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This paper describes a dynamic formulation of a straight beam finite element in the setting
of the special Euclidean group SEð3Þ. First, the static and dynamic equilibrium equations
are derived in this framework from variational principles. Then, a non-linear interpolation
formula using the exponential map is introduced. It is shown that this framework leads to a
natural coupling in the interpolation of the position and rotation variables. Next, the dis-
cretized internal and inertia forces are developed. The semi-discrete equations of motion
take the form of a second-order ordinary differential equation on a Lie group, which is
solved using a Lie group time integration scheme. It is remarkable that no parameterization
of the nodal variables needs to be introduced and that the proposed Lie group framework
leads to a compact and easy-to-implement formulation. Some important numerical and
theoretical aspects leading to a computationally efficient strategy are highlighted and dis-
cussed. For instance, the formulation leads to invariant tangent stiffness and mass matrices
under rigid body motions and a locking free element. The proposed formulation is success-
fully tested in several numerical static and dynamic examples.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Modelling techniques in structural mechanics are usually based on position variables with respect to an inertial frame
and their derivatives. For instance the potential energy in a gravitational field depends on the position, the kinetic energy
depends on the time derivative of the position, that is the velocity, and the strain energy depends on the spatial derivatives
of the position, namely the deformation gradient. The description of rigid bodies, beams or shells rely on kinematic assump-
tions on the position of their material points [1–4]. This can be made either by introducing rotation variables which account
for some orientations [1,2] or without introducing any rotation field [5]. A comparison of the two approaches is available in
[6]. The first approach, with rotation variables, is considered here. The development of the equations of mechanics under the
kinematic assumptions leads in general to coupled equilibrium equations that govern both the rotation and the position vari-
ables. The rotations belong to a non-linear space, SOð3Þ, so that their general treatment is not trivial. Several methods have
been explored to represent rotation variables such as the parametrization of rotation [1], the director vector method [7] or
the Lie group methods [3,8–10]. In this paper, a Lie group method is studied, which is based on the differential geometry of
the non-linear configuration space. The Lie group R3 � SOð3Þ, which assumes that the compositions of the translations and
the rotations are uncoupled, has been widely used for rigid body or beam formulations [1–3,11,12]. This choice of uncoupled
composition rule implies that the finite element interpolation of the rotation and translation field of a beam are uncoupled.
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In contrast, the helicoidal approximation proposed in [13] and the strain-based approach in [14] lead to a coupled represen-
tation of the translation and rotation fields. Here, we consider the Lie group SEð3Þ ¼ R3

oSOð3Þ, called the special Euclidean
group, for which the compositions of translations and rotations are inherently coupled. The so-called screw-theory consists
essentially in the study of this group and its algebra, and has been applied by several researchers in robotics and mechanism
theory [15–18].

In this paper, a straight beam finite element formulation is developed. First, the continuous equilibrium equations in the
SEð3Þ framework are derived from a variational principle. Then, a spatial discretization of the beam is introduced by a non-
linear interpolation method of nodal values and the discrete problem is formulated. The representation of the rotations by
interpolation of the nodal rotation variables is a non-trivial issue due to the non-linearity of the configuration space. For
example, [3,11] defined an interpolation method based on the increments of the rotations and [12] proposed to interpolate
the relative rotation matrix. In these references, the positions and the rotations are interpolated separately since they are
considered to be fundamentally independent. In contrast, the SEð3Þ Lie group framework used in this paper introduces a nat-
ural coupling of the position and the rotation variables thanks to an exponential interpolation method and exhibits impor-
tant theoretical and numerical advantages. The equations of motion of the discrete mechanical system take the form of
second-order ordinary differential equations on the Lie group. The equations are then solved using the generalized-a Lie
group time integration scheme proposed in [8,10], which is closely related to the Lie group integrators developed in [19–
21]. Let us mention that interpolation methods in the SEð3Þ framework have been addressed in [22,23] for motion interpo-
lation of rigid bodies. Using the SEð3Þ framework, [24] proposed a method for beam finite element based on the manifold
structure, that is using the same composition rule as the group R3 � SOð3Þ, and [25] developed a linear beam formulation
according to the screw theory.

The proposed approach relies on a rigorous mathematical framework based on the Lie group theory. Since a Lie group
solver is used, it is remarkable that the equilibrium equation is formulated in a parameterization-free way and that no
parameterization of the nodal variables needs to be introduced. The theory naturally leads to a frame-invariant, compact
and elegant formulation of the beam finite element. Thanks to the simplicity of the formulation, the internal forces and
the tangent stiffness matrix can be integrated exactly over the length of the element. Difficulties related to the parameter-
ization of rotations or to locking problems are also automatically avoided.

The paper is structured as follows. In Section 2, some fundamentals about matrix Lie groups are given in order to intro-
duce SEð3Þ and the notations. In Section 3, the beam kinematics in the SEð3Þ context is worked out. Then, the static and dy-
namic equilibrium equations are developed in Section 4 and Section 5. The original finite element interpolation formula
based on the exponential map of the Lie group is introduced in Section 6 and the discretized strain and velocity fields are
also given. The resulting discretized static and dynamic equilibrium equations are developed in Section 7 and Section 8,
where a few numerical examples are presented to assess the formulation and enhance some specific features. Finally, some
conclusions and perspectives are presented in Section 9.

2. Lie group framework

2.1. Fundamentals about matrix Lie groups

The necessary concepts required for our developments are now introduced. The theoretical concepts are first introduced
in a general setting and will then be particularized to the groups SOð3Þ and SEð3Þ. Explicit expressions useful for computa-
tional purposes are given in Appendix A. For a more detailed introduction to Lie groups see, e.g., [16,26,27].

A group G is a set of elements with a composition rule, that associates an element of the group to two elements of the
group: if q1; q2 2 G, then q1 � q2 ¼ q3 2 G. In the present case, we consider matrix groups and the composition rule is the ma-
trix product written as q1q2 ¼ q3. This composition rule needs to satisfy several properties, e.g. the existence of a neutral ele-
ment e (qe ¼ eq ¼ q), which is simply the identity matrix, and the existence of an inverse (8q 2 G; 9! q�1 : qq�1 ¼ q�1q ¼ e).
It follows that the elements of such a matrix group are square and invertible matrices. A matrix Lie group is a continuous
matrix group for which the composition rule and the inverse are smooth. Therefore, a matrix Lie group is, geometrically
speaking, a differentiable manifold, and differential geometry can be used to perform operations on the group.

The tangent space at q 2 G is denoted TqG. In particular, the tangent space at the identity of a Lie group is called the Lie
algebra g and it is isomorphic to Rk through the invertible linear map
gð�Þ : Rk ! g; x # ex

The composition rule of the Lie group allows the introduction of a left invariant vector field as
dq ¼ qfdq ð1Þ
where dð�Þmeans an arbitrary infinitesimal variation of the argument, and dq is thus an arbitrary element belonging to TqG.
Notice the difference in the two following notations: fdq and dðeqÞ. The former indicates an infinitesimal increment belonging
to the Lie algebra, while the latter means the variation of an element eq of the Lie algebra. Similarly, dq and dðqÞ stand for the
associated expressions in Rk of respectively the former and the latter notation.
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The adjoint representation of a Lie algebra element fdq is defined as
AdqðfdqÞ ¼ qfdqq�1 ð2Þ
where Adq : g! g is a linear map. In this paper, with a slight abuse of notations, Adq is also used for the adjoint represen-
tation as a linear map acting on Rk isomorphic elements of the Lie algebra, that is Adq : Rk ! Rk.

The derivative of q with respect to any parameter s 2 R is written as
dq
ds
¼ qeu ð3Þ
where eu is an element of the Lie algebra. In general, derivatives do not commute and derivatives are related by the compat-
ibility equation
dðeuÞ ¼ dðfdqÞ
ds
þ ½eu;fdq� ð4Þ
where ½ea; eb� ¼ eaeb � ebea ¼ �½eb; ea� defines the Lie bracket operator ½�; ��. Eq. (4) can be written in terms of vectors in Rk as
dðuÞ ¼ dðdqÞ
ds
þ budq ð5Þ
where b� is a linear operator which maps a vector in Rk into a k� k matrix. In the literature, the b� operator is often defined as
an adjoint representation and denoted adaðbÞ ¼ bab.

For a given vector field eu, Eq. (3) can be seen as a differential equation on the Lie group. If eu does not depend on s, the
solution is
qðsÞ ¼ q0 expðeusÞ
where q0 ¼ qð0Þ and exp is the exponential operator, which maps an element of the Lie algebra to an element of the Lie group
exp : g! G; ex # expðexÞ

Since the Lie algebra is isomorphic to Rk, the exponential map introduces a local parameterization of the Lie group around
any q0 2 G. Indeed, any q 2 G may be represented as a function of ex 2 g using the exponential operator and the composition
with q0 according to
q ¼ q0 expðexÞ ð6Þ
By extension, the notation expðxÞ with x 2 Rk shall be used equivalently since the Lie algebra is isomorphic to Rk. Consid-
ering the derivatives, a relationship exists between eu involved in Eq. (3) and the derivative of ex defined by the exponential
map representation in Eq. (6). It can be expressed as a linear relationship from Rk to Rk
u ¼ TðxÞdx
ds

ð7Þ
where TðxÞ is the tangent application of the exponential map. Likewise, we can write dq ¼ TðxÞdx. The inverse map of the
exponential map is called the logarithmic map such that
log : G! g; q # logðqÞ ð8Þ
It is thus a mapping from the Lie group to the Lie algebra, i.e. logðqÞ ¼ ex. By extension, the notation logðqÞ ¼ x with x 2 Rk

shall be used equivalently since the Lie algebra is isomorphic to Rk.
Next, two Lie groups of interest are introduced. The group and algebra structures are presented. Explicit formulas for

numerical computations can be found in Appendix A.

