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a b s t r a c t

The simulation of engineering problems is quite often a complex task that can be time con-
suming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising
alternative for real-time simulations. In this work, we study the design of HROMs for
non-linear problems with a moving source. Applications to nonlinear phase change prob-
lems with temperature dependent thermophysical properties are particularly considered;
however, the techniques developed can be applied in other fields as well.

A basic assumption in the design of HROMs is that the quantities that will be hyper-
reduced are k-compressible in a certain basis in the sense that these quantities have at most
k non-zero significant entries when expressed in terms of that basis. To reach the compu-
tational speed required for a real-time application, k must be small. This work examines
different strategies for addressing hyper-reduction of the nonlinear terms with the objec-
tive of obtaining k-compressible signals with a notably small k. To improve performance
and robustness, it is proposed that the different contributing terms to the residual are sep-
arately hyper-reduced. Additionally, the use of moving reference frames is proposed to
simulate and hyper-reduce cases that contain moving heat sources. Two application exam-
ples are presented: the solidification of a cube in which no heat source is present and the
welding of a tube in which the problem posed by a moving heat source is analysed.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Modelling problems that are intractable from the point of view of reaching real time computational speed are quite fre-
quently found in science and in engineering. Two particularly time-consuming cases are the problems of welding and non-
linear phase change. This paper presents hyper-reduction methods for these two problems, but the methods developed can
be extended to many other problems with similar characteristics.

A welding problem is essentially a thermally driven process. Due to this fact, a correct description of the heat source that
represents the energy input is of great importance. Generally, this input is described in terms of a standardised and highly
concentrated moving heat source. This feature sets up a problem whose main characteristics are rather rapid changes in the
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involved fields as well as the rapid variation of material properties. The concentrated behaviour of the heat source introduces
constraints in the size of the mesh and time step used to run the simulation, thus forcing an increment in the number of
degrees of freedom of the problem.

Simulation of a welding problem is a highly complex task described as a Thermo-Mechanical-Metallurgical (TMM) pro-
cess [1]. To reduce this complexity, certain simplifications are applied, such as describing the governing physics of the prob-
lem with a staggered thermo-mechanical model [2]. Despite efforts to render treatment of the problem more amenable, its
complexity makes it unaffordable from the perspective of real-time simulations. In this context, the design of Reduced Order
Models (ROMs) is an elegant and promising alternative to the classical high fidelity solutions.

Currently, the use of separate representations to build ROMs has caught the attention of the engineering community. The
manner in which the separated representation is built is described by two approaches [3]. In one approach, a posteriori model
reduction techniques require knowledge of the solution to a training problem. The most prominent a posteriori technique is
based on the Proper Orthogonal Decomposition (POD) method [4,5]. For the second approach, the a priori model reduction
techniques require no previous knowledge of the solution, concept which was introduced by Ryckelynck in [6]. In this con-
text, the leading technique is the Proper Generalised Decomposition (PGD), which has its roots in the works of Ladevèze
[7,8].

In both approaches, to successfully address the high dimensionality of the problem, it is assumed that the solution can be
described in terms of a reduced number of functions in the separate representation. In a certain sense, this situation can be
referred to as the separate representation hypothesis. A consequence of this idea is the supposition that the solution of the
problem is k-compressible in a certain basis, with a notably small k. The solution is said to be k-compressible if it has at most
k non-zero significant entries when expressed in terms of that magic basis. An extensive analysis of similar concepts is of-
fered in the context of compressed sensing, see, for example [9,10].

The present work considers the a posteriori ROM technique based on the POD method. The reduction of the problem be-
gins by reducing the dimensionality of the discrete versions of the test and trial spaces. This process is generally carried out
by finding a basis, say H, in which the solution to the problem is k-compressible, which is obtained by computing the Singular
Value Decomposition of a set of snapshots of the solution. Next, the trial solution space is defined as an affine translation of
spanfHg. If a Bubnov–Galerkin projection is used, the test functions are in spanfHg. It must be mentioned that a Petrov–
Galerkin projection is recommended for problems where the Jacobian is not symmetric positive definite (SPD), which in-
volves the solution of a least squares problem [11].

After reducing the dimensionality of the test and trial spaces, the size of the system of linear equations to be solved is
reduced from a size of N � N, where N is the size of the high fidelity (HF) model, to a size of k� k, with k� N. With this
approach, although the computational cost of solving the system of linear equations is reduced, the cost of assembling
the residual and the tangent matrix at each Newton iteration is still of order N. It is widely known that to significantly reduce
the computational complexity of the problem, the cost of assembling the residual and the tangent matrix at each Newton
iteration must be reduced [11–16]. To accomplish this objective, a second reduction is performed by evaluating the involved
quantities at a few points of the domain. Extensions of this idea have been used in the context of a priori and a posteriori
reduction methodologies. For instance, in [17] the extension to nonlinear Finite Element models making use of an a priori
approach is presented and the term hyper-reduction is coined to refer to the general procedure of performing a second
reduction. Another work following this line is that of Sarbandi et al. [18].

In the context of a posteriori reduction techniques, the hyper-reduction method has been widely applied. Generally, the
ideas along this path are based on the gappy data reconstruction method introduced by Everson and Sirovich [19] in the im-
age processing community. For example, an extension of this idea to Finite Volume equations was accomplished by Astrid
[20], extensions to nonlinear mechanical models are found in [13,21] and, in the case of computational fluid dynamics, treat-
ments of this kind are found in [14,15]. In the present work, we use the term Hyper-Reduced Order Models (HROMs) to refer
to the reduced models arising from the hyper-reduction method. To the authors’ best knowledge, the design and application
of HROMs specifically suited for phase change and welding problems have not yet been addressed in the literature.

In this paper, different approaches are studied in detail for the design of HROMs with particular application to the non-
linear phase change problem. Schemes in which the residual is hyper-reduced as a unit, taking the history of the residual as
snapshots for the gappy data reconstruction procedure, are usually found in the literature [11,14]. This strategy is used as a
reference technique for comparison in this work. As observed from numerical experiments, poor k-compressibility and tan-
gent matrix conditioning are obtained when applying this technique for the design of HROMs. To improve the performance
and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. These terms
are assumed to be physically based nonlinear generalised contributing forces, features that lead to a well-posed HROM. In
the case of welding problems, the moving heat source represents an issue that can severely affect the k-compressibility of the
involved terms. This complication is addressed by considering both moving and fixed frames of reference respect to the
welded piece.

The paper is organised as follows. Section 2 states the mathematical formulation of the solid–liquid phase change problem,
and Section 3 presents the formulation of Reduced Order Models. The cost of assembling the nonlinear forces and tangent
matrices is reduced by means of Hyper Reduced Order Models in Section 4, significantly reducing the computational complex-
ity of the problem. In Section 5, the issue presented by the moving heat source is considered, and two application examples are
presented in Section 6 to assess the performance of the introduced HROMs. Specifically, the solidification of a cube and weld-
ing of a tube without material deposition are analysed. Finally, Section 7 describes the main conclusions of this work.
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2. Problem setting

The physical problem under consideration is a nonlinear transient heat conduction problem in which the liquid–solid
phase change and thermophysical properties that depend on temperature are taken into account. Assuming that the contri-
bution of the mechanical energy to the total energy is negligible and considering the specific enthalpyH as a thermodynamic
potential, the temperature field T is computed by solving the heat balance equation
q _H ¼ Q þr � ðkrTÞ 8ðx; tÞ 2 Xi � ðt0;1Þ; ð1Þ
where q is the density, k is the thermal conductivity, T is the temperature, Q is the external heat source per unit volume, and
Xi for i 2 ½s; l� are the solid and liquid sub-domains with Xs \Xl ¼ f;g and X ¼ Xs [Xl. The temperature field should verify
the initial conditions
T ¼ T0 8x 2 X; t ¼ t0; ð2Þ
where T0ðxÞ is the given initial temperature field. Additionally, the following set of conditions must be verified at the disjoint
portions Cd; Cq; Cc of the external boundary
T ¼ Td 8ðx; tÞ 2 Cd � ðt0;1Þ; ð3Þ
krT � n ¼ qw 8ðx; tÞ 2 Cq � ðt0;1Þ; ð4Þ
krT � n ¼ hf ðTf � TÞ 8ðx; tÞ 2 Cc � ðt0;1Þ; ð5Þ
where Cd [ Cq [ Cc ¼ @X; Td is the imposed temperature at the boundary Cd; qw is the external heat flow at the boundary
Cq; hf is the heat convection coefficient, Tf is the external fluid temperature at the portion the boundary Cc and n is the out-
ward normal to the boundary under consideration. Finally, at the interface C between Xs and Xl (the phase change bound-
ary), the following constraints must hold
T ¼ Tm 8ðx; tÞ 2 C� ðt0;1Þ; ð6Þ
½�ðkrTÞ � nC�C ¼ qLuC 8ðx; tÞ 2 C� ðt0;1Þ: ð7Þ
In these equations, L is the latent heat, Tm is the melting temperature, nC is the outward normal to the solidification front
from the solid domain, uC ¼ uC � nC is the velocity of the interface in the direction of the normal nC and the operator ½��C
measures the jump of the quantity � at the solidification front. Eq. (6) imposes the constraint that the temperature at the
phase change boundary must be equal to the melting temperature and Eq. (7) is the interface condition (the Stefan
condition).

