hν̃(h; tn, q(tn)), the local truncation error l̃
q
n in (10a) may be309

estimated by310
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M. Arnold et al.

l̃
q
n = hν̃(h; tn, q(tn)) − h�̃q(tn) + O(h)‖hν̃(h; tn, q(tn)) − h�̃q(tn)‖311

=
h3

6

((
1 − 6β − 3(αm − α f )

)˜̈v(tn) +
1

2
[̃v(tn),˜̇v(tn)]

)
+ O(h4) (17)312

since [A, C] = [A + C, C] − [C, C] = O(h)‖A + C‖ if C = O(h). This local313

truncation error l̃
q
n = O(h3) varies smoothly in the sense that the leading error terms314

of l̃
q
n and l̃

q
n+1 coincide up to O(h4) and ‖̃l

q
n+1 − l̃

q
n‖/h = O(h3). ⊓⊔315

Global errors As for the local truncation error, the global error in components q ∈ G316

is defined by an element of the Lie algebra:317

q(tn) = qn ◦ exp( ẽ
q
n ), (18)318

see [38]. Here, we assume implicitly that the numerical solution qn is in a small319

neighbourhood of the analytical solution q(t) at t = tn such that ẽ
q
n ∈ g is uniquely320

defined in a neighbourhood of 0̃ ∈ g on which exp is a diffeomorphism, see also321

the more detailed discussion of the technical assumption (19) below. For solution322

components v(t), v̇(t) and λ(t), that are elements of linear spaces, the global errors323

e
(•)
n are defined by (•)(tn) = (•)n + e

(•)
n . In a similar way, the notation ea

n with324

v̇(tn +�αh) = an + ea
n is introduced for the error in the numerical solution vector an .325

In the convergence analysis, we consider the equations of motion (1) on a finite326

time interval [t0, tend] and assume that the numerical solution always remains in a327

small neighbourhood of the analytical one. More precisely, we suppose that there are328

positive constants h0 and C and a sufficiently small constant γ0 > 0 such that329

‖e
q
m‖ ≤ Ch, ‖ev

m‖ + ‖ea
m‖ + ‖eλ

m‖ ≤ γ0 (19)330

is satisfied for all h ∈ (0, h0] and all m with t0 + mh ∈ [t0, tend]. With this technical331

assumption, we will prove error bounds of size O(h1+ε)+O(h2) with some ε > 0 for332

components q and v and of size O(h) for components λ, v̇ and a, see Theorem 1 below.333

Using this convergence result, assumption (19) with an appropriate (small) constant334

h0 > 0 may finally be verified by induction whenever the assumptions of Theorem 1335

are satisfied, see, e.g., part (c) of the proof of Theorem VII.3.5 in [21] for a detailed336

discussion.337

3.2 One-step error recursion: differential components338

The one-step error recursion is derived separately for the differential solution compo-339

nents q, v and the algebraic ones, see also Sect. 3.5 below. Because of the nonlinear340

Lie group structure, the error analysis for components q ∈ G is technically more341

complicated than the one for components v ∈ R
k :342

Lemma 2 If the order condition (12) is satisfied then343

e
q
n+1 = e

q
n + O(h)(εn + h‖ea

n+1‖) + O(h3), (20)344

ev
n+1 = ev

n + (1 − γ )hea
n + γ hea

n+1 + O(h3) (21)345

123

Journal: 211 Article No.: 0633 TYPESET DISK LE CP Disp.:2014/4/25 Pages: 31 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Error analysis of generalized-α Lie group

with the notation346

εn := ‖e
q
n‖ + ‖ev

n‖ + h‖ea
n‖ + h‖eλ

n‖ (22)347

that allows to summarize higher order error terms in hεn . Furthermore, the scaled348

increment of global errors e
q
n is bounded by349

�h ẽ
q
n :=

ẽ
q
n+1 − ẽ

q
n

h
= ẽ v

n + (0.5 − β)h̃e a
n + βh̃e a

n+1 + [̃e
q
n , ṽ(tn)]350

+O(h)(εn + h‖e a
n+1‖) +

1

h
l̃

q
n . (23)351

Proof Definition (18) implies exp(̃e
q
n+1) = (qn+1)

−1◦q(tn+1). Therefore, we observe352

similar to the analysis in [10,35]353

exp(̃e
q
n+1) = exp (−h�̃qn) ◦ (qn)−1 ◦ q(tn) ◦ exp (h�̃q(t n)) ◦ exp(̃l

q
n ),354

= exp
(

h̃e
�q
n − h�̃q(tn)

)
◦ exp(̃e

q
n ) ◦ exp(h�̃q(tn)) ◦ exp(̃l

q
n |)355

with e
�q
n := �q(tn)−�qn = ev

n+(0.5−β)hea
n+βhea

n+1 . As in the proof of Lemma 1,356

the product of exponentials is studied by the Baker–Campbell–Hausdorff formula and357

(16). For matrices A = h̃e
�q
n − h�̃q(tn) = −hṽ(tn)+ O(h)(εn + h‖ea

n+1‖) + O(h2)358

and C = ẽ
q
n = O(h), see (19), we get359

exp(A) ◦ exp(C) = exp

(
A + C +

h

2
[̃e

q
n , ṽ(tn)] + O(h2)(εn + h‖ea

n+1‖)

)
360

since [−ṽ(tn), ẽ
q
n ] = [̃e

q
n , ṽ(tn)]. Another h/2 ∗ [̃e

q
n , ṽ(tn)] term results from the361

composition of exp(A + C + . . .) with exp(h�̃q(tn)). Finally, we obtain362

exp(̃e
q
n+1) = exp

(
ẽ

q
n + h̃e

�q
n + h [̃e

q
n , ṽ(tn)] + l̃

q
n + O(h2)(εn + h‖ea

n+1‖)
)

.

(24)363

Since the arguments of the exponentials on both sides of (24) coincide, estimates (20)364

and (23) follow straightforwardly from (24) and ‖l
q
n‖ = O(h3).365

Estimate (21) for the global error ev
n results from the difference of (10c) and (9c)366

taking into account ‖lvn‖ = O(h3), see also Lemma 1. ⊓⊔367

3.3 Error estimates for algebraic components368

Error bounds for v̇ are obtained from the equilibrium conditions (1b), (9e) that are369

satisfied both for the analytical and for the numerical solution.370

Lemma 3 If the order condition (12) is satisfied then371

ev̇
n + eM−1B⊤λ

n = O(1)εn, ‖ev̇
n‖ = O(1)(εn + ‖eλ

n‖), (25a)372

ev̇
n+1 + eM−1B⊤λ

n+1 = O(1)εn + O(h)(‖ea
n+1‖ + ‖eλ

n+1‖) + O(h3). (25b)373
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M. Arnold et al.