2.2. The special orthogonal group, SOð3Þ

The special orthogonal group, SOð3Þ, is a matrix Lie group that can be represented by 3� 3 proper orthogonal matrices R.
In particular, rotation matrices are orthogonal matrices. The neutral element is the 3�3 identity matrix, denoted I3�3, and the
inverse of an element R 2 SOð3Þ is RT 2 SOð3Þ, where �T is the matrix transpose. The composition rule is the matrix product of
two 3� 3 orthogonal matrices. The Lie algebra, soð3Þ, is the space of skew-symmetric matrices and is isomorphic to R3
X ¼
X1

X2

X3

264
375 2 R3 and eX ¼ 0 �X3 X2

X3 0 �X1

�X2 X1 0

264
375 2 soð3Þ ð9Þ
In particular, Eq. (1) reads
dR ¼ RfdX ð10Þ
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The b� operator defined at Eq. (5) is equivalent to e�.
2.3. The special Euclidean group, SEð3Þ

The matrix Lie group SEð3Þ is the group of Euclidean transformations H ¼ HðR;xÞ combining a rotation R 2 SOð3Þ and a
vector x 2 R3. It can be represented by 4� 4 matrices
H ¼
R x

01�3 1

� �
ð11Þ
The neutral element is I4�4 and the inverse of H 2 SEð3Þ is H�1 2 SEð3Þ given by H�1 ¼ HðRT ;�RT xÞ, i.e.
H�1 ¼ RT �RT x
01�3 1

" #
ð12Þ
The composition rule is the matrix product of 4� 4 matrices. The Lie algebra, denoted seð3Þ, is the space of 4� 4 matrices eh
as in Eq. (13) and is isomorphic to R6
h ¼
hU

hX

� �
2 R6 and eh ¼ ehX hU

01�3 0

" #
2 seð3Þ ð13Þ
where ehX 2 soð3Þ and hU 2 R3. It is clear from the argument whether the tilde operator denotes the mapping to soð3Þ or seð3Þ.
Eq. (1) reads
dH ¼ Hfdh ()
dR dx

01�3 0

� �
¼

R x
01�3 1

� � fdhX dhU

01�3 0

" #
ð14Þ
in which fdhX ¼ RTdR and dhU ¼ RTdx. Accordingly, one has dh ¼ dhT
U dhT

X

h iT
2 R6. The b� operator defined at Eq. (5) is
bh ¼ ehX
ehU

03�3
ehX

" #
ð15Þ
Notice that bh1h2 ¼ �bh2h1. Let us also define the check operator �� as bhT
1h2 ¼ �hT

2h1, that is
�h ¼ 03�3
ehUehU
ehX

" #
ð16Þ
Based on the Lie group formalism of this section, the rest of the paper addresses the formulation of a beam finite element
on SEð3Þ relying on an original non-linear interpolation method.

3. Beam kinematics

Let us define s 2 ½0; L� as the spatial parameter along the neutral axis of a beam of length L. x0ðsÞ is the position vector of a
point of the neutral axis in the reference configuration. Thus, the position of any point p of the beam in the reference con-
figuration can be written as
x0
pðs; t;uÞ ¼ x0ðsÞ þ tit þ uiu ð17Þ
where it and iu are the unit vectors of principal axes of the cross-sections in the reference configuration, and t and u are the
coordinates along these axes. We assume that the principal axes are constant along the neutral axis. For a beam which is
initially straight, x0ðsÞ ¼ sis, where is is the unit vector along the neutral axis. Then, we introduce the following notation
x0
pðs; t;uÞ ¼ x0ðsÞ þ O0yðt;uÞ ð18Þ
in which yðt;uÞ ¼ 0 t u½ �T and O0 ¼ is it iu½ �. O0 is a constant rotation matrix that accounts for the orientation of the
beam in the reference configuration with respect to the inertial frame. We assume that the cross-sections remain unde-
formed, which means that yðt;uÞ is defined from the reference configuration. By extension, the position of a point p in
the current configuration can be written as
xpðs; t;uÞ ¼ xðsÞ þ RðsÞO0yðt; uÞ ð19Þ
where xðsÞ is the position vector of the neutral axis and RðsÞ characterizes the rotation of the cross-section. The description is
illustrated in Fig. 1.

In the SEð3Þ formalism, a material frame is attached to any material point. The material frame at any point on the neutral
axis of the beam is described by a mapping R! SEð3Þ : s # HðsÞ and is therefore represented by HðsÞ ¼ HðI3�3;x0ðsÞÞ in the



Fig. 1. Description of the beam kinematics.
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reference configuration and HðsÞ ¼ HðRðsÞ;xðsÞÞ in the current configuration. By construction, this material frame in the ref-
erence frame is aligned with the inertial frame and not with the cross-section axes is; it ; iu. Based on Eq. (19), the material
frame at any beam point p of coordinates ðs; t;uÞ is related to the material frame attached to the neutral axis by the frame
transformation
Hpðs; t;uÞ ¼ HðsÞ
I3�3 O0yðt; uÞ
01�3 1

� �
¼ HðsÞHyðt;uÞ ð20Þ
where Hpðs; t; uÞ ¼ HðRpðsÞ;xpðs; t;uÞÞ. According to the assumption that the cross-sections remain straight, Hyðt;uÞ is defined
from the reference configuration and RpðsÞ ¼ RðsÞ.

4. Static formulation

4.1. Deformation field

The deformations of the neutral axis are introduced from the deformation gradient of the material frame on the neutral
axis. Owing to the Lie group derivative in Eq. (3), the deformation gradient is a Lie algebra element denoted as ef 2 seð3Þ and
is defined from
dHðsÞ
ds

¼ HðsÞef ð21Þ
where f ¼ ½fT
U fT

X�
T
. The deformation gradient can be split into
f ¼ f0 þ � ð22Þ
where f0 refers to the values in the reference configuration and � accounts for the deformations of the current configuration
with respect to the reference configuration. For an initially straight beam, f0T ¼ ½iT

s 0T
3�1�

T
. In order to match classical nota-

tions for the position part and the rotation part of the deformations, the following notation is introduced
� ¼
c

j

� �
ð23Þ
Notice that, considering Eq. (23), the deformation measure at the position level reads c ¼ RTðsÞ dxðsÞ
ds � f0

U , which is equivalent
to classical deformation measures of the neutral axis in beam element formulation [1]. According to the introduction of O0 in
Eq. (18), the deformation of the neutral axis in the cross-section axes is measured by OT

0c. In particular, iT
s c represents the

strain along the neutral axis whereas iT
t c and iT

uc represent the shear strains along the cross-section axes iu and it

respectively.
The deformations at any point of the cross-sections are obtained from the derivative of the material frame in (20) with

respect to s, which leads to
@Hpðs; t;uÞ
@s

¼ Hpðs; t; uÞef p ð24Þ
in which ef p ¼ H�1
y
efHy ¼ AdH�1

y
ðefÞ. Similarly to Eqs. (22) and (23), the deformation gradient can be split into fp ¼ f0

p þ �p

where
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fp ¼
fpU

fX

� �
;�p ¼

cp

j

� �
ð25Þ
in which fpU ¼ fU �gO0yfX and
cp ¼ fpU � f0
pU ¼ c�gO0yj ð26Þ
Therefore, j is interpreted as a vector of curvatures. They can be interpreted in the cross-section axes by considering OT
0j. In

particular, iT
s j represents the torsion about the neutral axis whereas iT

t j and iT
uj represent the bending curvatures about the

cross-section axes iu and it respectively.
Let us now consider the metric tensors to build the deformation tensor. g, the metric tensor in the deformed configura-

tion, is defined as
gij ¼
@xpðs; t;uÞ

@xi

� �T
@xpðs; t;uÞ

@xj
ð27Þ
with xi; xj ¼ fs; t;ug. Using Eqs. (19) and (25), the partial derivatives are given by
@xpðs; t;uÞ
@s

¼ RðsÞfpU ;
@xpðs; t;uÞ

@t
¼ RðsÞit;

@xpðs; t;uÞ
@u

¼ RðsÞiu ð28Þ
Notice that each derivative involves a rotation matrix multiplied by a vector evaluated in the reference configuration, leading
to a natural polar decomposition of the deformation gradient. The metric tensor in the reference configuration, denoted g0,
has the same definition as g, but involves x0

p; f
0
pU and RðsÞ ¼ I3�3. Notice that due to the assumption that the cross-sections

remain undeformed, it and iu are defined from the reference configuration and do not depend on the deformation state of the
beam.

The Green–Lagrange strain tensor GLij ¼ 1
2 ðgij � g0

ijÞ can now be computed. It involves three kinds of terms
GLss ¼ cT
pf0

pU þ
1
2
cT

pcp; GLsi ¼
1
2
cT

pii; GLij ¼ 0 ð29Þ
with i; j ¼ ft;ug. Assuming that the deformations c and j are small, the second order term cT
pcp in GLss can be neglected. This

classical assumption is used throughout this paper in order to simplify the developments, although the extension to the large
deformation case can be carried out straightforwardly following the same strategy.