The specific enthalpy H can be expressed in terms of the temperature T as
HðTÞ ¼
Z T

Tref

cðsÞdsþ LflðTÞ; ð8Þ
where Tref is a reference temperature, cðsÞ � c is the heat capacity and flðTÞ is the liquid fraction. For an isothermal phase
change, the liquid fraction is expressed as a Heaviside step, i.e., fl ¼ Heav ðT � TmÞ. In the case of non-isothermal phase change,
the liquid fraction can be described in terms of a linear function of temperature with solidus temperature Tsol and liquidus
temperature Tliq as parameters and given by
flðTÞ ¼
1 if T > Tliq;
T�Tsol

Tliq�Tsol
if Tsol 6 T 6 Tliq;

0 if T < Tsol:

8><>: ð9Þ
The energy input to the medium is described in terms of the Goldak heat source [22], given by
QðnðxÞ; tÞ ¼ 6
ffiffiffi
3
p

Qs

p
ffiffiffiffi
p
p

bc

ff

af
exp �3 n�n

af �af

� �
if n > 0;

fr
ar

exp �3 n�n
ar �ar

� �
if n 6 0;

8><>: ð10Þ
where af ¼ af ; b; c
� �

; ar ¼ ar; b; c½ �; n ¼ n;g; c½ �; af and ar are the length parameters associated with the axis of the front and
rear semi-ellipsoids, respectively; b and c are the other axes of the semi-ellipsoids; ff and fr are the portion of heat distributed
in the front and rear semi-ellipsoids, such that ff þ fr ¼ 2; t is the time and Qs is the total heat input. Generally, Q s is specified
in terms of the electric current I, the voltage V and the heat source efficiency g, as Q s ¼ gIV . The local coordinate system n is
attached to the heat source as shown in Fig. 1.

2.1. Variational formulation and finite element discretisation

The variational formulation of the problem and its finite element discretisation is briefly described in this section.
Further details can be found in references [23,24]. Let S ¼ fT=T 2 H1ðXÞ; TjCd

¼ Tdg be the space of trial solutions and



Fig. 1. Goldak heat source.
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V ¼ fv=v 2 H1ðXÞ; v jCd
¼ 0g be the space of weighting or test functions, where H1 is the first order Sobolev space. Next, the

variational formulation is given as follows:
Find T 2 S such that 8w 2 V
Z

X
w qc

@T
@t
þ qL @fl

@t
� Q

� �
dXþ

Z
X
rw � ðkrTÞ dXþ

Z
Cc

whf ðT � Tf Þ dCþ
Z

Cq

wqw dC ¼ 0; for t > 0;

Z
X

wT dX ¼
Z

X
wT0 dX; for t ¼ 0: ð11Þ
We remark that in the case of isothermal phase change, the time derivative of the liquid fraction @fl
@t should be interpreted in a

distributional sense.
Let Sh 	 S and Vh 	 V be subspaces of the trial and test functional spaces, respectively. Therefore, in matrix notation,

Th 2 Vh is given by
Thðx; tnÞ ¼ NT Tn; ð12Þ
where N denotes the finite element basis, such that RN 2 spanfNg, and Tn 2 RN denotes the FEM (Finite Element Method)
nodal degrees of freedom, with N as the dimension of the FEM space. Linear shape functions are used in this work. Next,
using a Bubnov–Galerkin projection and a Backward-Euler scheme for time integration, the discrete form of the residual
of the nonlinear thermal problem reads
Pn ¼ PðTn; tnÞ ¼ Gc
n þ Gk

n þ Gl
n þ Fn � Q n ¼ 0; ð13Þ
where
Gc
n ¼ GcðTn; tnÞ ¼

Z
X
qncnNNT dX

Tn � Tn�1

Dt
’ Hc

n � Hc
n�1

Dt
; ð14Þ

Gk
n ¼ GkðTn; tnÞ ¼

Z
X
rNknrNTXþ

Z
Cc

hfn NNT dC
	 


Tn; ð15Þ

Gl
n ¼ GlðTn; tnÞ ¼

1
Dt

Z
X
qnLNflðnÞ dX�

Z
X
qnLNflðn�1Þ dX

	 

’ Hl

n � Hl
n�1

Dt
; ð16Þ

Fn ¼ FðtnÞ ¼
Z

Cq

Nqwn
dC�

Z
Cc

hfn NTfn dC; ð17Þ

Q n ¼ QðtnÞ ¼
Z

X
NQ n dX: ð18Þ
Terms Gc
n and Gl

n, which involve discrete time derivatives and represent generalised capacitance and latent heat forces in
response to temperature increments, are approximated as generalised forces increments during the time step, Eqs. (14)
and (16), where:
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Hc
n ¼

Z
X
qncnNNT dX Tn; ð19Þ

Hl
n ¼

Z
X
qnLNflðnÞ dX: ð20Þ
Eq. (13) is therefore rewritten giving
Pn ¼ PðTn; tnÞ ¼
Hc

n � Hc
n�1

Dt
þ Gk

n þ
Hl

n � Hl
n�1

Dt
þ Fn � Q n ¼ 0: ð21Þ
In what follows the discussion will be directed towards obtaining highly compressible signals in the adopted formulation.
This modification of the formulation will be advantageous in developing HROMs, for reasons that will be given in detail
in Section 4.2.

It must be noted that Gl
n ¼ Hl

n � Hl
n�1

� �
=Dt only when q does not depend on temperature. Also, note that in the nonlinear

case Gc
n is different from Hc

n �Hc
n�1

� �
=Dt. Nevertheless, we assume that these approximations do not affect the accuracy. Take

into account that the only differences are due to the fact that in the expressions Hl
n�1 and Hc

n�1, the material properties (q; c)

are evaluated in terms of Tn�1 instead of Tn, a valid approximation for small time increments.

3. Formulation of the Reduced Order Model

The application of spatio-temporal separated representations for the formulation and design of the Reduced Order Model
is studied next (for a general treatment of separated representations, see for instance [25]). In our case, to describe the un-
known temperature Tðx; tÞ, we use the separated representation given by
Thðx; tÞ ’
XM

j¼1

SjðxÞRjðtÞ þ Tdðx; tÞ; ð22Þ
where Td denotes the non-homogeneous essential boundary conditions.
Both approaches, the a posteriori and a priori ROM techniques, make use of this idea. These methods assume that the re-

sponse of the system under study is k-compressible in a certain basis, meaning that only the first k components, with k� M,
condense all the significant information about the system behaviour. The manner in which this basis is determined gives the
particular features of the ROM formulation. The concept of k-compressibility of the signals is therefore highly important. Next,
we focus on the POD-ROM, which is classified as an a posteriori technique.

Remark. In what follows, all the HROMs which use a fixed frame of reference with respect to the welded piece, are based on
the HF model given by Eq. (21). This choice is justified by considerations given in Section 4.2.
3.1. The Proper Orthogonal Decomposition approach

In an a posteriori approach, the response of the system is assumed to be known in advance, e.g., by running a training
problem or performing experimental tests. Assuming that the response is k-compressible, we look for a procedure to
build a basis H for RN with the peculiarity that only the first k� N vectors of the basis provide significant information
to reproduce the system response. From a physical point of view, we hope to be able to capture the dynamics of the
problem with a reduced number of basis vectors. Solutions to problems similar to that of the training problem lie in
spanfHg. However, if we take into account that the first k vectors of the basis H condense the significant information
on the problem dynamics, we can form a reduced basis N with only k of these vectors, and subsequently look for
the solution in spanfNg.