Here we used the notation e
(C •)
n := C(q(tn), v(tn),λ(tn), tn)e

(•)
n for matrix valued374

functions C = C(q, v,λ, t).375

Proof To prove (25a), the equilibrium conditions (1b), (9e) at t = tn are multiplied376

by M−1(q(tn)) and M−1(qn), respectively. For the error bound (25b) at t = tn+1,377

the global errors ‖e
q
n+1‖, ‖ev

n+1‖ are substituted by the estimates (20), (21) from378

Lemma 2. ⊓⊔379

Remark 1 With slightly stronger assumptions, Lemma 3 may be generalized to con-380

strained systems with joint friction resulting in a force vector that depends on the381

constraint forces −B⊤(q)λ. In that case, we have g = g(q, v,λ, t) and matrix B⊤
382

in eM−1B⊤λ
n+1 is replaced by (∂g/∂λ) + B⊤. To make sure that the argument of ∂g/∂λ383

remains in an O(h)-neighbourhood of the analytical solution, constant γ0 in (19) has384

to be substituted by Ch whenever ∂g/∂λ �= 0. This sharper technical assumption may385

again be verified by standard arguments if the non-negative constant δ in Theorem 1386

satisfies δ > 0.387

3.4 Time discrete approximations of (hidden) constraints388

In linear spaces, the key to the convergence analysis of algebraic components in the389

time integration of higher index DAEs are difference approximations of (hidden)390

constraints combined with appropriate bounds for the approximation errors, see, e.g.,391

[3]. Similar time discrete approximations of original and hidden constraints may be392

obtained in the Lie group setting. They allow to estimate products of the constraint393

matrix B(q) with error terms e
q
n and �he

q
n :394

Lemma 4 The global errors e
q
n ∈ R

k satisfy395

−D0,n = B (q(tn)) e
q
n + O(h)‖e

q
n‖, (26)396

−D1,n = B (q(tn)) �he
q
n + R (q(tn))

(
e

q
n , v(tn)

)
+ O(h)(‖e

q
n‖ + ‖�he

q
n‖)397

(27)398

with399

D0,n := �(qn), Dk+1,n :=
Dk,n+1 − Dk,n

h
, (k ≥ 0). (28)400

Note, that formally Dk,n = 0, see (9f), but in a practical implementation there may be401

small residuals that result from stopping the corrector iteration after a finite number402

of Newton steps and from round-off errors.403

Proof For ϑ ∈ [0, 1], we define qn,ϑ := q(tn) ◦ exp(−ϑ ẽ
q
n ) ∈ G such that qn,0 =404

q(tn), qn,1 = qn and get405

−
d

dϑ
�(qn,ϑ ) = B(qn,ϑ )e

q
n = B (q(tn)) e

q
n + O(h)‖e

q
n‖,406
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Error analysis of generalized-α Lie group

see (2). Assertion (26) follows from �(qn,1) = �(qn), �(qn,0) = �(q(tn)) = 0 and407

− D0,n = −�(qn) = −
(
�(qn,1) − �(qn,0)

)
=

1∫

0

B(qn,ϑ )e
q
n dϑ. (29)408

To prove assertion (27), we introduce the notation qn+σ,ϑ := qn,ϑ ◦ exp(σ ẽn,ϑ ),409

(σ ∈ [0, 1]), with ẽn,ϑ ∈ g being implicitly defined by qn+1,ϑ = qn,ϑ ◦ exp(̃en,ϑ ).410

Scaling the difference of (29) for t = tn+1 and t = tn by 1/h, we get411

− D1,n =

1∫

0

B(qn+1,ϑ )�he
q
n dϑ +

1

h

1∫

0

(
B(qn+1,ϑ ) − B(qn,ϑ )

)
e

q
n dϑ. (30)412

The second integrand may be transformed using the bilinear form R, see (5):413

(
B(qn+1,ϑ ) − B(qn,ϑ )

)
e

q
n =

1∫

0

d

dσ

(
B(qn+σ,ϑ )e

q
n

)
dσ414

=

1∫

0

R(qn+σ,ϑ )
(
e

q
n , en,ϑ

)
dσ. (31)415

To complete the proof of (27), we show now the estimate416

en,ϑ = hv(tn) + O(h)‖�he
q
n‖ + O(h2) (32)417

that allows to substitute the integrand R(qn+σ,ϑ )(e
q
n , en,ϑ ) in (31) by418

hR(q(tn))
(
e

q
n , v(tn)

)
+ O(h2)(‖e

q
n‖ + ‖�he

q
n‖).419

To prove (32), we represent exp(̃en,ϑ ) as product of matrix exponentials:420

exp(̃en,ϑ ) = (qn,ϑ )−1 ◦ qn+1,ϑ = exp(ϑ ẽ
q
n ) ◦ (q(tn))−1 ◦ q(tn+1) ◦ exp(−ϑ ẽ

q
n+1)421

= exp(ϑ ẽ
q
n ) ◦ exp

(
hṽ(tn) + O(h2)

)
◦ exp(−ϑ ẽ

q
n − hϑ�h ẽ

q
n ),422

see (8). Estimate (32) follows from repeated application of the Baker–Campbell–423

Hausdorff formula taking into account ‖e
q
n‖ = O(h), see (19). ⊓⊔424

Corollary 1 Consider a method (9) with (12), αm �= 1, α f �= 1 and β �= 0.425

(a) The scaled global errors in the algebraic components are bounded by426

h(‖ea
n+1‖ + ‖ev̇

n+1‖ + ‖eλ
n+1‖) = O(1)(εn + ‖D1,n‖) + O(h2). (33)427
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M. Arnold et al.

(b) Let rn ∈ R
k be defined by428

hrn = �he
q
n − (0.5 − β)hea

n − βhea
n+1. (34)429

The corresponding element r̃n ∈ g satisfies430

h̃rn = ẽ v
n + [̃e

q
n , ṽ(tn)] +

1

h
l̃
q
n + O(h)(εn + ‖D1,n‖) + O(h3). (35)431

Proof a) Multiplying the difference of (10d) and (9d) by h and substituting hev̇
n+1 by432

−heM−1B⊤λ
n+1 and some higher order terms, see (25b), we get433

(1 − αm)hea
n+1+(1 − α f )heM−1B⊤λ

n+1 =O(1)εn + O(h2)(‖ea
n+1‖+‖eλ

n+1‖)+O(h3)434

since h‖lan‖ = O(h3), h‖ea
n‖ ≤ εn and h‖ev̇

n‖ is bounded by (25a). Because of αm �= 1,435

these equations may be solved w.r.t. hea
n+1 if h > 0 is sufficiently small:436

hea
n+1 = −

1 − α f

1 − αm

heM−1B⊤λ
n+1 + O(1)εn + O(h2)‖eλ

n+1‖ + O(h3). (36)437

In (23), an estimate for �h ẽ
q
n ∈ g in terms of ẽ

q
n , ẽ v

n , h̃e a
n and h̃e a

n+1 is given. With438

(36), the equivalent estimate for �he
q
n ∈ R

k may be transformed to439

�he
q
n = −β

1 − α f

1 − αm

heM−1B⊤λ
n+1 + O(1)εn + O(h2)‖eλ

n+1‖ + O(h2)440

since ‖e
q
n‖ + ‖ev

n‖ + h‖ea
n‖ ≤ εn and ‖l

q
n‖/h = O(h2). Substituting this expres-441

sion in the time discrete approximation (27) of the hidden constraints at the level of442

acceleration variables, we get443

−D1,n = −β
1 − α f

1 − αm

heBM−1B⊤λ
n+1 + O(1)εn + O(h2)‖eλ

n+1‖ + O(h2).444

The Implicit function theorem may be used to show that these equations are locally445

uniquely solvable w.r.t. heλ
n+1 since the matrix product BM−1B⊤ is non-singular for446

any full rank matrix B if mass matrix M is symmetric positive definite. This proves447

estimate (33) for h‖eλ
n+1‖. The corresponding estimates for h‖ea

n+1‖ and h‖ev̇
n+1‖ are448

obtained from (36) and (25b), respectively.449

(b) To prove (35), we use error bound (33) to substitute in (23) the higher order450

error term O(h)(εn + h‖ea
n+1‖) by O(h)(εn + ‖D1,n‖) + O(h3). ⊓⊔451

Remark 2 The higher order error term O(h)(εn +h‖ea
n+1‖) in (23) results from higher452

order terms in the Baker–Campbell–Hausdorff formula and vanishes identically for453

equations of motion (1) in linear spaces. In that case, estimate (35) gets the simpler454

form hrn = ev
n + l

q
n/h = ev

n + O(h2) and does not contain any global errors e
(•)
n+1,455

see (23).456
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Error analysis of generalized-α Lie group