4.2. Strain energy

Based on the Green–Lagrange strain tensor, the strain energy can be computed as
W int ¼
1
2

Z
V

S : GL dV ¼ 1
2

Z
V

cT
pðSssf

0
pU þ Sstit þ SsuiuÞ dV ð30Þ
where S is the second Piola–Kirchhoff stress tensor and V is the volume of the beam in the reference configuration. Using Eq.
(26) and owing to the fact that c and j do not depend on t and u, the integral over the cross-sections can be computed, which
leads to
W int ¼
1
2

Z L

0
ðcT nþ jT mÞ ds ð31Þ
where n and m are respectively the resulting forces and moments over the cross-sections defined as
n ¼
Z

A
ðSssf

0
pU þ Sstit þ SsuiuÞ dA ð32Þ

m ¼
Z

A

gO0yðSssf
0
pU þ Sstit þ SsuiuÞ dA ð33Þ
The expression of the resulting forces and moments in the cross-section axes are obtained by premultiplying n and m by OT
0,

according to Eq. (18). In particular, iT
s n is the force along the neutral axis, and iT

t n and iT
un are the shear forces along the cross-

section axes it and iu respectively. Similarly, iT
s m is the torsion moment about the neutral axis, and iT

t m and iT
um are the bend-

ing moments about the cross-section axes it and iu respectively. For a linear elastic material, the constitutive law provides a
linear relationship between the cross-section resultants and the deformations
n
m

� �
¼

KU 03�3

03�3 KX

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼K

c

j

� �
ð34Þ
where K contains the usual stiffness parameters. In simple cases, it is diagonal and KU ¼ O0diagðEA;GAt ;GAuÞOT
0 contains the

axial and shear stiffnesses whereas KX ¼ O0diagðGJ; EIt ; EIuÞOT
0 contains the torsional and bending stiffnesses. Notice that the
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effect of O0 is to express in the material frame the stiffnesses, which are originally computed in the cross-section axes
namely in the is; it ; iu frame. Eventually, the strain energy can be written as
W int ¼
1
2

Z L

0
�T K� ds ð35Þ
4.3. Static equilibrium equation

The virtual work principle states that equilibrium is achieved when
dðW intÞ ¼ dðWextÞ ð36Þ
Starting from Eq. (35), the variation of the strain energy is given by
dðW intÞ ¼
Z L

0
dð�ÞT K� ds ð37Þ
Due to the Lie group framework, the variation of the deformation is related to the variation of the state variables, which are
SEð3Þ elements, as in Eq. (5). According to the definitions in Eq. (21) and in Eq. (22), it is given by
dð�Þ ¼ dðfÞ ¼ d
ds
ðdhÞ þ f̂Tdh ð38Þ
in which fdh ¼ H�1dH. Inserting Eq. (38) into Eq. (37) and integrating by parts yields
dðW intÞ ¼ dhT K�
h iL

0
�
Z L

0
dhT K

d
ds
ð�Þ � f̂T K�

� �
ds ð39Þ
where the first term is interpreted as a boundary condition term.
In general, the virtual work done by external forces can be written as
dðWextÞ ¼
Z L

0
dhT gext ds ð40Þ
where gext contain the resulting forces and moments over the cross-sections due to an external loading. Notice that the exter-
nal forces must be expressed in the material frame, that is, pulled back from the inertial frame.

Finally, the weak form of the equilibrium equation is obtained by inserting Eqs. (39) and (40) into Eq. (36), which yields
dhT K�
h iL

0
�
Z L

0
dhT K

d
ds
ð�Þ � f̂T K�þ gext

� �
ds ¼ 0 ð41Þ
Accordingly, the strong form of the equilibrium equation is then obtained as a six-dimensional non-linear ordinary differen-
tial equation for the unknown �
K
d
ds
ð�Þ � f̂T K�þ gext ¼ 0 ð42Þ
It is interesting to notice that the homogeneous equation does not involve the position nor the orientation of the beam. It is a
direct consequence of the present framework, namely the equations are written in the material frame. Thus, if the external
forces do not depend on the state of the beam, Eqs. (42) and (21) are uncoupled, and the state of the beam can be recovered
from Eq. (21) once Eq. (42) is solved. However, in general, the external forces may depend on the state of the beam. In this
case, Eq. (21) must be solved together with Eq. (42).

5. Dynamic formulation

5.1. Velocity field

The velocity field of a point of the neutral axis is introduced by the Lie algebra element ev related to the time derivative of
HðsÞ
_HðsÞ ¼ HðsÞev ð43Þ
where v ¼ vT
U vT

X

� �T . Remembering the nature of the Lie algebra element of SEð3Þ in Eq. (14), the velocities v are expressed
in the material frame. According to Eq. (18), the velocity of the neutral axis in the cross-section axes are measured by OT

0vU .
In particular, iT

s vU represents the velocity along the neutral axis whereas iT
t vU and iT

uvU represent the velocities along the
cross-section axes iu and it respectively. The rotation part vX can also be interpreted in the cross-section axes. In particular,
iT

s vX; i
T
t vX and iT

uvX represent the rotation velocities about is; iu and it respectively.
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Observing that Hy is a constant matrix, the velocities at any point of the cross-sections can be computed from the time
derivative of the material frame in (20), which leads to
_Hpðs; t;uÞ ¼ Hpðs; t;uÞevp ð44Þ
in which evp ¼ H�1
y evHy ¼ AdH�1

y
ðevÞ, so that
vp ¼
vpU

vX

� �
ð45Þ
where vpU ¼ vU �gO0yvX.

5.2. Kinetic energy

Denoting q the mass density of the material, the kinetic energy K is given by
K ¼ 1
2

Z
V

qvT
UpvUp dV ¼ 1

2

Z L

0
vT MCv ds ð46Þ
in which MC contains the usual mass and rotation inertia properties of the cross-sections
MC ¼
Z

A
q

I3�3 �gO0ygO0y �gO0y gO0y

" #
dA ¼

m
L I3�3 �O0JIO

T
0

�O0JT
I OT

0 O0JOT
0

" #
ð47Þ
where m is the mass of the element, and JI and J are respectively the first and the second moment of inertia of the cross-sec-
tions computed in the local axes of the beam, namely the frame defined by is; it ; iu. In most practical cases, JI vanishes and J is
diagonal. Since the cross-sections are assumed to be undeformable, MC is defined from the reference configuration of the
beam and does not depend on the motion of the beam.

5.3. Dynamic equilibrium equation

The dynamic equilibrium equations can be obtained from Hamilton’s principle, which states that the action integral over
the time interval ½s0; s1� is stationary
Z s1

s0

dðKÞ � dðW intÞ þ dðWextÞð Þ ds ¼ 0 ð48Þ
where the variations are fixed at s0 and s1. The strain energyW int and the work done by the external forcesWext were treated
in Section 4. From Eq. (46), the variation of the kinetic energy reads
dðKÞ ¼
Z L

0
dðvÞT MCv ds ð49Þ
Due to the Lie group structure, the variation of the velocity in terms of the variation of the state variables is expressed
according to Eq. (5), that is
dðvÞ ¼ d
ds

dhð Þ þ bvdh ð50Þ
in which fdh ¼ H�1dH. Inserting this into Eq. (49), we obtain, after integration by parts,
Z s1

s0

dðKÞ ds ¼
Z L

0
dhT MCv ds

� �s1

s0

�
Z s1

s0

Z L

0
dhTðMC _v � bvT MCvÞ ds ds ð51Þ
Since the variations are fixed at s0 and s1, the first term on the right hand side vanishes. Combining the latter result with Eq.
(41), Eq. (48) yields the following weak form of the dynamic equilibrium equations
dhT K�
h iL

0
�
Z L

0
dhT MC _v � bvT MCv þ K

d
ds
ð�Þ � f̂T K�þ gext

� �
ds ¼ 0 ð52Þ
which provides a six-dimensional non-linear partial differential equation for the unknowns � and v
MC _v � bvT MCv þ K
d
ds
ð�Þ � f̂T K�þ gext ¼ 0 ð53Þ
In general, this equation must be solved together with Eqs. (21) and (43). These last two equations lead to a compatibility
equation between the second spatial and time derivatives in the Lie group setting (see Eq. (5)) that can be written as
d
ds
ðvÞ � _� ¼ bv�() d

ds
ðvÞ � _� ¼ ��̂v ð54Þ
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Notice that this compatibility equation does not depend on the state of the beam. Hence, when the external forces do not
depend on the beam configuration, it is sufficient to solve Eqs. (53) and (54) together, and the state of the beam can be recov-
ered afterwards either from Eq. (21) or Eq. (43).

6. Finite element discretization

In order to solve the equilibrium equations developed in Eq. (42) and in Eq. (53), we introduce a finite element approx-
imation of the beam which consists thus in the interpolation of SEð3Þ elements. In this framework, the knowledge of the po-
sition and orientation of the nodal values is essential to allow the connection of the elements and express general external
forces.