To build the basis, we proceed in a manner similar to that of Principal Component Analysis (PCA) [26]. The main objective
is to reduce the dimensionality of the solution while retaining as much information as possible about the system response.
To achieve this goal, first, a set of snapshots is built using time instances of the spatial distribution of the solution of the train-
ing problem [27]. Next, PCA is carried out by making use of the Proper Orthogonal Decomposition, better known in the con-
text of linear algebra as Singular Value Decomposition (SVD) [28].

Remark. When non-homogeneous essential boundary conditions Td are imposed, snapshots of the form Th � Td are
considered. In what follows, it is assumed for conciseness and without loss of generality that Td ¼ 0. The implementation of
non-homogeneous essential boundary conditions is left for detailed analysis in a future work. It is taken into account that
when Td ¼ 0, the trial and test function spaces are the same.

Let matrix A be a matrix formed by the set of collected snapshots. From the SVD, we have
A ¼ URVT ; ð23Þ
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where the columns u of U are the left singular vectors of A, the columns v of V are the right singular vectors of A and the
diagonal entries r of R are the singular values of A. If the snapshots A correspond to a function Tspðx; tÞ, with Aij ¼ Tspðxi; tjÞ,
from Eq. (23) we have
Tspðxi; tjÞ ¼
XM

j¼1

uj 
 v j rj

" #
i

: ð24Þ
If the response of the system is k-compressible with respect to the basis uj, we can write
Tspðxi; tjÞ ’
Xk

j¼1

uj 
 v j rj

" #
i

; ð25Þ
where k� M, and then, the separate representation given by Eq. (22) can be used to describe Th in terms of uj, leading to
Tn½ �i ¼ Thðxi; tnÞ ’
Xk

j¼1

ujRjðtnÞ
" #

i

: ð26Þ
In matrix notation, this equation is given in a more compact form by
Thðx; tnÞ ¼ NT Tn ¼ NT Xan; ð27Þ
where X denotes the change of basis matrix whose columns are the first k vectors uj and an denotes the vector of coefficients
RjðtÞ evaluated at the time instant tn.

From Eqs. (26) and (27), it can be concluded that the basis sought is given by the vectors uj (commonly referred to as POD
modes of the approximation). Moreover, the test functions vh in this new basis are given by
vh ¼ NT Xg; ð28Þ
with g 2 Rk.
Making use of the test functions given by the last equation and using a Bubnov–Galerkin projection, we arrive at discrete

variational formulation whose residual is given by
Pp
n ¼ PpðanÞ ¼ XT

PðXanÞ ¼ XT Hc
n � Hc

n�1

Dt
þ XT Gk

n þ XT Hl
n � Hl

n�1

Dt
þ XT Fn � XT Q n ¼ 0: ð29Þ
This result is equivalent to that obtained by projecting the residual given by Eq. (21) in the space spanned by X; therefore, we
refer to the modes uj as projection modes of the approximation. Due to the high nonlinearity of the problem, a line-search
method must be applied in conjunction with a Newton–Raphson scheme. This type of globally convergent method is quite
standard and its formulation can be found in most textbooks in nonlinear optimisation [29,30].

The tangent matrix corresponding to the residual given by Eq. (29) is
@Pp
n

@an
¼ XT @Pn

@an
¼ XT @Pn

@Tn

@Tn

@an
¼ XT @Pn

@Tn
X: ð30Þ
As can be observed from the last equation, the system of equations to be solved in the ROM is much smaller in size than the
system to be solved in the HF model. In the former case, the size of the problem is k� k, and in the latter case, the size is
N � N. Although the computational cost of solving the system of linear equations is reduced, the cost of assembling the resid-
ual and the tangent matrix in each Newton iteration is still OðNÞ. To significantly reduce the computational cost, we must
reduce the cost of assembling the residual and the tangent matrix at each Newton iteration. In the following sections, we
introduce approximations that lead to the formulation of the so-called hyper-reduced models.
3.2. Optimality and consistency

Carlberg et al. [11] introduced the notions of optimality and consistency to ensure that good approximations are obtained
when designing ROMs. According to Carlberg et al. [11], ‘‘an approximation is said to be consistent if, when implemented
without data compression, it introduces no additional error in the solution of the same problem for which data was
acquired. . . The approximation is said to be optimal if it leads to approximated quantities that minimise some error
measure’’.

The ROM presented in this work satisfies consistency because, when the POD basis is not truncated, Th is in spanfXg, and
the solution of the training problem is recovered. With respect to the optimality of the approximation, it must be mentioned
that a Bubnov–Galerkin projection is optimal if the Jacobian or the tangent matrix of the system is symmetric positive def-
inite (SPD). If it is not the case, a Petrov–Galerkin projection should be used [11]. In our ROM, we use a Bubnov–Galerkin
projection despite the fact that the system tangent matrix is not SPD because non-symmetry is not large for typical phase
change problems.
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4. Formulation of the Hyper Reduced Order Model

To reduce the cost of assembling the residual and the tangent matrix, we apply the gappy data reconstruction method
introduced by Everson and Sirovich [19] in the image processing community and applied by many other researchers in
the computational mechanics community [16,31,32]. Specifically, suppose only ns components û of a vector u are known.
The objective is to build an approximation ~u to u, starting from the known components û.

First, a set of snapshots corresponding to u is collected. After computing the SVD of this set of snapshots, we obtain a set of
POD modes for u. Assume that only the first ng modes are significant; these modes are referred to in this work as gappy
modes and are given as columns of a matrix W. Therefore, an approximation to u can be written as
u ’ Wb: ð31Þ
Let us assume that we know only ns values of u. This situation is represented by multiplying Eq. (31) by the sampling matrix
R of size ns � N, yielding
û ¼ Ru ’ RWb ¼ bWb; ð32Þ
where the operator �̂ denotes the sampling of �. Subsequently, this problem can be stated as that of finding b 2 Rng such that
b ¼ arg min
c2Rng

k bWc � buk2: ð33Þ
To get a unique solution, we require the columns of bW to be linearly independent. For this requirement to hold, the constraint
ng 6 ns must be met. Problem (33) subsequently can be solved either by computing the Moore–Penrose pseudo-inverse or by
applying the QR decomposition. The latter technique is recommended for ill-conditioned matrices bWT bW [33]. In our
problems, we have observed that although the condition of bWT bW could be somehow deteriorated in certain cases, the results
obtained by applying either the QR decomposition or the pseudo-inverse did not differ significantly. In this work the
pseudo-inverse is used, giving
b ¼ ð bWT bWÞ�1 bWT û: ð34Þ
By replacing this result into Eq. (31), we arrive at
u ’ ~u ¼ Wð bWT bWÞ�1 bWT û: ð35Þ
In other words, an approximation to the entire vector u is reconstructed, with only the knowledge of the ns components û of
u. By extending these ideas to our problem, we can compute the residual Pn only knowing its values at ns points, thus reduc-
ing the order of the assembly process from N to ns, with ns � N.

Several techniques aimed at finding the ns points for which to evaluate Pn have been proposed in the literature. A number
of techniques operate at the discrete level, whereas others are expressed at the continuum level. Currently, two approaches
that operate at the continuum level are widely used and can be mentioned: the Best Point Interpolation Method (BPIM) [34],
which optimally selects the points, and the Empirical Interpolation Method (EIM) [35], which yields good but not optimal per-
formance. Discrete versions of these algorithms have also been proposed [15,16]. This work uses an extension of the Discrete
Empirical Interpolation Method (DEIM) [16]. This method is briefly described in Algorithm 1, in which the sampling points are
returned in vector p.