In the general Lie group setting of (1), the analysis of Corollary 1 is necessary457

to eliminate the O(h)(h‖ea
n+1‖) error term from (23) since otherwise the difference458

rn+1 − rn in the one-step error recursion of algebraic solution components would459

depend on h2‖ea
n+2‖, see the proof of Lemma 6 below.460

3.5 One-step error recursion: algebraic components461

The difference of (10d) and (9d) connects the error propagation in the algebraic solution462

components a and v̇. With (25), the global errors ev̇
n and ev̇

n+1 can be eliminated463

resulting in464

(1 − αm)ea
n+1 + αmea

n + (1 − α f )e
M−1B⊤λ
n+1 + α f eM−1B⊤λ

n465

= O(1)(εn + εn+1)+ O(1)‖lan‖ (37)466

To prove optimal error bounds, this coupled error recursion is studied separately in467

tangential and normal direction of the constraint manifold M := {q ∈ G : �(q) = 0},468

see [21]. For any q ∈ M, the matrix469

P(q) := I − [M−1B⊤S−1B](q) with S(q) := [BM−1B⊤](q) (38)470

is a projector into the tangential space TqM since BP = B − BM−1B⊤S−1B =471

B − SS−1B = 0, PP = P and ker B = TqM.472

Lemma 5 The global errors ea
n , eλ

n satisfy473

(1 − αm)ePa
n+1 + αmePa

n = O(1)(εn + εn+1) + O(h2), (39)474

(1 − αm)eBa
n+1 + αmeBa

n + (1 − α f )e
Sλ
n+1 + α f eSλ

n = O(1)(εn + εn+1) + O(h2)475

(40)476

and ‖ea
n‖ ≤ ‖ePa

n ‖ + ‖M−1B⊤S−1‖‖eBa
n ‖ ≤ O(1)(‖ePa

n ‖ + ‖eBa
n ‖).477

Proof The errors in λ are bounded by ‖eλ
n‖ ≤ O(1)‖eSλ

n ‖ since S is non-singular.478

Therefore, the lemma is a trivial consequence of (37) and PM−1B⊤ ≡ 0. Note, that479

‖lan‖ = O(h2) for any parameter values αm , α f . ⊓⊔480

Estimate (39) defines a one-step recursion for the tangential error component ePa
n481

in terms of εn , εn+1 and local errors O(h2). To complete the error analysis, another482

recursive estimate is necessary for error component eBa
n .483

This additional estimate will be obtained from the time discrete approximation484

(27) of the hidden constraints at the level of acceleration coordinates. For this pur-485

pose, we substitute in (27) the term B(q(tn))�he
q
n by B(q(tn))rn with vector rn from486

Corollary 1b, see (34), and use the notation487

rB
n := B(q(tn))rn +

1

h

(
D1,n + R(q(tn))

(
e

q
n , v(tn)

))
. (41)488

123

Journal: 211 Article No.: 0633 TYPESET DISK LE CP Disp.:2014/4/25 Pages: 31 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

M. Arnold et al.

Lemma 6 Under the assumptions of Corollary 1 vectors rB
n satisfy489

rB
n + (0.5 − β)eBa

n + βeBa
n+1 = O(1)(εn + εn+1) + O(h2), (42)490

rB
n+1 − rB

n = (1 − γ )eBa
n + γ eBa

n+1 + D2,n + O(1)(εn + εn+1 + ‖D1,n‖491

+ h‖D2,n‖) + O(h2). (43)492

Proof Scaling the discrete approximation (27) of the hidden constraint by 1/h, we493

get estimate (42) directly from the definition of rB
n , see (34) and (41):494

rB
n + (0.5 − β)eBa

n + βeBa
n+1 =

B(q(tn))�he
q
n + D1,n + R(q(tn))

(
e

q
n , v(tn)

)

h
495

+O(h)‖ea
n+1‖496

= O(1)(‖e
q
n‖ + ‖�he

q
n‖ + h‖ea

n+1‖)497

with ‖e
q
n‖ ≤ εn , h‖ea

n+1‖ ≤ εn+1 and ‖�he
q
n‖ = O(1)(εn + εn+1)+O(h2), see (23).498

For the proof of (43), the scaled differences h(̃rn+1 − r̃n) and h(rB
n+1 − rB

n ) are499

studied term by term, see (35) and (41): The first term of the difference of (35) for500

t = tn+1 and t = tn is ẽ v
n+1 − ẽ v

n and contributes to the difference rB
n+1 − rB

n in (43)501

the term502

eBv
n+1 − eBv

n

h
= (1 − γ )eBa

n + γ eBa
n+1 + O(1)(‖ev

n‖ + h‖ea
n‖) + O(h2),503

with ‖ev
n‖ + h‖ea

n‖ ≤ εn , see (21). The second term in h(̃rn+1 − r̃n) is504

[̃e
q
n+1, ṽ(tn+1)] − [̃e

q
n , ṽ(tn)] = [̃e

q
n+1, ṽ(tn+1) − ṽ(tn)] + h[�h ẽ

q
n , ṽ(tn)]505

= O(h)(‖e
q
n+1‖ + ‖�he

q
n‖).506

It contributes to rB
n+1 − rB

n a higher order term O(1)(‖e
q
n+1‖ + ‖�he

q
n‖) that507

is bounded by O(1)(εn + εn+1) + O(h2), see above. For the same reason, also508

the R(q(tn))(e
q
n , v(tn))-term in (41) contributes only higher order terms of size509

O(1)(εn + εn+1) + O(h2) to rB
n+1 − rB

n .510

The third term in h(̃rn+1 − r̃n) is the scaled difference (̃l
q
n+1 − l̃

q
n)/h of local errors511

l̃
q
n that is of size O(h3) and contributes to rB

n+1 − rB
n a local error term O(h2), see512

Lemma 1. Note, that it is important to prove ‖l
q
n+1 − l

q
n‖ = O(h4) since the classical513

local error estimate ‖l
q
n‖ = O(h3) alone would not have been sufficient to prove514

estimate (43) with a bound of size O(h2).515

The remaining terms in h(̃rn+1−r̃n) contribute higher order terms of size O(1)(εn+516

εn+1 +‖D1,n‖+h‖D2,n‖)+O(h2) to rB
n+1 −rB

n since ‖D1,n+1‖ ≤ ‖D1,n‖+h‖D2,n‖,517

see (28) and (35).518

Finally, the D1,n-term in (41) yields the term D2,n in the right hand side of (43).519

This completes the proof of estimate (43) and Lemma 6. ⊓⊔520
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Error analysis of generalized-α Lie group

3.6 Synthesis521

The coupled error propagation in differential and algebraic solution components is522

studied generalizing the convergence theory for one-step DAE time integration meth-523

ods. With notations524

Er
n :=

(
(rB

n )⊤, (eSλ
n )⊤, (eBa

n )⊤
)⊤

, θ := max
0≤mh≤tend−t0

‖�(qm)‖, (44)525

estimates (42), (43) and (40) can be summarized in compact form:526

‖(T+ ⊗ Im)Er
n+1 − (T0 ⊗ Im)Er

n‖ = O(1)(εn + εn+1) + O(h−2)θ + O(h2) (45)527

with the Kronecker product ⊗ and matrices528

T+ =

⎛
⎝

0 0 −β

1 0 −γ

0 1 − α f 1 − αm

⎞
⎠ , T0 =

⎛
⎝

1 0 0.5 − β

1 0 1 − γ

0 −α f −αm

⎞
⎠ (46)529

that depend on the parameters of the generalized-α method (9). Note, that (45) is valid530

only if tn+1 + h = tn + 2h ≤ tend because of the term D2,n in (43) that depends on531