6.1. Non-linear interpolation formula

The spatial discretization along the neutral axis of the beam is introduced by an interpolation with the variable s 2 ½0; L�
between two end nodes A at s ¼ 0 and B at s ¼ L, where the nodal frames HA and HB are located. The proposed interpolation
formula reads
HðsÞ ¼ HAexpSEð3Þ
s
L

d
	 


ð55Þ
where d ¼ dT
U dT

X

h iT
is called the relative configuration vector and is defined as
d ¼ logSEð3ÞðH�1
A HBÞ ð56Þ
The exponential map and the logarithmic map on SEð3Þ are provided in Eqs. (A.10) and (A.15). Formula (55) can be seen as an
extension of classical linear interpolation formula to non-linear spaces. Basically, the use of the exponential map introduces a
local parameterization that allows describing the neutral axis between the two nodes A and B with an element belonging to a
linear space, that is a Lie algebra element. The description of any material point of a beam is readily obtained by introducing
Eq. (55) into Eq. (20).

Notice that d is invariant under rigid body motions since, for any H�;H�HA and H�HB correspond to a rigid motion of the
beam and lead to the same value of d. Therefore, the interpolation formula automatically satisfies the frame invariance
requirement.

In the reference configuration, HA ¼ HðI3�3; x0
AÞ and HB ¼ HðI3�3;x0

BÞ so that d0
U ¼ x0

B � x0
A and d0

X ¼ 03�1. Hence, it can be
observed that kd0

Uk ¼ L. The advantage of setting the rotation matrices in the reference configuration to identity matrices is
that the connection between nodes is easily achieved, without having to consider the particular orientation of the beam they
belong to. However, the information about the orientation of a given element in the reference configuration is used in the
evaluation of the element forces, and in particular the evaluation of the stiffness (Eq. (34)) and mass (Eq. (47)) matrices.

6.2. Geometric interpretation

Classical beam theories imply that position and rotation variables are kinematically coupled and the equations of
mechanics developed under such kinematic assumptions yield in general coupled differential equations that govern both
the position and the rotation variables. For example, in a cantilever beam, the cross-sections rotate under a tip shear load
and a tip bending moment produces a displacement of the neutral axis. However, in usual finite element discretization
schemes, the position and the rotation variables are treated as independent variables as well as their increments. It is not
the case with the proposed formulation. Indeed, the position of a point of the neutral axis computed using the interpolation
formula (55) reads
xðsÞ ¼ xA þ RATT
SOð3Þ

s
L

dX

	 
 s
L

dU ð57Þ
where both dU and dX are involved. It means that the coupling between the positions and the rotations is deeper compared
to usual formulations. Moreover, the interpolation of the positions in Eq. (57) is non-linear due to the tangent application
TT

SOð3Þ from the exponential map expSEð3Þ. The interpolation of the rotations is also non-linear and reads
RðsÞ ¼ RAexpSOð3Þ
s
L

dX

	 

ð58Þ
which is identical to the formula proposed in [12], namely only the relative rotation is interpolated.
According to Eq. (57), the interpolation method allows the description of a non-linear displacement field. In order to dis-

cuss the geometry of the displacement field let us compute the curvature k of the neutral axis using the classical formula
k ¼ d
ds

tðsÞð Þ
���� ���� ¼ kedXdUk

kdUk
ð59Þ
since
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d
ds

tðsÞð Þ ¼ d
ds

dx
ds

dx
ds

���� �����1
 !

¼ RðsÞ
edXdU

jjdU jj
ð60Þ
where tðsÞ is the unit vector which is tangent to the curve. The curvature is thus constant over the element. Therefore, the
proposed interpolation method is able to represent exactly an element of constant curvature due to the non-linear coupling
between the position and the rotation in Eq. (57). For example, the interpolation method represents the exact displacement
of a beam in pure bending since in that case the exact solution is a curve of constant curvature. This would not be possible in
formulations based on first order or higher order interpolation of the displacement field independent from the rotation field.
Let us consider a planar cantilever beam subjected to a bending moment at its free end. From strength of materials, the solu-
tion is known to be a pure bending deformation and a neutral axis of constant curvature. Classical linear interpolation meth-
ods for a shear deformable beam element lead to a geometric inconsistency. Indeed, the linear interpolation of the positions
means that the element is a straight line (no curvature) but varying cross-section orientations along the neutral axis is a
mark of curvature. Adding more elements allows that the collection of straight lines converge towards the actual curve of
the neutral axis. Here, we show that the proposed method provides the geometrically exact displacement in pure bending.
Let us consider that the beam is initially aligned with the x-axis of the inertial frame in the reference configuration and a
moment M is applied about the z-axis (see Fig. 2). The exact displacement field reads
xðsÞ ¼ 1
k

sinðskÞ yðsÞ ¼ 1
k
ð1� cosðskÞÞ zðsÞ ¼ 0 ð61Þ
where k ¼ M=ðEIÞ is the curvature. In the reference configuration, we have d0
U ¼ ½L 0 0�T and d0

X ¼ ½0 0 0�T . Since the beam is
clamped at the origin, HA ¼ HðI3�3;03�1Þ. In pure bending, the neutral axis does not undergo any axial or shear deformation
so that dU ¼ d0

U , however the neutral axis gets a curvature k in the xy-plane and dX ¼ L½0 0 k�T . Introducing these in the non-
linear interpolation field in Eq. (57) and considering the exact expression of TT

SOð3Þ in Eq. (A.10) turn out to yield the exact
solution given in Eq. (61). Since the exact solution of the planar cantilever beam problem is a curve of constant curvature,
one single element matches exactly the analytical displacement field.

The relative curvature k that can be represented is limited to the validity of the logarithmic map. For pure bending,
jLkj < p, this is because the logarithmic map returns a value 2� � p;p½ and does not see a difference between rotations that
are separated from each other by a multiple of 2p. Notice that even in general three dimensional cases, pure bending still
takes place in a plane, and the discussion of this section remains valid, although the bending was considered here in the
xy-plane for conciseness.

Let us mention that the interpolated neutral axis has a constant torsion as well. Further computations of the Frenet’s triad
would show that the torsion of the neutral axis is given by �dT

XdU=jjdU jj. These observations indicate a close connection of
the proposed interpolation with the helicoidal shape functions proposed in [13], where one of the starting ideas was pre-
cisely to design constant curvature elements.

6.3. Strain and velocity discretization

Firstly, let us consider the derivatives of Eq. (55) with respect to s
dHðsÞ
ds
¼ HðsÞ TSEð3Þ

s
L

d
	 
d

L

� �e
¼ HðsÞ

ed
L

ð62Þ
where the second equality is straightforwardly obtained by considering ðbdÞid ¼ 0;8i and the series development of the tan-
gent operator (see Eq. (A.2)). By comparison with Eq. (21), the discretized expression of the deformation gradient f is ob-
tained as
Cantilever beam subjected to a moment M at its free end. The reference configuration is initially horizontal and the deformed configuration is a
curve of constant curvature.
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f ¼ d
L

ð63Þ
It appears then that the Lie algebra element associated with the space derivative is constant. Hence, the deformation, which
is measured in the material frame, is also constant over the element and, using Eq. (22), is given by
� ¼ d� d0

L
ð64Þ
For later use, let us compute the variation of d. It is obtained by taking the variation of Eq. (56) and, introducing a 12� 1

virtual increment vector dhAB ¼ dhT
A dhT

B

h iT
from the variation of the nodal values dHA ¼ HA

fdhA and dHB ¼ HB
fdhB, we have
dðdÞ ¼ PðdÞdhAB ð65Þ
where
PðdÞ ¼ �T�1
SEð3Þð�dÞ T�1

SEð3ÞðdÞ
h i

ð66Þ
Secondly, the variation of the interpolated field, that is dHðsÞ ¼ HðsÞfdh, can be expressed in terms of the variation of the
nodal values. The variation of Eq. (55) reads
dHðsÞ ¼ HðsÞ AdexpSEð3Þ �s
Ldð ÞdhA þ

s
L

TSEð3Þ
s
L

d
	 


dðdÞ
	 
�

ð67Þ
Using Eq. (65) and the following identity, which can be easily proved using the series developments given in Appendix A,
AdexpSEð3Þ �s
Ldð Þ þ

s
L

TSEð3Þ
s
L

d
	 


T�1
SEð3ÞðdÞ � T�1

SEð3Þð�dÞ
	 


¼ I6�6 ð68Þ
the discretization is given by
dh ¼ Q ðs;dÞdhAB ð69Þ
where
Q ðs;dÞ ¼ I6�6 � T�ðs;dÞ T�ðs;dÞ½ � ð70Þ
and T� ¼ ðs=LÞ TSEð3Þðsd=LÞ T�1
SEð3ÞðdÞ.

Thirdly, regarding the velocity field, the same process as for the variation can be conducted such that
v ¼ Q ðs;dÞvAB ð71Þ
where a 12� 1 velocity vector vAB ¼ vT
A vT

B

� �T is introduced from the nodal velocities _HA ¼ HAevA and _HB ¼ HBevB.

7. Discretized static formulation

7.1. Discretized static equilibrium equations

Starting from Eq. (37), the variation of the deformations in terms of the nodal values is needed for the computation of the
internal forces of the finite element discretization.1 It is straightforwardly obtained by combining Eqs. (64) and (65)
dð�Þ ¼ d
d
L

� �
¼ 1

L
PðdÞdhAB ð72Þ
Since the deformation is constant over the element so is its variation. Introducing this results into Eq. (37) leads to the
expression of the nodal internal forces, namely the 12� 1 vector gintAB defined as dðW intÞ ¼ dhT

ABgintAB
gintABðdÞ ¼ PðdÞT K� ð73Þ
The integration over the length of the element is trivial since all the terms are constant over the element. Moreover, the
quantities involved in the evaluation of the nodal strain forces depend on the nodal values, HA and HB, only through the rel-
ative configuration vector d, meaning that they are invariant under rigid body motions and that they only vary according to
the relative motion of the nodes.