Algorithm 1. DEIM extension: return sampling points in vector p

1: function DEIMEXT(W)
2: z :¼ Wð:;1Þ
3: pð1Þ :¼ maxAbs (z) . Find index of maximum absolute value of z
4: for i ¼ 1 to ns � 1 do
5: n :¼ min (i;ng)
6: K :¼ Wðp;1 : nÞ
7: U :¼ KTK

8: v :¼ mod (i;ng) + 1
9: z :¼ Wð:;vÞ
10: c :¼ U�1KT zðpÞ
11: r :¼ z �Wð:;1 : nÞc
12: pðiþ 1Þ :¼ maxAbs (r,p) . Find index of maximum absolute value
13: . of r which is not in the set of indices p
14: end for
15: return p
16: end function
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Different approaches for the design of HROMs have been proposed in the literature [11,14,16,31,35,32]. The main differ-
ences among them lie in the choice of the set of snapshots used to compute the POD modes of the approximation. In addition,

the proposal of Carlberg et al. [11,14] differs from the others in the fact that they use one set of POD modes for interpolating
the residual and another set for interpolating the tangent matrix. Instead, in our proposal, we derive the method for inter-
polation of the tangent matrix from the procedure used to interpolate the residual. For this reason, we first focus our study
on the treatment of the residual.

In the following sections, two different approximations for collecting the snapshots are analysed. The expected perfor-
mance of each approximation is evaluated in terms of the Relative Information Content (RIC), indicator, which is defined as
RIC ¼
PNs

i¼1kiPNr
i¼1ki

; ð36Þ
where ki are the singular values of the SVD, Ns is the number of singular values kept in the truncation and Nr is the total
number of singular values of the SVD.

4.1. Snapshot collection by one nucleating nonlinear term

A strategy used to formulate the HROM divides the residual into two contributions: one term that nucleates the linear
terms and another that nucleates the nonlinear terms [31]. Next, the gappy method is applied to the nonlinear term. In this
sense, it can be said that the residual is divided into one term, which is hyper-reduced, and another term, which is assembled
just once without needing to be hyper-reduced. Certain other authors, such as Carlberg et al. [11,14], hyper-reduce the resid-
ual as a single entity.

In our case, the terms that comprise the residual Pn in Eq. (21) are all nonlinear except for the heat source term. However,
because the heat source is in motion and follows a given trajectory, an assembly process is required for this term at each time
instant, operation which is OðNÞ. Therefore, this term also must be hyper-reduced by gappy data reconstruction, making it
necessary to hyper-reduce the residual as a unit, similar to what was performed by Carlberg et al.

We take the residuals of the HF model in each Newton iteration as snapshots, diverging from Carlberg et al. at this point
because they take the residuals of the reduced problem as snapshots instead (formulation presented in Section 3.2). The POD
modes for interpolation are computed by applying the SVD to the set of collected snapshots. If we denote U the first ng POD
modes of the residual, we have
Pn ’ ePn ¼ Uð bUT bUÞ�1 bUT bPn: ð37Þ
Next, to obtain the hyper-reduced residual Pp
n, we project this equation with the POD basis X as in Eq. (29); that is
Pp
n ¼ XT ePn ¼ XT

Uð bUT bUÞ�1 bUT bPn ¼ Ar
bPn: ð38Þ
Take into account that matrix Ar ¼ XT
Uð bUT bUÞ�1 bUT is computed just once in the off-line stage.

The hyper-reduced tangent matrix is finally obtained by differentiation of the last equation to produce
@Pp
n

@an
¼ Ar

@ bPn

@an
¼ Ar

@RPn

@an
¼ ArR

@Pn

@Tn
X: ð39Þ
Remark

� If all modes are retained in the gappy basis U and in the basis X, i.e., U ¼ bU and Pn ¼ bPn, then in Eq. (37) produces
ePn ¼ UðUTUÞ�1
UTPn ¼ UI�1

UTPn ¼ UUTPn ¼ IPn ¼ Pn; ð40Þ
where I is the identity matrix. Therefore, when no truncation is carried out, the residual Pn is fully recovered. Using this re-
sult in Eq. (38), the projected residual given by Eq. (29) is obtained, and the solution of the HROM and the solution of the
ROM coincide. Moreover, it was shown in Section 3.2 that the solution of the ROM converges to the solution of the training
problem when no truncation is used, making it possible to conclude that the solution of the HROM and the solution of the
training problem are the same, and therefore the method is consistent.
� To ensure that the projected tangent matrix given by Eq. (39) is full-rank, we require the number of gappy modes ng to

obey the constraint ng P k. The justification for this constraint is given in Section 4.3.
� Eq. (38) can be re-written as
Pp
n ¼ XT

Udn; ð41Þ
where dn is the vector that condenses the rest of the terms involved in the HROM. Next, it is evident that matrix XT
U should

have rank k for the formulation of the HROM to be well-posed. This condition is satisfied by the current hyper-reduced for-
mulation, and details are given in Section 4.3.
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� The columns of U are left singular vectors of the SVD of the matrix built by the snapshots taken at all Newton iterations of
the residual. Therefore, they should normally be linearly independent, which is the condition required for U to be a basis.
However, in certain cases, these vectors can be close to parallel. An example is a case in which snapshots are collected
from a training problem with a notably small time step; in this situation, all residuals will be close to zero and the com-
puted left singular vectors will be almost linearly dependent. This type of situations leads to ill-conditioning and prob-
lems of convergence.

4.2. Snapshot collection by individual nonlinear terms

An alternative approach for the snapshot collection is proposed in this section to avoid the inconveniences of the previous
procedure. We consider the residual Pn as the summation of various physically based nonlinear generalised contributing
forces plus one term that nucleates the linear contributions. Next, each nonlinear term will be individually stored and hy-
per-reduced. The heat source term will be hyper-reduced as well to reduce its assembly cost from OðNÞ to OðnsÞ.

To obtain an optimal method, we need to individualise terms that are highly compressible. Two forms of the discrete ther-
mal nonlinear problem were proposed in Section 2.1: Eqs. (13) and (21). The difference between them lies in the way the
capacitance and latent heat forces are handled.

The SVD spectrum of Gc
n and Gl

n in Eq. (13) is less compact than that of the terms Hc
n and Hl

n because the latter terms can be
viewed as integrated forms of the former. Indeed, this was verified by numerical experiments. Moreover, it was verified that
the condition of the HROM tangent matrix in the former case is worse than in the latter case. For these reasons, the formu-
lation given by Eq. (21) was adopted, instead of that given by Eq. (13), as HF model for the HROM.

Each term of Eq. (21) has an associated POD basis for its gappy data reconstruction. In what follows, suffixes
i 2 fc; k; l; f ; qg are used to identify the different POD bases Ui and sampling matrices Ri, corresponding to each term. We
emphasise that the sampling matrices are different for each term, but the number of sampling points ns and the number
of gappy modes ng are always the same for all. Then, the approximation to each term from the gappy data reconstruction
is given by
Hc
n ’ Uc

bUT
c
bUc

� ��1 bUT
c
bH c

n; ð42Þ

Gk
n ’ Uk

bUT
k
bUk

� ��1 bUT
k
bGk

n; ð43Þ

Hl
n ’ Ul

bUT
l
bUl

� ��1 bUT
l
bH l

n; ð44Þ

Fn ’ Uf
bUT

f
bUf

� ��1 bUT
f
bF n; ð45Þ

Q n ’ Uq
bUT

q
bUq

� ��1 bUT
q
bQ n; ð46Þ
where b� denotes the vector of ns components sampled from the associated full term.
To obtain the hyper-reduced residual Pp

n we project the approximation of Pn with the POD basis X, as in Eq. (38) which
results in
Pp
n ¼ Ac

bH c
n � bH c

n�1

Dt
þ Ak

bGk
n þ Al

bH l
n � bH l

n�1

Dt
þ Af

bF n � Aq
bQ n; ð47Þ
where Ai ¼ XT
Uið bUT

i
bUiÞ

�1 bUT
i , with i 2 fc; k; l; f ; qg. Again, take into account that matrices Ai are computed in the off-line

stage.
Finally, the hyper-reduced tangent matrix is obtained by differentiating the residual with respect to the global unknown

parameters
@Pp
n

@an
¼ AcRc

@Hc
n

@Tn
X þ AkRk

@Gk
n

@Tn
X þ AlRl

@Hl
n

@Tn
X: ð48Þ
The consistency of the current HROM can be shown by following the same procedure that was applied in the previous meth-
od (Section 4.1).