D0,n+2 = �(qn+2), see (28).532

Example 2 The one-step error recursion (45) indicates that errors Er
n depend strongly533

on Er
0 and powers of T−1

+ T0. This is nicely illustrated by a (pathological) test problem534

(1) with k = m = 1, G = R, M ≡ I, g ≡ 0 and time dependent constraints535

0 = �(q, t) = q − t3 that determine the solution completely (no degrees of freedom):536

If order condition (12) is satisfied, we get lvn = lan = 0 and l
q
n = Cq h3 with Cq :=537

1−6β −3(αm −α f ) is constant. Therefore, a straightforward computation shows that538

the local errors and the higher order error terms in (45) vanish for this test problem539

and we get Er
n = (T−1

+ T0)
nEr

0. Note, that exact starting values v0 := v(t0) = 3t2
0540

will result in order reduction (!) since rB
0 = (hev

0 + l
q
0)/h2 = Cq h �= O(h2), see (35)541

and (41).542

In the general setting of equations of motion (1), the error propagation in the algebraic543

solution components, see (39) and (45), is coupled to the error propagation in the544

differential components. Following the approach of Deuflhard et al. [16], we analyse545

powers of a 2 × 2 error propagation matrix to get global error bounds for all solution546

components in DAE time integration.547

Lemma 7 Consider vector valued sequences (E
y
n)n , (Ez

n)n that satisfy548

‖E
y
n+1‖ ≤ (1 + Lh)‖E

y
n‖ + Lh‖Ez

n‖ + hM, (47a)549

‖Ez
n+1 − TEz

n‖ ≤ L‖E
y
n‖ + Lh‖Ez

n‖ + M (47b)550

with non-negative constants L, M and a matrix T ∈ R
nz×nz that has a spectral radius551

̺(T) < 1.552
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M. Arnold et al.

There are positive constants C, L̃ and h0 being independent of n and h such that (47)553

implies for all step sizes h ∈ (0, h0] the estimates554

‖E
y
n‖ ≤ CeL̃nh(‖E

y
0‖ + h‖Ez

0‖ + M), (48a)555

‖Ez
n‖ ≤ ‖TnEz

0‖ + CeL̃nh(‖E
y
0‖ + h‖Ez

0‖ + M). (48b)556

Proof Because of ̺(T) < 1, there is a norm ‖Ez‖̺ in R
nz with µ := ‖T‖̺ < 1. Norms557

‖Ez‖ and ‖Ez‖̺ are equivalent and we have c‖Ez‖ ≤ ‖Ez‖̺ ≤ c‖Ez‖, (Ez ∈ R
nz ),558

with suitable positive constants c, c.559

Using this norm ‖Ez‖̺, we define un := ‖E
y
n‖, vn := ‖Ez

n − TnEz
0‖̺ and get560

v0 = ‖Ez
0 − I Ez

0‖̺ = 0 and561

vn+1 = ‖Ez
n+1 − TEz

n + T(Ez
n − TnEz

0)‖̺ ≤ ‖Ez
n+1 − TEz

n‖̺ + ‖T‖̺ vn562

≤ c‖Ez
n+1 − TEz

n‖ + µvn ≤ L̺‖E
y
n‖ + L̺h · c‖Ez

n‖ + M̺ + µvn563

with L̺ := max {L , cL}/ min {1, c} and M̺ := max {M, cM}, see (47b). The term564

c‖Ez
n‖ in the right hand side of this estimate is bounded by565

c‖Ez
n‖ ≤ ‖Ez

n‖̺ ≤ vn + ‖TnEz
0‖̺ ≤ vn + ‖T‖n

̺‖Ez
0‖̺ = vn + µn‖Ez

0‖̺.566

Therefore, (47) implies the inequality (to be read componentwise)567

(
un+1

vn+1

)
≤

(
1 + L̺h L̺h

L̺ µ + L̺h

)(
un

vn

)
+

(
µn L̺h‖Ez

0‖̺ + hM̺

µn L̺h‖Ez
0‖̺ + M̺

)
. (49)568

Except the term µn L̺h‖Ez
0‖̺, inequality (49) coincides with related estimates from569

the literature and may be analysed by similar methods of proof, see [16,21]. Because570

of µ < 1, the error propagation matrix in (49) has two distinct eigenvalues λ1 =571

eL̂h = 1 + O(h) and λ2 = µ + O(h) < 1 if the step size h > 0 is sufficiently small.572

Summarizing the corresponding eigenvectors in a transformation matrix V = V(h)573

we get574

(
1 + L̺h L̺h

L̺ µ + L̺h

)
= V�V−1 with V =

(
λ1 − µ − L̺h L̺h

L̺ λ2 − 1 − L̺h

)
575

and � = �(h) = diag (λ1, λ2). Because of λn
1 = eL̂nh , cond (V) = ‖V‖ ‖V−1‖576

= O(1), u0 = ‖E
y
0‖ and v0 = 0, the iterative application of (49) results in577

(
un

vn

)
≤ C0eL̂nh‖E

y
0‖ +

n−1∑

m=0

V�mV−1

(
µn−1−m L̺h‖Ez

0‖̺ + hM̺

µn−1−m L̺h‖Ez
0‖̺ + M̺

)
578

with a suitable constant C0 > 0.579
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Error analysis of generalized-α Lie group

To get a bound for un + vn = ‖(un, vn)⊤‖1, we consider ‖V�mV−1‖1, (m =580

0, 1, . . . , n − 1), and observe that ‖�m‖1 = max {λm
1 , λm

2 } ≤ eL̃nh with L̃ := |L̂|.581

Therefore, ‖V�mV−1‖1 is uniformly bounded and582

n−1∑

m=0

‖V�mV−1‖1 · µn−1−m L̺h‖Ez
0‖̺ ≤ ĈeL̃nh · h‖Ez

0‖583

with Ĉ := cL̺ cond1(V)/(1 − µ) follows from µ < 1 and ‖Ez
0‖̺ ≤ c‖Ez

0‖. Estimat-584

ing finally the error terms that arise from hM̺ and M̺ in the same way as in Lemma585

VI.3.9 of [21], we get586

‖E
y
n‖ + ‖Ez

n − TnEz
0‖̺ = un + vn ≤ C̃eL̃nh(‖E

y
0‖ + h‖Ez

0‖ + M̺)587

with a suitable constant C̃ > 0. Because of ‖Ez
n − TnEz

0‖ ≤ ‖Ez
n − TnEz

0‖̺/c and588

M̺ ≤ M/ max {1, c}, the estimates (48) follow straightforwardly. ⊓⊔589

The contractivity condition ̺(T) < 1 is one of the crucial assumptions of Lemma 7.590

In the convergence analysis of Theorems 1 and 2, it has to be verified for two different591

matrices T. Parameters αm , α f , β, γ have to satisfy stability conditions to guarantee592