The evaluation of the external forces requires the discretized expression of dh in Eq. (69). Inserting this into Eq. (40) yields
the expression of the nodal external forces, namely the 12� 1 vector gextAB defined as dðWextÞ ¼ dhT

ABgextAB
equivalent expression of the discretized internal forces can be obtained starting from the weak form given in Eq. (41), but the choice made here
es the development.
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gextAB ¼
Z L

0
Q ðs;dÞT gext ds ð74Þ
The external forces must be expressed in the material frame, so that forces that are naturally expressed in the inertial frame,
e.g., the gravity forces, involve explicitly the position and orientation of the beam nodes.

Eventually, the finite element discretization yields a twelve-dimensional non-linear equilibrium equation for the un-
known HA and HB
gintAB � gextAB ¼ PðdÞT K��
Z L

0
Q ðs;dÞT gext ds ¼ 0 ð75Þ
where we recall that d and � are computed from HA and HB using Eqs. (56) and (64). Applying boundary conditions (see the
discussion in Section 7.2) would allow one to solve them for the relative configuration vector d. Due to the Lie group frame-
work, a Lie group static solver must be used to solve these equations. In this paper, a static version of the dynamic algorithm
proposed in [8] and briefly recalled in Appendix B is used.

Due to the non-linearity of the static equilibrium equations in Eq. (75), an iterative process is necessary. This requires the
evaluation of the tangent stiffness matrix. The contribution of the internal forces to the tangent stiffness matrix is obtained
by considering the variation of Eq. (73), that is
dðPðdÞT K�Þ ¼ KTdhAB ¼ PðdÞT K
PðdÞ

L|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼KTm

dhAB þ DPðdÞT 	 dhAB

	 

K�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼KTgdhAB

ð76Þ
The material part KTm is obtained straightforwardly from Eq. (72) since PðdÞ and K are anyway needed for the evaluation of
the internal forces, which appears as a practical implementation advantage. The development of the geometric part KTg ,
which is proportional to the elastic forces, is not given here for conciseness and since it is a priori not necessary in a small
deformation context. The contribution of the internal forces to the tangent stiffness matrix can be obtained by exact integra-
tion over the element and it is expressed in compact form. Moreover, the quantities involved in its evaluation depend on the
nodal values, HA and HB, only through the relative configuration vector d, meaning that it is invariant under rigid body mo-
tions and only depends on the relative motion of the nodes.

The external forces may also contribute to the tangent stiffness matrix and this contribution is not given here either be-
cause it is assumed to play a negligible role compare to KTm in case of small deformations. Their contribution, however, must
be expressed in the material frame, so that it may involve explicitly the position and orientation of the beam element.

Accordingly, only the material part of the tangent stiffness matrix is considered in the following. This strategy saves com-
putation costs, and it is shown that the solution process still reaches convergence efficiently.

7.2. Boundary conditions

Regarding the boundary conditions, [25] shows that the SEð3Þ formalism is particularly convenient since the Lie algebra
elements dhA and dhB are related to screw motions. Hence, two different kinds of non-free supports can be represented
straightforwardly, which are a clamped end at node i, i.e. dhi ¼ 0, and a simply supported end at node i, i.e. dhiX ¼ 0. Accord-
ingly, the related equations are removed from the set to be solved and can provide the reaction forces afterwards. A similar
method can be applied whenever a node is fixed to the ground through a lower-pair joint. However, other boundary condi-
tions, such as a rolling bearing, do not fall into this category and it turns out that their representation in the present Lie group
setting involves a non-linear relationship, which can be described using additional constraint equations, as presented in [28].

7.3. Absence of locking

The finite element formulation of shear deformable beams with linear interpolation and exact spatial integration exhibits
a shear locking phenomenon [1]. It can be discussed by considering the shear in a cantilever beam subjected to a bending
moment at its free end. Theoretically, the shear strain should vanish since pure bending does not involve any shear. Numer-
ically, such an element subjected to pure bending undergoes shear deformations, the shear energy does not vanish and a too
stiff behaviour is observed. The locking effect can be observed by varying the slenderness b=L, i.e., the thickness-length ratio
of the element. When b=L decreases, the incorrect contributions, due to shear stiffness, become more important than the cor-
rect contributions, due to bending stiffness. Hence, the locking increases when the b=L decreases. The problem can be clas-
sically removed by a reduced integration method that filters high order bending contributions to shear.

In order to discuss the locking in pure bending for non-linear formulations, two different aspects should be considered:
the correctness of the forces and the convergence of the iterative process. First, it should be verified that the finite element
forces computed for the analytical position and rotation fields yield the forces expected from strength of materials. It is not
the case for standard methods, and specific manipulations as reduced integration must be introduced. Then, once the forces
are correct, the iterative process should be checked. Since non-linear formulations require iterative solvers, it should be ver-
ified that the formulation, and in particular the tangent stiffness matrix, is suitable for the convergence of such a procedure.
As discussed in the previous paragraph, the insensitivity to slenderness is the critical point to be verified. These two aspects
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are considered in the following of this section and the proposed element formulation appears to be inherently locking free. In
particular, it yields the correct forces for the analytical position and rotation fields and a negligible sensitivity to slenderness
of the iterative process based on the material part of the tangent stiffness matrix is shown in a pure bending numerical test.
As in Section 6.2, a pure bending in the xy-plane is considered for conciseness, but the discussion of this section is valid for
bending in any plane.

Let us first consider the forces. As pointed out in Section 6.2, the non-linear interpolation formula can geometrically rep-
resent the exact displacement field and rotation field in pure bending. The evaluation of the finite element forces in Eq. (73)
requires the bending stiffness CX ¼ diagðGJ; EIt; EIuÞ, the relative configuration vector dU ¼ ½L 0 0�T and dX ¼ L½0 0 k�T with
k ¼ M=ðEIuÞ, and the deformations c ¼ ½0 0 0�T and j ¼ ½0 0 k�T . Since c vanishes, the nodal strain forces in Eq. (73) are
Fig. 3.
slender
gintAB ¼
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26664
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37775 ð77Þ
where the explicit expression of TSOð3Þ is given in Eq. (A.6). Noticing that edXðCXjÞ ¼ 0;TT
SOð3Þð�dXÞCXj ¼ TT

SOð3ÞðdXÞCXj ¼ CXj.
Hence, Eq. (77) matches the exact solution from strength of materials. Furthermore, the result does not depend on the slen-
derness of the element. This development demonstrates that the forces of the proposed finite element are inherently locking
free.

Let us now consider the convergence of the iterative process based on the material part of the tangent stiffness matrix
only. The pure bending of a 1 m long cantilever beam with a square cross-section of side length b and tip end bending mo-
ment M ¼ kEb4

=12 is computed numerically. The chosen numerical values for the test are a curvature k ¼ p=ð2LÞ and a
Young’s modulus E of 210e3 MPa. If the element was to lock due to non-physical axial or shear contributions, it would hap-
pen when diminishing b=L. In order to vary the slenderness b=L of the beam, the length is kept constant and the thickness b is
varied from 1e� 1 to 1e� 4 m. A similar test could be done by keeping the value of b constant and varying L. The results of
the numerical computations are given in Fig. 3 and compared to the analytical solution (see Eq. (61)). There is a sensitivity to
slenderness in the element, but Fig. 3 shows that it does not impede numerical convergence. After the first iteration, the error
is similar for all slendernesses, and after the fourth iteration, an error that is comparable to computer precision is reached
whatever the slenderness. In between, iterating allows the reduction of the error but the smaller b=L, the smaller the reduc-
tion of the error. This limited sensitivity to slenderness during the iteration process assesses the locking free behaviour of the
proposed formulation.

7.4. Test cases

A few test cases are shown in this section in order to illustrate the performance of the method. Only the material part, KTm,
of the tangent stiffness matrix in Eq. (76) is taken into account.

7.4.1. Convergence analysis of a cantilever beam subjected to a fixed load
We consider a cantilever beam subjected to a fixed load at its end. The load is a uniformly distributed force over one tenth

of the beam starting from the free end and has a nominal value of 3e4 N, to be integrated over the elements. The solution is
computed for a varying number of elements in order to observe the spatial convergence rate of the element formulation. The
Cantilever beam subjected to a bending moment at the tip end. Absolute error in tip displacement at iteration numbers for different values of the
ness: Circles ( ): 1e� 1, Stars ( ): 1e� 2, Squares ( ): 1e� 3, Triangles ( ): 1e� 4.



Fig. 4. Convergence analysis of a cantilever beam subjected to a fixed load.