4.3. Relationship between the projection and the hyper-reduction spaces

In the previously developed HROMs, we addressed hyper-reduced quantities of the form XT
Uidn, where X is the basis

spanning the solution space, Ui is the POD basis used in the gappy data reconstruction and dn is a vector condensing the rest
of the terms involved in the HROM. To obtain a well-posed formulation of the HROM, we need matrix XT

Ui to have maxi-
mum rank k. Note that terms Ui and X are energetically conjugated. Therefore, their mutual product is equal to an energy
increment, and it is intuitively expected that XT

Ui has maximum rank k. Next, we show that this expectation is effectively
verified in our case.
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For the solidification problem under consideration, we take the temperature values T j of the system at a sequence of S
time instants tj; j ¼ 1; . . . S as snapshots for building the basis X. To design the HROM, we computed the residual as the sum-
mation of various physical contributions and took snapshots for each of these quantities to compute the corresponding POD
basis for the gappy data reconstruction procedure.

For instance, let us consider the thermal conductivity term: the nonlinear contribution to the residual reads
Gk
j ¼

Z
X
rN � ðkrN T jÞ dX: ð49Þ
For the problem at hand, it is well known that
Z
X
rT j � ðkrT jÞ dX ¼ TT

j KT j > 0 ð50Þ
with given Dirichlet boundary conditions. If we assume that the temperature field signal is k-compressible, we know that for
a certain basis X there exists nj 2 Rk such that
T j ¼ Xnj; ð51Þ
where the equality is used for conciseness (it is in fact T j ’ Xnj).
Now, let B ¼ Gk

1;G
k
2; . . . ;Gk

S

h i
denote the matrix formed by S snapshots Gk

j ¼ KT j. If we assume that B is ng-compressible
and ng P k, we have
BBT ¼ UkD
2UT

k ; ð52Þ
where D is the matrix of the first ng singular values of B, and Uk are the first ng left singular vectors of B.
Let us now consider matrix C defined as the projection of BT B on the solution space. From the considerations above, we

obtain
C ¼ XT
UkD

2UT
k X ¼ XT BBT X ¼ XT KJJT KT X; ð53Þ
where J ¼ ½T1;T2; . . . ;TS�. The term JJT can be expressed as
JJT ¼ XR2XT ; ð54Þ
because the temperature field is assumed to be k-compressible, where R is the matrix of the first k singular values of J. There-
fore, C reads
C ¼ XT KXR2XT KT X ¼ KTR2K ; ð55Þ
where K ¼ XT KT X. From Eq. (50), K is symmetric positive definite. Moreover, if the left singular vectors associated with zero
singular values are not part of X; R2 is a diagonal matrix with positive entries. Therefore, C is symmetric positive definite and
invertible. It follows therefore that the matrix XT

Uk has rank k.
A similar analysis can be carried for the other terms of the HROM presented in Section 4.2 with the conclusion that it is

well-posed. A similar conclusion can be obtained for the HROM given in Section 4.1.
We mention for completeness that an HROM formulation in which the projection space and the hyper-reduction space

are mutually orthogonal leads to an ill-posed problem. A solution to this type of singularity was proposed by Hernández
et al. [13].

It was previously mentioned that to ensure the projected tangent matrix is full-rank, the number of gappy modes must
obey the constraint ng P k. The reason for this constraint is obvious with the development presented in this section. If the
number of gappy modes is smaller than the number of POD projection modes, i.e., ng < k, the matrix BBT given by Eq. (52)
would have rank ng , and the invertibility of C would not be guaranteed, and it cannot be assured that the projected tangent
matrix would have rank k.

5. Alternative formulation: the moving frame approach

A formulation of HROMs for nonlinear transient heat conduction problems expressed in terms of a moving frame of ref-
erence is introduced next, specifically, a frame of reference attached to a heat source. In the case of a highly concentrated
moving heat source, such a formulation permits us to obtain a problem whose solution is characterised by a high compress-
ibility. In other words, a small number of projection modes and gappy points are required when using a moving frame of
reference that follows the high gradients present in the solution.

5.1. Variational formulation and discretisation

The following considers the energy balance equations in a moving frame of reference attached to the heat source. Let ei,
with i 2 f1;2;3g, be unit vectors associated with a body fixed frame centered at O. Let rðtÞ be the parametrisation of the
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curve describing the trajectory of the heat source with respect to ei. We describe this trajectory by the position of Mc points
ci, interpolated by shape functions RiðtÞ
rðtÞ ¼
XMc

i¼1

RiðtÞci; ð56Þ
where the time t 2 ½0; tf � is subdivided into Mc � 1 sub-intervals Ik ¼ ðtk; tkþ1Þ with k 2 f1; . . . ;Mc � 1g, such that rðtkÞ ¼ ck.
In the case of a moving frame, Fig. 2, the position of the heat source at each time instant is taken as the origin of this mov-

ing welding frame or the position of the observer O0. We denote by ui, with i 2 f1;2;3g, the orthonormal unit vectors asso-
ciated to the moving frame. We use a cubic spline to interpolate the trajectory of the heat source. Let ps and pe be the given
starting tangent at t ¼ 0 and the given ending tangent at t ¼ tf , respectively. Next, rðtÞ in an arbitrary interval Ik is given by
rðtÞ ¼ R00ðtÞck þ R10ðtÞpk þ R01ðtÞckþ1 þ R11ðtÞpkþ1; ð57Þ
where
R00ðtÞ ¼ ð1þ 2fÞð1� fÞ2; ð58Þ
R10ðtÞ ¼ ðt � tkÞð1� fÞ2; ð59Þ
R01ðtÞ ¼ ð3� 2fÞf2; ð60Þ
R11ðtÞ ¼ ðt � tkÞð1� fÞf; ð61Þ

f ¼ t � tk

tkþ1 � tk
: ð62Þ
The tangents pk are computed according to the Catmull–Rom formula
pk ¼
pkþ1 � pk�1

tkþ1 � tk�1
: ð63Þ
The unit vectors ui of the welding frame are given by (i) u1ðtÞ ¼ r0ðtÞ=kr0ðtÞk the tangent to the trajectory; (ii) u2ðtÞ the out-
ward normal to the welding surface; and (iii) u3ðtÞ ¼ u1ðtÞ � u2ðtÞ. The set of coordinates in this frame is denoted by
n ¼ ½n1; n2; n3�.

The position vector p of an arbitrary point Y with respect to the fixed frame O can be computed as
pðtÞ ¼ oðtÞ þ KðtÞqðtÞ; ð64Þ
where qðtÞ is the position of Y with respect to the moving frame O0, vector oðtÞ is the position of the moving frame with re-
spect to the fixed frame and K is the rotation matrix formed by the unit vectors ui as columns.

The material derivative in the moving frame of the scalar field T is given by
DT
Dt
¼ @T
@t
þ @n
@t
� rnT; ð65Þ
where rn is the gradient operator given by rn ¼ @
@n

, and
@n

@t
¼ @K

@t

T

Kq� KT @o
@t
: ð66Þ
The Jacobian of the transformation relating both frames is given by
@n

@x
¼ K ð67Þ
and therefore, the conductivity term reads
r � krT ¼ rn � KkKT� �
rnT: ð68Þ
Fig. 2. Fixed and moving frames.
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The material derivative of the liquid fraction is analysed next. Note that this term must be understood in a distributional
sense. The material derivative of the liquid fraction in a variational framework can be expressed as
Z

X
w

Dfl

Dt
dX ¼

Z
X

w
@fl

@t
þ @n
@t
� rnfl

� �
dX: ð69Þ
By applying Green’s theorem to the second term, we obtain
Z
X

w
@n

@t
� rnfl dX ¼ �

Z
X

fl
@n

@t
� rnw dX�

Z
X

flwrn �
@n

@t
dXþ

Z
CnCd

flw
@n

@t
� n dC: ð70Þ
Taking into account that rn � @n@t ¼ 0 and that @n
@t � n ¼ 0, because the torch motion lies on the body surface, we obtain
Z

X
w
@n

@t
� rnfl dX ¼ �

Z
X

fl
@n

@t
� rnw dX: ð71Þ
Finally, the variational formulation for the welding problem expressed in a frame moving with the heat source reads:
Find T 2 S such that 8w 2 V
Z

X
w qc

@T
@t
þ qc

@n

@t
� rnT þ qL @fl

@t
� QðnÞ

� �
dXþ

Z
X
rnw � KkKT� �

rnT � qLfl
@n

@t

� �
dX

þ
Z

Cc

whf ðT � Tf Þ dCþ
Z

Cq

wqw dC ¼ 0; for t > 0;

Z
X

wT dX ¼
Z

X
wT0 dX; for t ¼ 0: ð72Þ
Note that in this case the heat source QðnÞ does not depend on time. Note also that two new terms appear compared with Eq.
(11): one originating from the material time derivative of the temperature field and another from the material time deriv-
ative of the liquid fraction. Additionally, the conductivity properties are affected by the rotation of the computation frame.