̺(T) < 1 in both convergence theorems:593

Lemma 8 (a) The order condition (12) and the stability conditions594

αm < α f <
1

2
, β >

1

4
+

1

2
(α f − αm) (50)595

guarantee that β �= 0, γ > 1/2 and the contractivity conditions596

∣∣∣∣
αm

1 − αm

∣∣∣∣ < 1,

∣∣∣∣
α f

1 − α f

∣∣∣∣ < 1,

∣∣∣∣
1 − γ

γ

∣∣∣∣ < 1, ̺(T−1
+ T0) < 1 (51)597

are satisfied.598

(b) For the “optimal” parameters of Chung and Hulbert [14]599

αm =
2ρ∞ − 1

ρ∞ + 1
, α f =

ρ∞

ρ∞ + 1
, γ =

1

2
+α f −αm, β =

1

4

(
γ +

1

2

)2

(52)600

the stability conditions (50) are satisfied for any ρ∞ ∈ [0, 1).601

Proof Lemma 1 of [3] analyses the stability of generalized-α methods at infinity.602

Conditions (12) and (50) are used to prove that all roots ζi of polynomial σ(ζ ) :=603

det(ζT+ − T0) are inside the unit circle. Since (50) implies that T+ is non-singular,604

matrix T−1
+ T0 is well defined. Its characteristic polynomial is det(T−1

+ T0 − ζ I) =605

− det(T−1
+ )σ (ζ ) and we get ̺(T−1

+ T0) = maxi |ζi | < 1. The remaining contractivity606

conditions follow from αm < 1/2 and γ > 1/2, respectively. The proof of (b) is given607

in [3, Section 2]. ⊓⊔608
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M. Arnold et al.

Theorem 1 Let the order condition (12) and the stability conditions (50) be fulfilled609

and suppose θ = max {‖�(qm)‖ : m ≥ 0, t0 + mh ≤ tend} = O(h3+ε) for some610

ε > 0. If the starting values q0, v0, v̇0, a0 and λ0 satisfy611

‖M(q0)v̇0 + g(q0, v0, t0) + B⊤(q0)λ0‖ = O(h1+δ), ‖ev
0‖ = O(h2),612

‖e
q
0‖ + ‖eBv

0 +
1

h
B(q(t0))l

q
0‖ + h‖ev̇

0‖ + h‖ea
0‖ = O(h2+δ) (53)613

with a non-negative constant δ ∈ [0, 1] and θ = O(h3+max(δ,ε)), then the global614

errors are bounded by615

‖e
q
n‖ + ‖ev

n‖ ≤ C0eL̃(tn−t0)(θ/h2 + h2), (54a)616

‖eλ
n‖ + ‖ev̇

n‖ + ‖ea
n‖ ≤ C0

(
‖Tn‖h1+δ + eL̃(tn−t0)(θ/h2 + h2)

)
(54b)617

if h ∈ (0, h0] and t0 + nh ≤ tend − h. Here, the positive constants C0, L̃ and h0 are618

independent of n and h and T := blockdiag (−αm/(1 − αm), T−1
+ T0).619

Proof We study the coupled propagation of errors E
y
n := ((e

q
n )⊤, (ev

n)⊤)⊤ in differ-620

ential solution components and errors Ez
n := ((ePa

n )⊤, (Er
n)⊤)⊤ in algebraic solution621

components, see Lemma 7.622

Taking into account that εn = O(1)(‖E
y
n‖ + h‖Ez

n‖), Lemma 2 yields623

E
y
n+1 = E

y
n + O(h)(‖E

y
n‖ + ‖Ez

n‖ + ‖Ez
n+1‖) + O(h3). (55a)624

Next, we multiply (39) and (45) by 1/(1 − αm) and ‖(T−1
+ ⊗ Im)‖, respectively, and625

get626

‖ePa
n+1 −

αm

1 − αm

ePa
n ‖ + ‖Er

n+1 − (T−1
+ T0 ⊗ Im)Er

n‖627

≤ O(1)(‖E
y
n‖ + ‖E

y
n+1‖ + h‖Ez

n‖ + h‖Ez
n+1‖) + O(h−2)θ + O(h2).628

(55b)629

From (55a), (55b) and the definition of T above, estimates (47a) and (47b) are630

obtained by setting M := M0(θ/h2 + h2) with some constant M0 > 0. Conditions631

(53) result in ‖E
y
0‖ = O(h2), ‖Ez

0‖ = O(h1+δ) since ‖ea
0‖ = O(h1+δ), ‖eSλ

0 ‖ =632

‖ev̇
0‖ + O(h2) = O(h1+δ) and633

‖rB
0 ‖ = O(1)

(
(‖e

q
0‖ + ‖eBv

0 + B(q(t0))l
q
0/h‖)/h + ε0 + θ/h2

)
+ O(h2),634

i.e., ‖rB
0 ‖ = O(1)θ/h2 + O(h1+δ) = O(h1+δ), see (35), (41) and (53). The contrac-635

tivity conditions (Lemma 8) yield ̺(T) < 1.636

Error bound (48a) proves assertion (54a) since ‖e
q
n‖ + ‖ev

n‖ = O(1)‖E
y
n‖. The637

corresponding result for the algebraic components is obtained from (48b) since ‖eλ
n‖,638

‖ev̇
n‖, ‖ea

n‖ are bounded by O(1)‖Ez
n‖, see (44) and Lemma 3. ⊓⊔639
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Error analysis of generalized-α Lie group

Remark 3 (a) For the trivial choice v0 := v(t0), the assumptions of Theorem 1 are640

satisfied only with δ = 0 if ‖B(q(t0))l
q
0‖ = O(h3). The resulting first order error641

term C0‖Tn‖h in (54b) indicates the risk of order reduction. This is in very good642

agreement with the numerical test results in Example 1 since ‖B(q(t0))l
q
0‖ =643

O(h3)‖[B(q)v̈](t0)‖ + O(h4) in linear spaces, see (17). For the mathematical644

pendulum, the leading error term is [B(q)v̈](t0) = −3gx0 ẋ0/y0. It vanishes in the645

equilibrium position x0 = 0 resulting in δ = 1 (no order reduction) but introduces646

a first order error term in the transient phase if x0 = 0.2 (order reduction), see647

Fig. 1.648

(b) The block structure of Ez
n and the 2 × 2 block diagonal structure of matrix T649

in Theorem 1 allow to relax the assumptions on ea
0 . If ‖eBa

0 ‖ = O(h1+δ) and650

‖ePa
0 ‖ = O(h1+δP) with 0 ≤ δP ≤ δ then estimate (54b) remains valid for651

error components eλ
n , ev̇

n , and eBa
n . For error component ePa

n , we get a similar error652

bound with δ being replaced by δP. For the mathematical pendulum in equilibrium653

position x0 = 0, we have [B(q)v̈](t0) = 0 and the trivial choice a0 := v̇(t0) does654

not affect the second order convergence in components q, v and λ since δP = 0655

but ‖eBa
0 ‖ = O(h2), i.e., δ = 1.656

4 Improved transient behaviour and stabilization by index reduction657

Based on Theorem 1, we study in the present section the large transient errors of the658

generalized-α method (9) and show how to avoid them by carefully selected starting659

values v0, a0 or by index reduction.660

4.1 Spurious oscillations in the transient phase: analysis661

The global error bounds (54) are composed of three parts: The well known second order662

convergence result [3,10] is reflected by the term eL̃(tn−t0)h2. The term eL̃(tn−t0)θ/h2
663

with θ = maxm ‖�(qm)‖ illustrates the amplification of (small) residuals in alge-664

braic constraints that is typical of ODE methods being directly applied to the index-3665

formulation of the equations of motion (1), see [1]. Finally, the large errors in the666

transient phase, see Example 1, correspond to the error term ‖Tn‖h1+δ in (54b) that667

is dominated by ‖(T−1
+ T0)

n‖h1+δ since T = blockdiag (−αm/(1−αm), T−1
+ T0) and668

(−αm/(1 − αm))n decays rapidly, see (51).669

Condition ̺(T−1
+ T0) < 1 in Lemma 8 implies limn→∞(T−1

+ T0)
n = 0 but for670

non-normal matrices T−1
+ T0 it is well known that maxn ‖(T−1

+ T0)
n‖ and the terms671

‖TnEz
0‖, ‖Tn‖ in error bounds (48b) and (54b) may nevertheless become very large.672