Fig. 5. Cantilever 45-degree bend subjected to a fixed load.
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reference solution is computed with 200 elements. The numerical parameters of the case are: 10 m length, square cross-sec-
tions whose sides are 0:01 m long, Young’s modulus E ¼ 210e3 MPa and Poisson’s ratio m ¼ 0:3. The reference solution of the
test case is presented in Fig. 4(a) and the relative errors are plotted in Fig. 4(b). A second-order spatial convergence is ob-
served for the positions and rotations, which is consistent with the fact that the interpolation formula in Eq. (55) involves
a linear polynomial interpolation in the Lie algebra.
7.4.2. Cantilever 45-degree bend subjected to a fixed load
We replicate the test case proposed in [29,30]. The bend lies initially in a plane, has a radius of curvature of 100 m and a

unit square cross-section. The properties of the linear elastic material are the Young modulus E ¼ 10e7 MPa and the Poisson
ratio m ¼ 0. The bend is discretized using 8 straight beam elements and the stopping criterion is a 1e� 6 relative error on the
Euclidean norm of the residual. Two out-of-plane load cases are considered: 300 and 600 N. Each load is applied in one load
step. The displacement results are plotted in Fig. 5 and are compared in Table 1 to those in [30]. The internal forces and mo-
ments are represented in Fig. 6. The convergence of the Newton iterative process is reached after 9 and 14 iterations for the
300 and the 600 N load case respectively.
7.4.3. Buckling of a hinged right-angle frame
We consider the planar problem of a right angle beam depicted in Fig. 7(a) (see e.g. [31]). The displacements at nodes A

and B are fixed, but the in-plane rotations are allowed. A vertical force controlled by a load parameter k, that is F ¼ k � 1e3, is
exerted downwards at node D. Each side of the angle is discretized using 10 elements. This is a static buckling problem and



Table 1
Final tip position of a cantilever 45-degree bend subjected to an out-of-plane load.

SEð3Þ formulation Simo and Vu-Quoc [30]

Load x y z x y z

300 58.84 22.30 40.03 58.84 22.33 40.08
600 47.23 15.76 53.28 47.23 15.79 53.37

Fig. 6. Beam resultants Eqs. (32) and (33) expressed in the beam axes, that is OT
0n and OT

0m, for the 600 N load case.

Fig. 7. Buckling of a two-dimensional hinged frame.
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the continuation method in [32] has been adapted to the Lie group framework to solve the problem. The results obtained for
the displacements of node C are showed in Fig. 7(b). They are in good agreement with [31].

7.5. Invariance of the tangent stiffness matrix: planar motion of a stiff beam attached to a wall

As mentioned earlier, the relative configuration vector d is invariant under rigid body motions and so is the tangent stiff-
ness matrix KT . In order to reduce computational costs in the small deformation context, we suggest to keep the tangent
stiffness matrix computed in the reference configuration for a whole simulation. The number of iterations might increase
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since we neglect the deformation contributions, but the iteration matrix can be assembled and factorized only once for the
whole simulation. In order to illustrate the advantage, let us consider a stiff initially horizontal beam hinged to a wall with a
small rotational stiffness and subjected to a small vertical load at its free end. The beam is made of steel (E ¼ 210e3 MPa and
m ¼ 0:3), 1 m long and has a square cross-section of area 0:01 m2, the rotation stiffness at the wall is 100 N/radian and the
vertical load at the free end is 50 N. The beam is discretized with 5 elements. The solution is plotted in Fig. 8. The beam
undergoes large displacements but small relative motions of the nodes and the solution was obtained using the tangent stiff-
ness matrix computed in the reference configuration.

In other application where the relative motions of the nodes within each element are not negligible, a non-systematic
update procedure of the tangent stiffness matrix could be considered to optimize computational costs.

7.6. Summary

Thanks to the proposed Lie group framework, the deformations are naturally expressed in the material frame and the
interpolation formula introduced in Section 6.1 implies that the deformations are approximated as being constant over a
beam finite element. The nodal internal forces obtained from the virtual work principle can thus be integrated exactly
and expressed in compact form. The material part of tangent stiffness matrix is obtained straightforwardly and a compact
exact expression is available. The invariance under rigid body motions of the internal forces and of the tangent stiffness ma-
trix stands out. In case of small relative motions of the nodes, the tangent stiffness matrix is almost constant even if the dis-
placements are large, so that it is not necessary to update it for the iterative process to converge, provided that the relative
motions remain small within each element. From an implementation point of view, it is worth noticing that the procedure is
simple and that the computations at the element level only require the nodal orientations and positions.

8. Discretized dynamic formulation

8.1. Discretized dynamic equilibrium equations

From the dynamic equilibrium equations obtained using Hamilton’s principle in Eq. (52), the following equation holds for
the expression of the nodal inertia forces gineAB
Fig. 8.
vertical
dhT
ABgineAB ¼

Z L

0
dhTðMC _v � bvT MCvÞ ds ð78Þ
Introducing the discretized expression of dh and v given in Section 6.3, the expression of the nodal inertia forces is given by
gineAB ¼
Z L

0
Q TðMCQ _vAB þMC

_QvAB � dQvAB
T MCQvABÞ

	 

ds ð79Þ
where Q ¼ Q ðs;dÞ. This expression can be conveniently written in the following form
gineAB ¼MðdÞ _vAB þ Cðd;vABÞvAB ð80Þ
where
MðdÞ ¼
Z L

0
Q T MCQ ds ð81Þ

Cðd;vABÞ ¼
Z L

0
Q TðMC

_Q � dQvAB
T MCQ Þ ds ð82Þ
Thanks to the interpolation method, the mass matrix M only depends on the relative configuration vector d and is thus ex-
actly invariant under rigid body motions. The mass matrix is the exact tangent matrix for the linearization of the inertia
Large displacement and small relative motions of the nodes of a stiff beam connected to a wall by a small rotational stiffness and subjected to a small
load at its free end.
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forces with respect to the accelerations. Cðd;vABÞvAB are the gyroscopic forces. The exact time derivative of Q in C requires
some developments which are given in C. Notice that the gyroscopic forces are quadratic in the velocity. Again, it is worth
noticing that the inertia forces are naturally expressed in the material frame, so that the position and orientation of the beam
nodes are involved only through the relative configuration vector d.

Using the result from the static equilibrium in Eq. (75), the dynamic equilibrium equations take the form of ordinary dif-
ferential equations on the Lie group
Fig. 9.
the opp
_HA ¼ HAevA ð83Þ
_HB ¼ HBevB ð84Þ

MðdÞ _vAB þ Cðd;vABÞvAB þ PðdÞT K� ¼
Z L

0
Q ðs;dÞT gext ds ð85Þ
where d ¼ logSEð3ÞðH
�1
A HBÞ=L;� ¼ ðd� d0Þ=L and vAB ¼ vT

A vT
B

� �T . These equations can be discretized in time and solved
according, e.g., to the generalized-a Lie group time integrator presented in [8] and briefly recalled in B. The required numer-
ical parameters are the time step size and the spectral radius.
8.2. Test cases

Two classical test cases are considered in order to assess the performance of the proposed discretized dynamic formula-
tion. Following the discussion in Section 7.5 related to the invariance of the forces under rigid body motions, it is relevant to
keep in Eq. (B.6) the tangent matrices of the reference configuration for the whole simulations as long as the relative motions
in the elements remain small. This may increase the number of Newton iterations at each time step, but substantial gains in
computational costs can be expected from the non-revaluation and non-refactorization of the iteration matrix. In the test
cases of this section, the tangent damping matrix is neglected, and only the mass matrix and the material part of the tangent
stiffness matrix are taken into account.
8.2.1. Free-free flexible beam with disks
We reproduce the test case described in [33]. A beam, as presented in Fig. 9, with rigid disks attached to it is subjected to

an initial loading and the resulting free motion is observed. There are two out-of-plane loadings and one horizontal loading.
These are applied according to FðtÞ, a function that increases linearly from 0 N to 20 N for t 2 ½0;2:5� s and decreases linearly
from 20 N to 0 N for t 2 ½2:5;5� s. The disks have a mass of 10 kg and a rotation inertia J ¼ diagð200;100;100Þ kgm2. The
properties of the beam are EA ¼ GA ¼ 1e4 Nm2; EI ¼ GI ¼ 500 Nm4, the mass per unit length is 1 kg/m and the rotation iner-
tia of the cross-sections is J ¼ diagð20;10;10Þ kgm. The simulation is run using 10 elements of equal length, a time step size
h ¼ 0:1 s and a spectral radius of 1. Disk B, as shown in Fig. 10(a), undergoes large amplitude motion in space and the energy
is plotted in Fig. 10(b). The results are in good agreement with [33]. The relative motion of the beam nodes is small, so that
the tangent matrix computed only once in the reference configuration can be used for the entire simulation. When the iter-
ation matrix is updated, the mean number of iterations per time step is 4.44, while when the iteration matrix in the reference
Free-free beam with rigid disks attached to it at nodes A and B. Three forces are exerted: a horizontal force and an out-of-plane force at node B, and
osite out-of-plane force at node A.



Fig. 10. Free-free flexible beam with disks.