The finite element discretisation is quite similar to the one introduced in Section 2.1. The equation to be solved is briefly
expressed as
Pn ¼
Hc

n � Hc
n�1

Dt
þ Gk

n þ Gvc
n þ

Hl
n � Hl

n�1

Dt
� Gvl

n þ Fn � Q ¼ 0; ð73Þ
where the new term Gvc
n is taken from the discretisation of the term qc @n

@t � rnT , and Gv l
n expresses the discretisation of the

term rnw � qLfl
@n
@t.

5.2. HROM formulation

The HROM formulation in the moving frame is constructed using the same developments as for the fixed frame formu-
lation. The procedure for dividing the residual Pn into a set of physically based nonlinear generalised forces that contribute
to the residual and one term that nucleates the linear contributions, is followed. Next, the only difference is that the hyper-
reduced versions of the new terms Gvc

n and Gv l
n must be incorporated, resulting in
Pp
n ¼ Ac

bH c
n � bH c

n�1

Dt
þ Avc

bGvc
n þ Ak

bGk
n þ Al

bH l
n � bH l

n�1

Dt
� Avl

bGv l
n þ Af

bF n � XT Q : ð74Þ
Note that because the heat source term does not depend on time, it is not hyper-reduced and its projection is computed only
once. In addition, note that the same notation of Section 5.2 has been used to identify the POD modes and the gappy modes.
Clearly, these modes have been computed from snapshots obtained from a HF model calculated using a moving frame of ref-
erence formulation and therefore they are different from the modes used in Section 5.2.

6. Application examples

We present two examples for assessing the performance of the introduced HROMs. The first example consists of the solid-
ification of a cube. In the second example, we study a welding-like problem of a tube without material deposition.

The HF model given by Eq. (21) was used in the formulation of the HROMs presented in Sections 4.1 and 4.2. Since both
HROMs are based on the same HF formulation, results can be consistently compared. The HF model given by Eq. (73) was
used in the moving frame formulation.

To assess the performance and robustness of the introduced HROMs, the following parameters are evaluated:

� The condition number of the matrices M ¼ bUT
i
bUi that are part of the gappy data reconstruction method. The condition

number condðMÞ, is computed as
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condðMÞ ¼ ke

k0
; ð75Þ
where k0 and ke are the maximum and minimum singular values of M, respectively.
� The evolution of the condition number of the HROM tangent matrix. This information is plotted in terms of the global

iteration number (the iterations are numbered globally, i.e., the iterations of all time steps are consecutively numbered).
� The relative error � introduced by the HROM. This error is computed as
� ¼ kTR � THkF

kTHkF
; ð76Þ
where TR is the matrix of the solution in time obtained with the HROM, TH is the HF solution for the same problem, and k � kF

is the Frobenius norm of matrix �. To measure this error, the temperature field is computed for every 20 time steps of the
simulation.
� The speedup SH of the HROM with respect to the HF model, defined as
SH ¼
tH

tR
; ð77Þ
where tH and tR are the total times needed to compute the solution by the HF model and by the HROM (online stage only),
respectively. The computations were carried out by saving the results for every 20 time steps.

A normalised residual norm was used to verify convergence of the Newton–Raphson scheme, given in the HF case by
kPnk
Gl

n

 þ Gk
n

 þ Gc
n

 þ kFnk þ kQ nk
; ð78Þ
where k � k denotes the L2 norm of �. The normalised residual norm for the HROM is defined similarly with the corresponding
hyper-reduced quantities. Convergence of the Newton–Raphson scheme is verified when the normalised residual norm is
below 1� 10�6.

The tests were performed in a computer with the following characteristics:

� Processors: 2 x [Intel(R) Xeon(R) CPU X5680 @ 3.33 GHz].
� Number of physical cores: 6 cores on each processor; hyper-threading deactivated.
� Cache L1, L2, L3: 32 KB, 256 KB, 12 MB.
� NUMA nodes #0, #1: 2 x 48 GB.
� Operating system: Linux 3.5.1–1.fc17.x86_64 #1 SMP x86_64 x86_64 x86_64 GNU/Linux.

6.1. Solidification of a cube

Solidification of a cube of side L ¼ 0:41 m is analysed first. The body is located at the positive octant, with a corner at the
origin of coordinates ð0;0;0Þ. It is initially at constant temperature T0 ¼ 2500 K and is cooled from sides s1 ¼ ð0; y; zÞ and
s2 ¼ ðx;0; zÞ. Cooling is described by means of a Robin boundary condition, with fluid temperature Tf ¼ 299 K. The other sides
of the cube are perfectly insulated. The heat capacity c, the thermal conductivity k and the heat convection coefficient hf de-
pend on the temperature and are given by the expressions
c
J

kg K

� �
¼ 0:19566T½K� þ 474:04;

k
W

m K

� �
¼ 0:011808T½K� þ 3:7066;

hf
W

m2 K

� �
¼ 2:6T½K� � 55: ð79Þ
The material density is q ¼ 4430 kg
m, the solidus temperature is 1877 K, the liquidus temperature is 1933 K and the latent

heat is L ¼ 292600 J
kg. The geometry is discretised using 162000 equally spaced tetrahedra and 29791 degrees of freedom.

A constant time step of 1 s is used for a simulation in the time interval [0,800] s. The computation of the HF solution required
4318.6 s of CPU time.

6.1.1. Results obtained by hyper-reducing the residual
The HROM presented in Section 4.1 is applied in this section to solve the solidifying cube problem. Fig. 3 shows the SVD

spectrum of the temperature and of the residual histories. From this figure, a good approximation is expected using a small
number of projection modes and sampling points. However, as shown in the following, this is not the case, and the error
could not be decreased below 1� 10�4.



Fig. 3. Solidifying cube problem: hyper-reduction of the residual. SVD spectrum for each of the involved terms.

Fig. 4. Solidifying cube problem: hyper-reduction of the residual. Results obtained by varying the number of gappy modes and sampling points with k ¼ 4
and ns ¼ ng .
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Fig. 4 displays the results obtained using k ¼ 4 projection modes, and a varying number of gappy modes ng and sampling
points ns with ns ¼ ng . Even with a large number of gappy modes, i.e., ng ¼ 30, the error of the approximation is always great-
er than 1� 10�4 and therefore, the performance is not satisfactory. In this sense, the expectation of using a few sampling
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points to obtain a good approximation to the residual is not met. Moreover, the condition numbers of the tangent matrix and
of the matrix bUT bU are quite small, which affects the robustness of the HROM.

To improve the performance of this HROM, we double the number of gappy points, i.e., we run the tests using k ¼ 4 and
ns ¼ 2ng . As observed in Fig. 5(a)–(c), better results are obtained but the condition numbers of the involved matrices are
Fig. 5. Solidifying cube problem: hyper-reduction of the residual. Results obtained by varying the number of gappy modes and sampling points with k ¼ 4
and ns ¼ 2ng .

Fig. 6. Solidifying cube problem: hyper-reduction of separate contributions to the residual. SVD spectrum for each of the involved terms.
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rather small, and the error reached is almost 1� 10�4 when using 60 sampling points, which is much more than expected
from the SVD spectrum.

Finally, a speedup test was run, using k ¼ 4; ng ¼ 30 and ns ¼ 60 which corresponds to an error of 1:10� 10�4 and pro-
duces a speedup of 74.9.
6.1.2. Results obtained by hyper-reducing the separate contributions to the residual
The cube solidification test is solved next using the HROM that separately hyper-reduces each contribution to the resid-

ual. Fig. 6 displays the SVD spectrum for each of the involved terms in the formulation. Again, a good HROM approximation is
expected using a small number of sampling points, because the spectrum shows high compression. As shown in the follow-
ing, this expectation is confirmed by the experiments.