In 1978, Hilber and Hughes [22] characterized a similar phenomenon as “overshoot-673

ing” of Newmark type methods in the application to the unconstrained scalar test674

equation q̈ + ω2q = 0. In that case, v̇n = −ω2qn and a straightforward analysis675

shows that the numerical solution follows a recursion T+(z)En+1 = T0(z)En with676

En = (hvn, z2qn, h2an)⊤, z := hω and limz→∞ T+(z) = T+, limz→∞ T0(z) = T0.677

For parameters αm , α f , β, γ according to (52) with ρ∞ ∈ [0, 1), the stability estimate678

̺((T+(z))−1T0(z)) < 1, (z > 0), proves limn→∞ En = 0 for any starting vector679
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M. Arnold et al.

E0 = (hv0, z2q0, h2a0)
⊤, see [14]. However, in a transient phase ‖En‖ may become680

much larger than ‖E0‖ if the initial displacements q0 do not vanish [22].681

For the application of Newmark type methods to constrained systems an error682

amplification by powers of the non-normal matrix T−1
+ T0 has already been observed683

in 1994, see [12]. For the more detailed convergence analysis of the present paper684

we have to study terms ((T−1
+ T0)

n ⊗ Im)Er
0 ∈ R

3m that are composed of (scaled)685

global errors in velocity and acceleration coordinates and in Lagrange multipliers, see686

(44). For exact starting values q0 := q(t0), v0 := v(t0), v̇0 := v̇(t0), λ0 := λ(t0)687

and a0 := v̇(t0 + �αh), this sequence is initialized by Er
0 = ((rB

0 )⊤, 0, 0)⊤ with688

rB
0 = B(q(t0))l

q
0/h2 +O(h2) and results in general in a first order error term C0‖Tn‖h689

for components λ that disappears only if B(q(t0))l
q
0 = O(h4), see (54b) and Remark 3690

above.691

In practical applications, parameters αm , α f , β, γ according to (52) are very popular692

since they allow to adjust the “numerical damping properties” for linear problems q̈ +693

ω2q = 0 by just one single parameter ρ∞, see [14]. With (52), the error amplification694

matrix T−1
+ T0 ∈ R

3×3 has an eigenvalue µ = −ρ∞ of multiplicity three. The Jordan695

canonical form is given by T−1
+ T0 = XJX−1 with696

J :=

⎛
⎝

µ 1 0

0 µ 1

0 0 µ

⎞
⎠ , X :=

⎛
⎝

0 1
2

1+µ
1−µ

− 1
(1−µ)2

1 − µ2 −(2 + µ) 0

0 1 0

⎞
⎠697

resulting in (T−1
+ T0)

n = XJnX−1 and ‖(T−1
+ T0)

n‖ ≥ ‖Jn‖/cond (X). It may be698

verified by induction that the non-zero elements of Jn , (n ≥ 2), are given by µn ,699

nµn−1 and n(n − 1)µn−2/2. Consequently, maxn ‖Jn‖∞ is bounded from below by700

c∞ := maxn n(n − 1)ρn−2
∞ /2. Typical values are c∞ = 2.2, c∞ = 28.5 and c∞ =701

2.7 × 103 for ρ∞ = 0.6, ρ∞ = 0.9 and ρ∞ = 0.99, respectively.702

Because ‖(T−1
+ T0)

n‖ may become very large, the global error bound (54b) is dom-703

inated in the transient phase by ‖Tn‖h1+δ . (This term does not contribute signifi-704

cantly to the global error in long-term integration since ̺(T) < 1, see [3,10].) For705

the numerical test in Example 1, we have ρ∞ = 0.9 and the norm ‖(T−1
+ T0)

n‖2706

reaches its maximum value 34.3 at n = 14 which is in very good agreement with707

maxn ‖eλ
n‖ = ‖eλ

15‖, see Fig. 1. In the parameter range of interest ( ρ∞ ∈ [0.3, 0.99] ),708

the maximum amplification factor may be approximated with a relative error < 3%709

by maxn ‖(T−1
+ T0)

n‖2 ≈ 0.9/(1 − ρ0.25
∞ ) illustrating the risk of significant spurious710

oscillations in the transient phase for generalized-α methods with small amount of711

numerical damping since 1 − ρ0.25
∞ ≪ 1 in that case.712

4.2 Perturbing the starting values to improve the transient behaviour713

The default initialization q0 = q(t0), v0 = v(t0) in (9) may result in large transient714

errors in λ because of order reduction. The refined local error analysis of generalized-α715

methods [25], see also Lemma 1 above, shows that starting values a0 = v̇(t0 +�αh)+716

O(h2) are more favourable than the brute force approach a0 = v̇(t0) in [17]. Guided717
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Error analysis of generalized-α Lie group

by Theorem 1, we propose in the present section an additional perturbation of size718

O(h2) for starting values v0 to avoid order reduction in the direct application of the719

Lie group integrator (9) to the index-3 formulation (1) of the equations of motion.720

In Theorem 1, the assumptions (53) on ev
0 may be satisfied with δ = 1 (no order721

reduction) setting722

v0 := v(t0) + �v
0 with �v

0 = M−1
0 B⊤

0 (B0M−1
0 B⊤

0 )−1B0l
q
0/h + O(h3). (56)723

Because of ‖e
q
0‖ = O(h2+δ), it is not relevant if matrices B0, M0 in (56) are evaluated724

at q = q(t0) or at q = q0. For given B0l
q
0/h ∈ R

m , the update vector �v
0 ∈ R

k in (56)725

may be computed solving a linear 2×2 block system of type (7) since M0�
v
0+B⊤

0 �λ
0 =726

0 and B0�
v
0 = B0l

q
0/h with the auxiliary vector �λ

0 = −(B0M−1
0 B⊤

0 )−1B0l
q
0/h ∈727

R
m . I.e., substituting −g0 → 0, −R0 → B0l

q
0/h in (7), we get instead of v̇(t0), λ(t0)728

the update vector �v
0 (and �λ

0 that is not needed in the following).729

To get an approximation of l
q
0 , we consider the leading error term in (17) that is730

composed of [̃v(t0),˜̇v(t0)] and a multiple of ˜̈v(t0). The commutator is evaluated for731

the known initial values v(t0), v̇(t0), see (7). The term v̈(t0) may be approximated732

by finite differences using vectors v̇±sh ≈ v̇(t0 ± sh) with some s ∈ (0, 1] that are733

obtained from (7) substituting the arguments q(t0), v(t0), t0 of M0, B0, g0, R0 by734

q±sh := q(t0) ◦ exp(±shv(t0) + s2h2v̇(t0)/2), v±sh := v(t0) ± shv̇(t0) and t0 ± sh,735

respectively.736

Second order differences (v̇sh − v̇−sh)/(2sh) require two function evaluations of737