Fig. 11. Out-of-plane loading of a right angle beam: initial configuration. A force is exerted at node C during the first two seconds. Node A is clamped and
node B is free.
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configuration is kept, it is 5.03. Computational costs are thus significantly reduced since in the second case, the iteration ma-
trix is computed and factorized only once.
8.2.2. Out-of-plane loading of a right angle beam
The right angle beam depicted in Fig. 11 is loaded by an out-of-plane concentrated force FðtÞ at point C and the beam is

clamped at node A. FðtÞ increases linearly from 0 to 50 N for t 2 ½0;1� s, and then decreases linearly from 50 to 0 for t 2 ½1;2� s.
The motion of the beam is observed during 30 s at nodes B and C. In particular, the motion after the loading is a large ampli-
tude free vibration. Each side of the angle is 10 m long. The mechanical properties are EA ¼ GA ¼ 1e6 N, EI ¼ GJ ¼ 1e3 Nm2,
the mass per unit length is 1 kg/m and J ¼ diagð20;10;10Þ kgm. The out-of-place displacements and the energy are plotted in
Fig. 12. They are in good agreement with those in [34]. For different spatial and time discretization, the mean number of
Newton iterations is presented in Table 2. For every case, the spectral radius is q ¼ 0:9. As it can be expected, the finer
the space and time discretizations, the smaller the mean number of iteration per time step, but the higher the computation
costs. Indeed, the predictions of the generalized-a scheme are better for a finer time discretization so that convergence is
more easily achieved, but more time steps are computed. Regarding the spatial discretization, a higher number of elements
reduces the relative motion of the nodes within each element, so that the non-linearities are reduced, but the higher number
of variables increases the computation costs. However, it appears that with 10 elements per segment and a 1e� 2 s time
step, the element relative motions are small enough to enable the problem to be solved using the iteration matrix computed
in the reference configuration. An increase in the mean number of Newton iterations is observed since the iteration matrix is
not the exact linearization of the equilibrium equations in the deformed configuration. Nevertheless, computation costs are
saved since the iteration matrix is computed and factorized once, while in the other cases, it is computed and factorized at
each iteration.



Fig. 12. Results obtained with h ¼ 1e� 1 s and 10 elements for the out-of-plane loading of a right angle beam.

Table 2
Mean number of iterations per time step for different time and spatial discretizations of the right angle beam. Updated: the
iteration matrix is updated at each time step, Frozen: the iteration matrix in the reference configuration is kept for the whole
simulation.

4 elements 10 elements

h ¼ 1e� 1 s Updated: 3.6933 Updated: 3.2833
Frozen: no convergence Frozen: no convergence

h ¼ 1e� 2 s Updated: 1.9157 Updated: 1.3543
Frozen: no convergence Frozen: 4.776

V. Sonneville et al. / Comput. Methods Appl. Mech. Engrg. 268 (2014) 451–474 469
8.3. Summary

The interpolation of the velocities that is consistent with the configuration interpolation can be developed compactly
using the SEð3Þ formalism. The inertia forces are then straightforwardly obtained from Hamilton’s principle. Since no param-
eterization of the global motion is introduced, they only depend on the nodal accelerations, the nodal velocities and the rel-
ative configuration vector. From an implementation point of view, it is worth noticing that the procedure is simple and that
the computations at the element level only require the nodal values of the element at the current time step.

The test cases show that geometrically non-linear problems involving small relative motion in each element can be solved
using a constant iteration matrix, computed from the mass matrix and the tangent stiffness matrix evaluated in the reference
configuration.
9. Conclusions and perspectives

This paper addresses the formulation of a beam finite element in the Lie group framework, namely the special Euclidean
group SEð3Þ.

Firstly, the static and dynamic equilibrium equations are developed in the SEð3Þ framework. Their intrinsic nature is high-
lighted, namely the homogeneous equations do not depend on the configuration of the beam.

Based on this rigorous and systematic formalism, a non-linear interpolation formula using the exponential map is intro-
duced. This method leads to a natural coupling of the position and rotation variables. The interpolation formula introduces a
relative configuration vector which describes the relative motion of the nodes. Hence, the invariance property under rigid
body motion comes naturally. Thanks to the interpolation formula, the deformation measures do not depend on the coordi-
nate along the neutral axis of the beam and the internal forces, derived from a variational principle, can be integrated exactly
over the element. It is shown that a locking free behaviour appears naturally due to the coupling of the position and rotation
variables. The inertia forces are obtained from Hamilton’s principle and rely on the consistent interpolation of the velocities
with the spatial discretization.

The implementation procedure is simple. Indeed, the developments are conducted without introducing a global param-
eterization of the motion, and the forces are computed directly from the nodal values so that no intermediate value needs to
be stored and the beam element handles systematically large motions.
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Both the static and the dynamic formulations are successfully tested in standard test cases from the literature. The pro-
posed formulation exhibits good accuracy, efficiency and convergence properties. Eventually, it is shown that geometrically
non-linear problems with small relative motions in each element can be solved using for the whole simulation the iteration
matrix computed in the reference configuration.

As a perspective, the natural coupling properties of the formulation could be significantly profitable in the case of initially
curved elements. The extension of the method to plate and shell elements could also be considered. The proposed formula-
tion can advantageously be used in the multibody framework since rigid bodies [9] and mechanisms [28] can also be mod-
elled efficiently in a finite element approach using the SEð3Þ formalism. The simplicity of the framework is also beneficial for
sensitivity analysis and optimzation [35]. In order to reduce significantly computation costs of large systems, numerical
investigations would be of interest to show how to exploit efficiently the invariance property of the tangent matrices under
rigid body motions.
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Appendix A. Lie group formulas

This appendix provides formulas for the numerical computations of the Lie group operators introduced in the paper.
Here are the series developments of

� the exponential map:
expðexÞ ¼X1
i¼0

exi

i!
ðA:1Þ
� the tangent application and its inverse:
TðxÞ ¼
X1
i¼0

ð�1Þi
bxi

ðiþ 1Þ! ; T�1ðxÞ ¼
X1
i¼0

ð�1ÞiBi
bxi

i!
ðA:2Þ
in which Bi are the first Bernoulli numbers.
� the logarithmic map:
logðqÞ ¼
X1
i¼1

ð�1Þiþ1 ðq� eÞi

i
ðA:3Þ
A.1. The special orthogonal group, SOð3Þ

The adjoint representation acting on vectors X 2 R3 is simply given by AdRðXÞ ¼ RX, where R 2 SOð3Þ. As proposed in
[36], the following notations are used throughout the section
aðbÞ ¼ sin kbkð Þ
kbk ; bðbÞ ¼ 2

1� cos kbkð Þ
kbk2 ; ðA:4Þ
where b 2 R3. Notice that að0Þ ¼ bð0Þ ¼ 1. The exponential map has a compact analytical form given by Rodrigues’ formula
expSOð3ÞðXÞ ¼ I3�3 þ aðXÞ eX þ bðXÞ
2

eX2 ðA:5Þ
Notice that expSOð3Þ is not injective. The tangent application is given by
TSOð3ÞðXÞ ¼ I3�3 �
bðXÞ

2
eX þ 1� aðXÞ

kXk2
eX2 ðA:6Þ
The inverse of the tangent application is given by
T�1
SOð3ÞðXÞ ¼ I3�3 þ

1
2
eX þ 1

kXk2 1� a
b

� �eX2 ðA:7Þ
The logarithmic map is given by
logSOð3ÞðRÞ ¼ ex ¼ h
2 sinðhÞ ðR � RTÞ ðA:8Þ



V. Sonneville et al. / Comput. Methods Appl. Mech. Engrg. 268 (2014) 451–474 471
with h ¼ acos 1
2 traceðRÞ � 1ð Þ
� 


; jhj < p. If R ¼ I3�3; h ¼ 0 and ex ¼ 03�3.

A.2. The special Euclidean group, SEð3Þ

The adjoint representation acting on vectors of R6 is given by
AdHðhÞ ¼
R exR

03�3 R

� �
h ðA:9Þ
The exponential map is given by
expSEð3ÞðhÞ ¼
expSOð3ÞðhXÞ TT

SOð3ÞðhXÞhU

03�1 1

" #
ðA:10Þ
The tangent application is given by
TSEð3ÞðhÞ ¼
TSOð3ÞðhXÞ TUXþðhU ;hXÞ

03�3 TSOð3ÞðhXÞ

" #
ðA:11Þ
where
TUXþða;bÞ ¼
�b
2
ea þ 1� a
kbk2 da;be þ

bT a

kbk2 b� að Þeb þ b
2
� 3ð1� aÞ
kbk2

 !eb2

 !
ðA:12Þ
with a ¼ aðbÞ; b ¼ bðbÞ and da;be ¼ eaeb þ ebea. Notice that TUXþða;0Þ ¼ �ea=2. The inverse of the tangent application reads
T�1
SEð3ÞðhÞ ¼

T�1
SOð3ÞðhXÞ TUX�ðhU ;hXÞ

03�3 T�1
SOð3ÞðhXÞ

" #
ðA:13Þ
where
TUX�ða;bÞ ¼
1
2
ea þ b� a

bkbk2 da;be þ
1þ a� 2b

bkbk4 ðbT aÞeb2 ðA:14Þ
Notice that TUX�ða;0Þ ¼ ea=2. The logarithmic map brings an element of the Lie group to the Lie algebra and is defined as
logSEð3Þ HðR;xÞð Þ ¼
ex T�T

SOð3ÞðxÞx
01�3 0

" #
ðA:15Þ
where ex ¼ logSOð3ÞðRÞ.