Fig. 7 plots the results obtained using k ¼ 4 projection modes, and a varying number of gappy modes ng and sampling
points ns with ns ¼ ng . By comparing these results with those presented in Fig. 4, we conclude that this HROM performs
much better than the previous one, not only because the number of gappy points required to reach a given error is smaller,
but also because the condition of the involved matrices is larger, thus contributing to the robustness of the method. More-
over, using k ¼ 4 and ng ¼ ns ¼ 5, a relative error of 1:20� 10�4 is obtained with a speedup of 336.25. When using k ¼ 4 and
ng ¼ ns ¼ 12, the relative error is 8:27� 10�6 and the speedup is 224.9.

To further analyse the behaviour of this HROM, we run a test that augments the number of gappy points to ns ¼ 2ng . The
number of projection modes was held equal to k ¼ 4, and the results can be observed in Fig. 8(c). The condition number of
the involved matrices remain essentially unchanged. The computational error does not decrease significantly, making it nec-
essary to increment the number of projection modes k if better results are required, e.g., by incrementing k to 8 and using
ns ¼ ng ¼ 12, an error of 1:82� 10�7 is obtained. We can conclude that in this case the error was governed by the number of
projection modes and that the computation of the contributions to the residual were sufficiently accurate with ns ¼ ng .
Fig. 7. Solidifying cube problem: hyper-reduction of separate contributions to the residual. Results obtained by varying the number of gappy modes and
sampling points with k ¼ 4 and ns ¼ ng .



Fig. 8. Solidifying cube problem: hyper-reduction of separate contributions to the residual. Results obtained by varying the number of gappy modes and
sampling points with k ¼ 4 and ns ¼ 2ng .

Fig. 9. Tube discretisation.
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6.2. Welding of a tube

This problem consists of welding of a tube without material deposition. The external radius of the tube is 0.075 m and the
internal radius is 0.05615 m. Symmetry conditions with respect to the x–y plane are applied, and only one half of the tube is
modelled with a length of 0.0377 m. Robin boundary conditions are imposed at the internal and external surfaces. Fig. 9
shows the discretisation composed of 388800 tetrahedra and 74100 degrees of freedom. A time step of 0.15 s is used for
the time interval [0,100] s. Temperature dependent thermophysical properties are used as specified in Fig. 10(b) and (a).
The material density is q ¼ 4430 kg

m, the solidus temperature is 1877 K, the liquidus temperature is 1933 K, and the latent
heat is L ¼ 292600 J

kg. The heat source parameters are listed in Table 1. Initially, the heat source is located at the position
given by the point ð�0:075;0;0Þ. At the time instant t ¼ 0, the heat source begins to travel with a constant tangential velocity
equal to 5� 10�3 m

s . The CPU time consumption required to obtain the HF solution was 11993.1 s. In the following, the re-
ported speedups are obtained relative to this value.

6.2.1. Results obtained by hyper-reducing the residual
The welding problem is first solved by application of the HROM presented in Section 4.1 with a fixed reference frame.

Fig. 11 presents the SVD spectrum of the temperature and the residual histories. It can be observed that the spectrum of
Fig. 10. Thermophysical properties.

Table 1
Parameters of the Goldak heat source.

ar af b c ff I V g

10.84 mm 5 mm 5 mm 2 mm 0.63131 260 A 12 V 0.7

Fig. 11. Tube welding problem: hyper-reduction of the residual. SVD spectrum for each of the involved terms.
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the residual is not as compact as the spectrum of the temperature, which is an indication of an inconvenience in the HROM,
implying that a large number of sampling/gappy points must be used to build good approximations of the residual. There-
fore, this HROM must use a large number of sampling points to capture the residual behaviour. For example, to obtain a rel-
ative error of 0.0010254, k ¼ 180 projection modes, ng ¼ 1200 gappy modes and ns ¼ 2400 sampling points are required,
thus affecting the performance (the speedup factor is only 18.06).

In this case, the condition number of bUT bU is 0.2919, although the situation is worse for the conditioning of the tangent
matrix. For the iterations of the Newton–Raphson scheme, the average, the maximum and the minimum value of this con-
dition number are given by 2:04� 10�5; 4:82� 10�5 and 1:70� 10�5. In this context, even if the Newton–Raphson scheme
converges, it cannot be guaranteed that a good approximation to the solution is obtained with the HROM. The bad perfor-
mance and the ill-conditioning of the tangent matrix are related to the fact that the snapshots of the residual are zero every-
where except for a small region, where the residual’s behaviour tends to be noisy (see, e.g., the residual corresponding to the
first iteration at two different time steps in Fig. 12(a) and (b)).
6.2.2. Results obtained by hyper-reducing the separate contributions to the residual
The welding problem is solved next by the application of the HROM that separately hyper-reduces each contribution to

the residual, with a fixed reference frame. Fig. 12(c) and (d) show the heat capacity contribution to the converged residual at
two different time steps. The pattern is less noisy than the residual that was used to build the projection basis in the previous
HROM. Therefore, the resulting SVD spectrum for each of the involved terms in the formulation is more compact than in the
previous HROM, as shown in Fig. 13.

In an initial test, we selected a number of modes and sampling gappy points that were both equal to 200, i.e.,
ng ¼ ns ¼ 200, and analysed the variation of the relative error in terms of the selected number of projection modes k.
Fig. 14(a) shows the evolution of this error. Initially, the error decreases when incrementing the number of projection modes
but stagnates for k > 120. Fig. 14(b) gives an explanation for this phenomenon. First, the condition number of the tangent
matrix decreases with the increment of the number of projection modes, indicating that the problem condition deteriorates
and errors increase. Even worse, the condition numbers of the matrices associated with the gappy data reconstruction pro-
cess are also quite low: condðbUT

c
bUcÞ ¼ 5:75� 10�5 and condðbUT

k
bUkÞ ¼ 0:007. The error induced by the interpolation of the

internal forces (gappy data reconstruction) is therefore quite large; it deteriorates the condition number of the tangent ma-
trix, and the algorithm is not able to decrease the computation error when augmenting the number of projection modes.

The same experiment was performed but with the doubling of the number of sampling points: ng ¼ 200 and ns ¼ 400. The
results can be observed in Fig. 15(a) and (b). The relative error of the solution is much smaller than before whereas the con-
dition number of the tangent matrix increases with respect to the previous computation. In this case, the condition number
of the matrices associated with the gappy procedure are condðbUT

c
bUcÞ ¼ 0:00104 and condðbUT

k
bUkÞ ¼ 0:0686, showing an in-

crease of at least one order of magnitude with respect to the previous computation.
Fig. 12. Comparison of the quantities hyper-reduced by each of the introduced formulations. The visualisation used a deformation factor of 0.005 for
wrapping the considered scalar quantities in the �z direction.



Fig. 13. Tube welding problem: hyper-reduction of the separate contributions to the residual. SVD spectrum for each of the involved terms.

Fig. 14. Tube welding problem: hyper-reduction of the separate contributions to the residual. Results obtained by varying the number of projection modes
for ng ¼ 200 and ns ¼ 200.
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Next, we analyse how the HROM behaves when varying the number of modes and sampling points in the gappy data pro-
cedure. We leave the number of projection modes fixed at k ¼ 180, and we progressively increment the number of gappy
modes ng and sampling points ns while retaining the rule ns ¼ 2ng . The results are shown in Fig. 16(c). In this case, the con-
dition of the tangent matrix improves in response to an increment of the number of sampling points. However, the error of
the approximation does not show any improvement because it is controlled by the number of projection modes.

To assess the computational performance, we measured the speedup using ng ¼ 260 and ns ¼ 520 (vertical lines in
Fig. 13) for a varying number of projection modes. The result is shown in Fig. 17: the speedup decreases slightly when
the number of projection modes is increased, attaining maximum and minimum values of 83.98 and 66.75, respectively.
6.2.3. Results obtained with the moving frame approach
Finally, the welding problem is solved by application of the HROM that separately hyper-reduces each contribution to the

residual using a moving reference frame attached to the heat source. Fig. 18 shows the SVD spectrum for each term to be
hyper-reduced. Comparing these spectra with those of Fig. 13, it can be expected that the performance of this model would
be improved because these spectra are more compact than the previous spectra.