M, B, g, R and the solution of two linear systems (7) but are more accurate than738

first order differences (v̇sh − v̇(t0))/(sh) that need 50% less numerical effort. The739

additional numerical effort arises, however, only once to define appropriate starting740

values v0, a0. In the numerical tests, parameters s = 1 (second order differences) and741

s = 0.01 (first order differences) were found to be appropriate. The finite difference742

approximation of v̈(t0) is used as well to define starting values743

a0 := v̇(t0) + �αhv̈(t0) = v̇(t0 + �αh) + O(h2) (57)744

that satisfy assumption (53) in Theorem 1 with the optimal value δ = 1.745

For the mathematical pendulum with x0 = 0.2 (Example 1), the maximum global746

errors ‖eλ
n‖ in t ∈ [0, 2] are reduced from 2.48 × 10−1 to 3.99 × 10−3 (for h =747

2.0 ×10−2) and from 1.23×10−1 to 9.96×10−4 (for h = 10−2) if the generalized-α748

method (9) is initialized with perturbed starting values v0, a0 according to (56), (57).749

For x0 = 0 and tn ∈ [0, 2] we observe ‖eλ
n‖ ≤ 3.95×10−3 for step size h = 2.0×10−2

750

and ‖eλ
n‖ ≤ 9.85 × 10−4 for step size h = 10−2, both for starting values v0 = v(t0),751

a0 = v̇(t0) and for starting values v0, a0 according to (56), (57), see the detailed752

discussion in Remark 3.753

It is an interesting detail that the well known improved starting values a0 according754

to (57), see [25], do not fix the order reduction problem in the direct application of755

(9) to the index-3 formulation (1). For small numerical damping (ρ∞ ≥ 0.9), the756

benefits of perturbed starting values v0 are larger by a factor > 100 than the influence757

of ea
0 . This is justified by the observation that Er

n ≈ (T−1
+ T0)

nEr
0 in the transient758
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phase, see (48b). For eλ
n , we have to consider the maximum entries of the second row759

of (T−1
+ T0)

n , see (44). For ρ∞ = 0.9, these are given by (31.91, 0.81, 0.31) with760

31.91/0.31 > 100.761

4.3 Stabilized index-2 formulation762

Notation (9) suggests a straightforward generalization of the Gear–Gupta–Leimkuhler763

formulation [18] (also known as stabilized index-2 formulation [5]) to the Lie group764

setting [4]: The introduction of auxiliary variables ηn ∈ R
m in the update �qn for765

the position coordinates qn allows to enforce additionally at t = tn+1 the hidden766

constraints (3) at the level of velocity coordinates. For this purpose, the update �qn767

in (9b) is substituted by768

�qn = vn − B⊤(qn)ηn + (0.5 − β)han + βhan+1, (58a)769

B(qn+1)vn+1 = 0. (58b)770

Theorem 2 For the stabilized index-2 formulation, the assertions of Theorem 1771

remain valid with θ/h2 being substituted by θ̄/h with θ̄ := maxm ‖�(qm)‖772

+ maxm ‖B(qm)vm‖ = O(h2+ε) and θ̄ = O(h2+max(δ,ε)) if the assumptions on the773

starting values q0, v0 are relaxed to ‖e
q
0‖ + ‖ev

0‖ = O(h2) and matrix T in (54b) is774

defined by T ∈ R
3×3 with T := blockdiag (−αm/(1 − αm), T−1

+ T0) and775

T+ =

(
0 −γ

1 − α f 1 − αm

)
, T0 =

(
0 1 − γ

−α f −αm

)
. (59)776

Proof The convergence analysis follows step by step the analysis for the Lie group777

method (9) in the original index-3 formulation of the equations of motion. In the778

definition of local errors, see (10), a term −B⊤(q(tn))η(tn) with η(t) ≡ 0 is formally779

added to the right hand side of (10b). Then, a new error term −̃e
B⊤η
n + O(h)‖̃e

η
n ‖780

appears in the right hand side of estimate (23). Multiplying (23) by B(q(tn)), we get781

− eBB⊤η
n = B (q(tn))�he

q
n + O(1)(εn + h‖eη

n‖ + h‖ea
n+1‖) + O(h2). (60)782

The time discrete approximation (27) of the hidden constraints at the level of783

acceleration coordinates allows to substitute in (60) the term B(q(tn))�he
q
n by784

O(1)(εn + h‖�he
q
n‖ + ‖D1,n‖) resulting in an error bound785

‖eη
n‖ = O(1)(εn + h‖�he

q
n‖ + h‖ea

n+1‖ + ‖D1,n‖) + O(h2) (61)786

since [BB⊤](q) ∈ R
m×m is non-singular for any full rank matrix B(q). Therefore, e

η
n787

contributes in (20) only to higher order error terms and to the local error that gets the788

form O(h)‖D1,n‖ + O(h3) = O(h)(θ̄/h + h2). In (23), error term −̃e
B⊤η
n may be789

considered substituting l̃
q
n/h by l̃

q
n/h + O(1)(θ̄/h + h2).790
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Error analysis of generalized-α Lie group

Because of the hidden constraints (3), we have B(q(tn))v(tn) = 0 and get with the791

notations of the proof of Lemma 4792

−B(qn)vn = B(qn)ev
n −

(
B(qn,1) − B(qn,0)

)
v(tn)793

= eBv
n + O(h)‖ev

n‖ +

1∫

0

R(qn,ϑ )
(
v(tn), e

q
n

)
dϑ.794

Therefore, the difference eBv
n+1 − eBv

n is bounded in terms of ‖B(qn+1)vn+1‖,795

‖B(qn)vn‖, h‖ev
n+1‖, h‖ev

n‖, h‖�he
q
n‖ and h‖e

q
n‖. Multiplying (21) by matrix796

B(q(tn)) and scaling this expression by 1/h, we obtain797

(1 − γ )eBa
n + γ eBa

n+1 =
eBv

n+1 − eBv
n

h
+ O(1)(‖ev

n+1‖ + h‖ea
n+1‖) + O(h2),798

= O(1)θ̄/h + O(1)(εn + εn+1) + O(h2).799

This one-step recursion for errors eBa
n substitutes (42) and there is no need to consider800

vectors rB
n in the convergence analysis for the stabilized index-2 formulation. With801

the modified definition Er
n := ((eSλ

n )⊤, (eBa
n )⊤)⊤, see (44), the remaining part of the802

convergence analysis follows line by line the analysis of Sect. 3. ⊓⊔803

Remark 4 (a) The error bound ‖ηn‖ = ‖e
η
n‖ = O(1)θ̄/h+O(h2) is a straightforward804

consequence of (61), see also [4]. In that paper, an efficient implementation scheme805

for the stabilized index-2 formulation was introduced that requires in each time806

step the solution of a system of k + 2m nonlinear equations to get �qn , ηn , λn+1.807

(b) For equations of motion (1) in linear spaces, the combination of index reduction808

and generalized-α time integration has been studied by several authors before809

[26,29,40].810

(c) It may be verified straightforwardly that matrix T in Theorem 2 has three distinct811

real eigenvalues if (1 − γ )/γ �= α f /(1 − α f ) and conditions (12) and (50) are812

satisfied. For parameters according to [14] with ρ∞ ∈ [0, 1), all eigenvalues of813

T are different and the matrix may be diagonalized. Therefore, ‖Tn‖ may be814

bounded by C(̺(T))n with a constant C of moderate size and815

̺(T) = max

{∣∣∣∣
2ρ∞ − 1

2 − ρ∞

∣∣∣∣ ,
∣∣∣∣
3ρ∞ − 1

3 − ρ∞

∣∣∣∣ , |ρ∞|

}
< 1.816

In contrast to the original index-3 formulation we observe no substantial amplifi-817

cation of initial errors Ez
0 in time integration.818

5 Numerical tests819

The motion of a rotating heavy top under the influence of gravity is one of the basic820

benchmark problems for Lie group time integration methods in multibody dynamics821
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Fig. 2 Benchmark problem heavy top [9], see also [19]