Appendix B. Lie group solver

The semi-discrete equations of motion can be solved using the Lie group version of the generalized-a scheme, as proposed
in Ref. [8]. This algorithm preserves the Lie group structure of the problem. It has a proven second-order convergence and
some numerical damping can be used to lessen the high frequency content. As in Section 2, q denotes the configuration state
on the Lie group, v is the velocity and _v the acceleration. Denoting the inertia forces by gine, the internal forces by gint and the
external forces by gext , the integration method relies on the discretized equations involving the exponential map
qnþ1 ¼ qn expðexnþ1Þ ðB:1Þ

gineðvnþ1; _vnþ1Þ þ gintðqnþ1Þ � gext ¼ 0 ðB:2Þ
and the time integration formulae
xnþ1 ¼ hvn þ ð0:5� bÞh2an þ bh2anþ1 ðB:3Þ

vnþ1 ¼ vn þ ð1� cÞhan þ chanþ1 ðB:4Þ

ð1� amÞanþ1 þ aman ¼ ð1� af Þ _vnþ1 þ af _vn ðB:5Þ
where n refers to the time step and h is the time step size. The numerical parameters of the integrator can be selected to
achieve a desired spectral radius q 2 ½0;1Þ at high frequency:
am ¼
2q� 1
qþ 1

; af ¼
q

qþ 1
; c ¼ 0:5þ af � am; b ¼ ðcþ 0:5Þ2

4
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At each time step, this set of equations is solved for the unknown xnþ1;vnþ1; _vnþ1 and anþ1 by a Newton iterative procedure.
The linearization of Eq. (B.1) gives Dqnþ1 ¼ Tðxnþ1ÞDxnþ1 and the linearization of Eqs. B.3 and B.4 gives
D _vnþ1 ¼ ð1� amÞ=ðbh2ð1� af ÞÞDxnþ1 and Dvnþ1 ¼ c=ðbhÞDxnþ1, where Dð�Þ denotes a small variation. Thus, the linearized
form of Eq. (B.2) is
Dr ¼ 1� am

bh2ð1� af Þ
Mþ c

bh
CT þ KT T

 !
Dxnþ1 ðB:6Þ
where Eq. (B.2) is denoted r ¼ 0 and M;CT and KT are obtained by linearizing Eq. (B.2).
The solver can also be used in static cases, simply by removing the inertia forces from the equilibrium Eqs. (B.2) and

removing the mass matrix M and the damping matrix CT from the iteration matrix in Eq. (B.6). Index n refers then to the
load step.

Appendix C. Computation of _Q

The following computations rely on the concept of the directional derivative. Considering a function f ðxÞ, the directional
derivative in the direction y is defined as
Df ðxÞ � y ¼ lim
t!0

f ðxþ tyÞ � f ðxÞ
t

ðC:1Þ
In particular, the time derivative is given by the directional derivative along the velocity vector, that is _f ðx; _xÞ ¼ Df ðxÞ � _x,
where _f depends linearly on _x.

Based on Eq. 70, the time derivative Q reads _Q ¼ � _T� _T�
� �

, where
_T�ðs;h; _hÞ ¼ s
L

_T
s
L

h
	 


TðhÞ�1 þ T
s
L

h
	 


TðhÞ�1
	 


_
	 


ðC:2Þ
and T ¼ TSEð3Þ. The explicit forms of _T and ðT�1Þ_ are given in the rest of the section. The compact notation relies on the two
quantities aðbÞ and bðbÞ defined in Eq. (A.4) as well as cðbÞ ¼ aðbÞ=bðbÞ ¼ kbk2 cot kbk

2

	 

. The time derivative of these auxiliary

quantities is given by
_aðX; _XÞ ¼ XT _X
ð1� aðXÞÞ
kXk2 � bðXÞ

2

 !
ðC:3Þ

_bðX; _XÞ ¼ 2XT _X

kXk2 ðaðXÞ � bðXÞÞ ðC:4Þ

_cðX; _XÞ ¼ �XT _X
1
4
þ cðXÞðcðXÞ � 1Þ

kXk2

 !
ðC:5Þ
In order to simplify the notations, the dependency on X and on _X of these definitions are not recalled and da;be ¼ eaeb þ ebea is
used.

Let us first compute the time derivative of the tangent application on SOð3Þ. We have
_TSOð3ÞðX; _XÞ ¼ TUXþð _X;XÞ ðC:6Þ
where TUXþ was defined in Eq. (A.12). The time derivative TUXþða;bÞð Þ_¼ _TUXþða;b; _a; _bÞ is explicitly given by
� b
2

~_a�
_b
2
ea þ 1� a
kbk2 d _a;be þ da; _be

	 

þ fðbT _bÞda;be

þ a� b

kbk2 ð _bT aþ bT _aÞeb þ ðbT aÞ~_b
	 


þ f ð _bT aþ bT _aÞebeb þ ðbT aÞd _b;be
	 


þ
ðbT _bÞ bT a

	 

kbk4 1� 5a� b

2
kbk2 � 8
	 
� �

I3�3 þ a� 7b
2
þ 15

1� a
kbk2

 !eb !eb
ðC:7Þ
where a ¼ aðbÞ; b ¼ bðbÞ and
f ¼ fðbÞ ¼ 1

kbk2

b
2
� 3
ð1� aÞ
kbk2

 !
ðC:8Þ
Notice that when the second argument of _TUXþ is zero, one has
_TUXþða;0; _a; _bÞ ¼ �1
2

~_aþ 1
6
da; _be ðC:9Þ
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Eqs. (C.6) and (C.7) lead straightforwardly to the time derivative of TSEð3Þ
_TSEð3Þðx; _xÞ ¼
_TSOð3ÞðxX; _xXÞ _TUXþðxU ;xX; _xU ; _xXÞ

03�3
_TSOð3ÞðxX; _xXÞ

" #
ðC:10Þ
In order to compute the time derivative of the inverse, that is T�1
SEð3Þ, the following derivatives are necessary
T�1
SOð3Þ

	 

_ðX; _XÞ ¼ 1

2
~_Xþ 1

kXk2 ð1� cÞdX; _Xe þ XT _X

kXk2 ðc� 1Þðcþ 2Þ þ kXk
2

4

 !eX eX !
ðC:11Þ

_TUX�ða;b; _a; _bÞ ¼ 1
2

~_aþ 1� c
kbk2 d _a;be þ da; _be

	 

þ bT _b

kbk4 ðc� 1Þðcþ 2Þ þ kbk
2

4

 !
da;be

þ 1=bþ c� 2

kbk4 ð _bT aþ bT _aÞebeb þ ðbT aÞd _b;be
	 


þ
ðbT _bÞ bT a

	 

kbk6

�2ðaþ bÞ
b2 � kbk

2

4
� cðcþ 3Þ þ 8

 !ebeb ðC:12Þ
where a ¼ aðbÞ; b ¼ bðbÞ and c ¼ cðbÞ. When the second argument of _TUX� is zero, one has
_TUX�ða;0; _a; _bÞ ¼ 1
2

~_aþ 1
12
da; _be ðC:13Þ
Then, the time derivative of T�1
SEð3Þ can be computed by
T�1
SEð3Þ

	 

_ðx; _xÞ ¼

T�1
SOð3Þ

	 

_ðxX; _xXÞ _TUX�ðxU ;xX; _xU ; _xXÞ

03�3 T�1
SOð3Þ

	 

_ðxX; _xXÞ

264
375 ðC:14Þ
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[33] A. Ibrahimbegović, M.A. Mikad, Finite rotations in dynamics of beams and implicit time-stepping schemes, International Journal for Numerical
Methods in Engineering 41 (1998) 781–814.

[34] E. Lens, A. Cardona, A nonlinear beam element formulation in the framework of an energy preserving time integration scheme for constrained
multibody systems dynamics, Computers and Structures 86 (2008) 47–63.

[35] V. Sonneville, O. Brüls, Sensitivity analysis for multibody systems formulated on a Lie group, Multibody System Dynamics, 2013, in press.
[36] J. Park, W. Chung, Geometric integration on Euclidean group with application to articulated multibody systems, IEEE Transactions on Robotics 21

(2005) 850–863.

http://refhub.elsevier.com/S0045-7825(13)00260-0/h0135
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0135
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0140
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0140
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0145
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0145
http://www.matcont.ugent.be
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0150
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0150
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0155
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0155
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0160
http://refhub.elsevier.com/S0045-7825(13)00260-0/h0160

	Geometrically exact beam finite element formulated on the special Euclidean group ? 
	1 Introduction
	2 Lie group framework
	2.1 Fundamentals about matrix Lie groups
	2.2 The special orthogonal group, ? 
	2.3 The special Euclidean group, ? 

	3 Beam kinematics
	4 Static formulation
	4.1 Deformation field
	4.2 Strain energy
	4.3 Static equilibrium equation

	5 Dynamic formulation
	5.1 Velocity field
	5.2 Kinetic energy
	5.3 Dynamic equilibrium equation

	6 Finite element discretization
	6.1 Non-linear interpolation formula
	6.2 Geometric interpretation
	6.3 Strain and velocity discretization

	7 Discretized static formulation
	7.1 Discretized static equilibrium equations
	7.2 Boundary conditions
	7.3 Absence of locking
	7.4 Test cases
	7.4.1 Convergence analysis of a cantilever beam subjected to a fixed load
	7.4.2 Cantilever 45-degree bend subjected to a fixed load
	7.4.3 Buckling of a hinged right-angle frame

	7.5 Invariance of the tangent stiffness matrix: planar motion of a stiff beam attached to a wall
	7.6 Summary

	8 Discretized dynamic formulation
	8.1 Discretized dynamic equilibrium equations
	8.2 Test cases
	8.2.1 Free-free flexible beam with disks
	8.2.2 Out-of-plane loading of a right angle beam

	8.3 Summary

	9 Conclusions and perspectives
	Acknowledgment
	Appendix A Lie group formulas
	A.1 The special orthogonal group, ? 
	A.2 The special Euclidean group, ? 

	Appendix B Lie group solver
	Appendix C Computation of ? 
	References