When 20 modes are used for the projection, a RIC of 99.7% is obtained; this indicator shows that the dynamics can be
captured with a lower number of modes. Based on this plot, a number of ng ¼ ns ¼ 35 gappy modes and sampling points
were used to interpolate the different contributions to the residual (see the vertical line in Fig. 18). Therefore, we analysed
the variation of the relative error of the HROM in terms of the number of projection modes k from 1 to 20, holding
ng ¼ ns ¼ 35. From the results shown in Fig. 19, it can be concluded that the HROM performs quite well with an acceptable
condition number for the tangent matrix. The same can be said of the computational savings. The CPU time consumption for



Fig. 15. Tube welding problem: hyper-reduction of the separate contributions to the residual. Results obtained by varying the number of projection modes
for ng ¼ 200 and ns ¼ 400.

Fig. 16. Tube welding problem: hyper-reduction of the separate contributions to the residual. Results obtained by varying the number of gappy modes and
sampling points with k ¼ 180 and ns ¼ 2ng .
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the HF solution was 9817.4 s. Fig. 20 displays the variation of the speedup in terms of the number of projection modes k
using ng ¼ ns ¼ 35. In this case the speedup attains a maximum value of 246.9. This speedup is higher than that obtained
in the previous case, particularly because the number of gappy modes and sampling points is much lower than before.
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To investigate the limits of this formulation, we studied how the increment in the number of gappy modes and sampling
points affects the performance if the number of projection modes is fixed. Clearly, the computational performance will be
affected because we are incrementing the number of sampling points. However, the objective is to evaluate what happens
Fig. 17. Speedup.

Fig. 18. Tube welding problem in a moving frame: hyper-reduction of the separate contributions to the residual. SVD spectrum for each of the involved
terms.

Fig. 19. Tube welding problem in a moving frame: hyper-reduction of the separate contributions to the residual. Results obtained by varying the number of
projection modes for ng ¼ ns ¼ 35.
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with the relative error and the condition of the tangent matrix when varying the number of modes and sampling points in
the interpolation of the contributions to the residual.
Fig. 20. Speedup in terms of the number of projection modes for ng ¼ ns ¼ 35.

Fig. 21. Tube welding problem in a moving frame: hyper-reduction of the separate contributions to the residual. Results obtained by varying the number of
gappy modes and sampling points with k ¼ 20 and ng ¼ ns .
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Fig. 21(a) shows the variation of the relative error in terms of the number of gappy modes and sampling points (ng ¼ ns)
and always using k ¼ 20 projection modes. It can be observed that for ng ¼ ns > 40, the HROM solution displays a large error
and does not converge in certain cases. This behaviour can be attributed to the fact that with the increment of the number of
gappy modes, the condition of the tangent matrix and of the matrices condðbUT

i
bUiÞ deteriorates, as shown in Fig. 21(b) and (c).

This situation is corrected using a greater number of sampling points, ns, than gappy points, ng . For instance, the number of
sampling points is now selected as twice the number of gappy points (ns ¼ 2ng). Fig. 22(a–c) show that for ng P 42 and k ¼ 20,
the error decreases almost monotonically with the number of selected gappy, while the matrices conditioning is kept at rea-
sonable values. The increment in the number of sampling points decreases the error of interpolation in the gappy procedure,
and the condition of the resulting matrices improves. Note that the error was already quite low for ng ¼ 40 and that by adding
additional points, only a small decrease in the error is produced because no significant information is added to the model.

Finally, for completeness, we present in Fig. 23 the location of the sampling points selected for the term Gk when using
ng ¼ ns ¼ 35. We show that most of the sampling points are located notably close to the zone in which the high temperature
gradients are produced, but several points are also almost uniformly distributed in the rest of the domain.

The previous tests were intended to draw the attention to the behaviour of each of the presented HROMs. Properties such
as error, speedup, compressibility and conditioning were studied for each HROM, showing the ability of each one for repro-
ducing the results of the HF training model. These did not consider parameters variation, that is, the problem solved by the
HROM was the same as that used for training. For the present work this analysis suffices for pointing out the potential of
each HROM, and more specifically for illustrating the different alternatives for ensuring the compressibility of the involved
terms. Despite this fact, it would be interesting to study how parameters variation affect the performance, and more specif-
ically the accuracy of the presented HROMs. It is not the purpose of this work to give a complete answer to this matter, but to
give an insight by analysing the error obtained with the current HROM when a set of parameters different than those of the
training problem are used.
Fig. 22. Tube welding problem in a moving frame: hyper-reduction of the separate contributions to the residual. Results obtained by varying the number of
gappy modes and sampling points with k ¼ 20 and ns ¼ 2ng .



Fig. 23. Sampling points selected for the term Gk using ng ¼ ns ¼ 35.

Fig. 24. Relative error for ng ¼ ns ¼ 35.
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Specifically, a welding problem with the following characteristics is run:

� conductivity k ¼ 0:9kr ,
� heat capacity c ¼ 0:9cr ,
� heat source velocity v ¼ 0:9v r ,
� heat source intensity I ¼ 0:9Ir ,
where the subscript r denotes the value of the considered property in the training problem. The other parameters that define
the problem were the same as those of the training problem. The relative error obtained with the current HROM using
ng ¼ ns ¼ 35 and varying the number of projection modes is shown in Fig. 24. As it can be observed in the figure, the error
is quite acceptable even though no parameter sampling was accomplished for building the snapshots set other than those of
the training problem itself. It is interesting to observe that when the number of projection modes is greater than 11, the error
keeps almost constant and no improvement of results is obtained. That is, these extra modes are not contributing with sig-
nificant information to the solution of this specific problem. Nevertheless, notice that when solving the training problem
with the HROM, the error keeps decreasing for a number of projection modes greater than 11 (see Fig. 19(a)).

Remark. The last test shows that the current HROM has the ability to predict the solution to a problem different from the
training problem. However, a more deep study about this topic is needed and left for a future work.

7. Conclusions

In this work, different strategies were analysed for building Hyper-Reduced Order Models to solve nonlinear thermal
problems, with applications for welding modelling. The considered methods are classified within the a posteriori techniques
and are based on the Proper Orthogonal Decomposition approach.

Several aspects were examined. First, the manner in which the hyper-reduction is performed was considered. Two
different methods were analysed: the hyper-reduction of the residual as a whole and a new proposal based on the separate
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hyper-reduction of the different terms contributing to the residual, in which the subdivision in terms is based on the physical
characteristics of the problem. It was shown that the compressibility of the information was improved by the latter tech-
nique, allowing us to obtain good representations with a smaller number of gappy modes than with the former technique.
As a result, faster computations could be performed, and the formulation also led to better conditioning of the nonlinear
equations to be solved, thus improving the convergence properties.

A second aspect considered was the use of moving frames to simulate welding-like problems. A moving frame approach
was applied in which the frame was attached to the concentrated heat source. The experiments showed that the moving
frame approach increased the compressibility of the information with a further reduction in the number of modes required
to obtain accurate approximations to the solution. Again, the conditioning of the problem was improved with better conver-
gence properties.

The formulations are based on the choice of three parameters to obtain a Hyper-Reduced Order Model: (i) the number of
projection modes, k; (ii) the number of gappy modes, ng; and (iii) the number of sampling points, ns. It was shown that these
numbers must be selected such that k 6 ng 6 ns to verify consistency. Several experiments were carried out to demonstrate
the effect of varying these parameters. It was also demonstrated how these parameters must be chosen to avoid inconve-
niences produced by ill-conditioned equations.

Two three-dimensional nonlinear application examples were extensively covered: a solidifying cube and a welding-like
problem in which a concentrated heat source travels to simulate a welding torch. Speedups of up to 250 times with respect
to the high fidelity solutions were observed in these examples showing the potential of the proposed techniques.

Future work will be carried out to further study the ill conditioning of the matrices involved in the HROM formulation and
to find a method that can detect and avoid problems in the computations. Additionally, the hyper-reduction of welding prob-
lems with material deposition will be analysed together with an analysis of the range of validity of the HROMs under vari-
ations of the parameters that define the problem.
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