[19]. In the present section, we consider a top rotating about a fixed point and its822

equations of motion in an absolute coordinate formulation, see Fig. 2 and Eq. (62).823

In (62), the vector x represents the position of the center of mass in the inertial824

frame and X denotes the position of the center of mass in the body-fixed frame. The825

orientation of the top is represented by matrix R ∈ SO(3). The mass of the top is m,826

the inertia tensor J is defined with respect to the center of mass. In the equations of827

motion (62), there are three algebraic constraints with the associated 3 × 1 vector λ828

of Lagrange multipliers.829

mẍ − λ = mγ , (62a)830

J�̇ + � × J� + X̃R⊤λ = 0, (62b)831

−x + RX = 0. (62c)832

The set R
3 × SO(3) with the composition operation833

(x1, R1) ◦ (x2, R2) = (x1 + x2, R1R2)834

defines a 6-dimensional Lie group G ⊂ R
12. The exponential map combines a trans-835

lation in R
3 and the matrix exponential in SO(3) for the rotation variables that may836

be evaluated efficiently by the Rodrigues formula, see [9]. Due to the constraints, the837

motion is restricted to a 3-dimensional submanifold of G and we have838

M =

(
mI3 0

0 J

)
, g =

(
−mγ

� × J�

)
, B =

(
−I3 −RX̃

)
.839

Omitting again all physical units, the model data are given by X = (0, 1, 0)⊤, γ =840

(0, 0, −9.81)⊤, m = 15.0 and J = diag (0.234375, 0.46875, 0.234375). The initial841

values are set to R(0) = I3 and �(0) = (0, 150, −4.61538)⊤. Figure 3 shows842

component x3(t) and the Lagrange multipliers λ(t) of the reference solution that is843

computed by the stabilized index-2 formulation using the small time step size h =844

2.5 × 10−5.845

The numerical test results are in very good agreement with the results of the con-846

vergence analysis in Theorems 1 and 2. The left plot of Fig. 4 shows the transient847

behaviour of Lagrange multiplier λ3(t) for the generalized-α method (9) with step848

size h = 1.0×10−3, parameters αm , α f , β, γ according to (52) and the most straight-849

forward choice of starting values q0 = q(t0), v0 = v(t0), v̇0 = v̇(t0), a0 = v̇(t0),850

λ0 = λ(t0).851

For ρ∞ = 0.9, we get very large errors and spurious oscillations in the tran-852

sient phase that are very similar to the ones that were observed for the mathemat-853
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Fig. 3 Benchmark heavy top: reference solution, computed with h = 2.5 × 10−5
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Fig. 4 Index-3 formulation: transient behaviour of λ3 for time step size h = 1.0 × 10−3

ical pendulum with x0 = 0.2 in Fig. 1. With ρ∞ = 0.6, the numerical damp-854

ing of the generalized-α method is increased [14]. In the application to constrained855

systems (1), the spurious oscillations are damped out more rapidly and their max-856

imum amplitude is decreased substantially. The maximum amplitudes are reached857

at t = t15 for ρ∞ = 0.9 and at t = t4 for ρ∞ = 0.6 which corresponds very858

nicely to maxn ‖(T−1
+ T0)

n‖ = ‖(T−1
+ T0)

14‖ = 34.3 in the case ρ∞ = 0.9 and to859

maxn ‖(T−1
+ T0)

n‖ = ‖(T−1
+ T0)

3‖ = 7.4 for ρ∞ = 0.6, see Sect. 4.1.860

For perturbed starting values v0 and a0 according to (56) and (57), the spurious861

oscillations disappear and the test results coincide with the reference solution up to862

plot accuracy, see the right plot of Fig. 4. In these numerical tests, the second order863

difference approximation v̈0 ≈ (v̇(t0 + h) − v̇(t0 − h))/(2h) was used to evaluate the864

perturbed starting values v0, a0, see Sect. 4.2.865

The spurious oscillations may be avoided as well by index reduction. Applying866

the generalized-α method to the stabilized index-2 formulation of the equations of867

motion, see Sect. 4.3, the numerical results for h = 1.0 × 10−3 coincide again up to868

plot accuracy with the reference solution, see the right plot of Fig. 5. The left plot of869

Fig. 5 shows the time history of the auxiliary variables η, see (58), for two different870

time step sizes (h = 1.0 × 10−3 and h = 5.0 × 10−4) illustrating the second order871

convergence of ‖e
η
n‖ for h → 0.872

The large transient errors in the left plot of Fig. 4 do not affect the long-term873

behaviour of the numerical solution since they are damped out rapidly. Beyond the874
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Fig. 5 Stabilized index-2 formulation: ‖ηn‖ vs. t = tn for two different time step sizes h (left plot) and

transient behaviour of λ3 for h = 1.0 × 10−3 (right plot)
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Fig. 6 Maximum global errors ‖e
q
n‖, ‖eλ

n‖ beyond the transient phase

transient phase, the classical convergence behaviour of a second order time integration875

method is observed for all solution components, see Fig. 6 and related results from876

our previous work [3,4,8–10].877

For smaller time step sizes h, it is mandatory to scale the systems of linear equations878

in the corrector iteration appropriately [6,10]. Furthermore, very fine tolerances for879

absolute and relative errors are used in the stopping criterion of the corrector iteration880

to guarantee that the constraint residuals �(qn+1) in (9f) and the corresponding error881

term θ/h2 in (54) do not affect the result accuracy (ATOL = 1.0 × 10−12, RTOL =882

1.0×10−8). Increasing these tolerances by a factor of 100, the numerical effort and the883

computing time may be substantially reduced but for time step sizes h < 2.0 × 10−4
884

the errors ‖eλ
n‖ of the index-3 method are about 8 times larger than before.885

6 Summary and conclusions886

The representation of constrained mechanical systems in configuration spaces with887

Lie group structure avoids singularities in the parametrization of rotational degrees888

of freedom. In generalized-α time integration, the nonlinear structure of the configu-889

ration space is taken into account by a nonlinear update of position coordinates with890

increments that are elements of the corresponding Lie algebra.891
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Error analysis of generalized-α Lie group

For the convergence analysis, the local and global errors for the position coordinates892

are defined as elements of the Lie algebra and the Baker–Campbell–Hausdorff formula893

is applied repeatedly to get an error recursion in a linear space. The coupled error894

propagation in differential and algebraic solution components is analysed by a rather895

complex one-step recursion showing that large transient errors are damped out rapidly896

and second order convergence may be achieved if the method satisfies a set of stability897

and order conditions.898

In the direct application to the index-3 formulation of the equations of motion, the899

method shows a strange behaviour in the transient phase with spurious oscillations of900

large amplitude. These oscillations in the Lagrange multipliers may be characterized901

by an initial error vector of reduced order and by powers of an error amplification902

matrix that has its spectrum inside the unit circle but a Jordan form with one 3 × 3903

Jordan block resulting in rapidly growing errors in the initial phase.904

The order reduction may be avoided adding perturbations of size O(h2) to the905

starting values for velocity and acceleration coordinates. Alternatively, the index of the906

equations of motion may be reduced before time discretization. The stabilized index-907

2 formulation combines the original constraints at the level of position coordinates908

with the hidden constraints at velocity level. The generalized-α Lie group methods909

are modified to consider in each time step both sets of constraints. The convergence910

analysis shows, that these modified methods do not suffer from order reduction. Second911

order convergence may again be proved if stability and order conditions are satisfied.912

Similar modifications are necessary to avoid spurious oscillations in variable step913

size implementations that are subject of further research.914
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