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Abstract

The aim of this paper is to report on some computations of Hochschild
cohomology and fundamental groups of incidence algebras.

Let A be a finite dimensional algebra (associative with unit) over an algebraically
closed field. We assume that the algebra A is basic, that is, A = kQ/I for some
finite quiver Q and an admissible ideal I of the path algebra kQ [ARS].

The Hochschild cohomology groups Hi(A, X) of A with coefficients in an
A-bimodule X were defined by Hochschild [Ho]. When X = A we shall denote
Hi(A) = Hi(A, A) the ith- Hochschild cohomology group of A.

In general it is not easy to compute the Hochschild cohomology groups of a
given algebra. The purpose of this paper is to compute them when A is an incidence
algebra, that is, A is a subalgebra of the algebra Mn(k) of square matrices over k

with elements (xij) ∈ Mn(k) satisfying xij = 0 if i 6≤ j, for some partial order ≤
defined in the poset (partially order set) {1, . . . , n}. It is well known that to a finite
poset P we may associate a simplicial complex

∑
P whose i-simplices are the chains

of length i, such that the cohomology of
∑

P with coefficients in k is isomorphic
to the Hochschild cohomology of the incidence algebra associated to the poset P
[C, GS, GS1].

We prove first that if A is an incidence algebra such that its poset has a unique
maximal (minimal) element then Hi(A) = 0 for all i ≥ 1.

It is known that the Hochschild cohomology groups of an incidence algebra vanish
if the associated poset does not contain crowns (see [D, IZ]). Assume that A is an
incidence algebra such that its poset P contains crowns. There is an algorithm given
by Igusa and Zacharia [IZ] that allows us to find the so-called reduced subposet P
of P which has the property that all elements x ∈ P , neither minimal nor maximal
elements, are such that {y ∈ P : y ≥ x} has at least two minimal elements and
{z ∈ P : x ≥ z} has at least two maximal elements. The Hochschild cohomology
groups are invariant under this construction.

∗The first author has a fellowship from CONICET and the second author is a researcher form
CONICET.
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We compute the Hochschild cohomology groups of the incidence algebras as-
sociated to posets with reduced subposet given by ([qn + s] × [n − 1], <) where
[m] = {0, . . . , m}, (l, j) < (l + 1, j), (l, j) < (l + 1, j + 1) and (l, n) = (l, 0).

For each pair (Q, I) such that A ' kQ/I , called a presentation of A, one can
define the fundamental group π1(Q, I) (see Section 1.5). Assume that Q has no
oriented cycles. Then A is called simply connected if, for every presentation (Q, I)
of A, the fundamental group π1(Q, I) is trivial [AS]. The importance of simply
connected algebras in representation theory follows from the fact that often we may
reduce, with the help of coverings, the study of indecomposable modules over an
algebra to that of the corresponding simply connected algebras. This is the case for
representation-finite algebras (see [BG]).

In [H] Happel shows that a representation-finite algebra A is simply connected if
and only if A is representation directed and H1(A) = 0. This suggests the existence of
a relation between H1(A) and the fundamental group of A. Moreover, the existence
of an injective morphism of abelian groups s : Hom(π1(Q, I), k+) → H1(A) is known,
for any presentation (Q, I) of A, where k+ denotes the underlying additive group
of the field k [AP]. For the algebras considered in this paper Hom(π1(Q, I), k+) '
H1(A), and this allows us to describe their fundamental groups.

The article is organized as follows: in Section 1 we fix notations and briefly recall
the definitions and results that will be needed throughout this paper. In Section 2
we compute the Hochschild cohomology groups Hi(A) for incidence algebras given
by: i) posets with a unique maximal or minimal element, ii) posets with reduced
subposet of the given type above. Finally in Section 3 we compute the fundamental
group of any presentation of the incidence algebras considered in ii) using their
relation with the first Hochschild cohomology group.

1 Preliminaries

1.1 Path algebras

A quiver Q = (Q0, Q1) is a finite oriented graph, Q0 the set of vertices and Q1

the set of arrows. We denote by s, e : Q1 → Q0 the maps associating to each arrow
its starting and ending point respectively. The path algebra kQ is the k-vector space
with basis all the paths in Q, including trivial paths ex of length zero, one for each
vertex x ∈ Q0. The multiplication on two basis elements is the composition of paths
if they are composable, and zero otherwise.

A relation from x to y is a linear combination ρ =
∑m

i=1 λiwi such that, for each
1 ≤ i ≤ m, λi is a non-zero scalar and wi a path of length at least two from x to
y. A set of relations on Q generates an ideal I , said to be admissible, in the path
algebra kQ of Q. The pair (Q, I) is then called a bound quiver. It is well-known that
for every basic algebra A there exists a surjective k-algebra morphism v : kQ → A

whose kernel Iv is admissible, where Q is the ordinary quiver of A. Thus we have
A ' kQ/Iv. The bound quiver (Q, Iv) is called a presentation of A.

It is well-known that if A = kQ/I then the category mod A of finitely generated
left A-modules is equivalent to the category of all bound (finite-dimensional) repre-
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sentations of (Q, I). Therefore we may identify a module M with the corresponding
representation (M(x), M(α))x∈Q0,α∈Q1. For each x ∈ Q0 we denote by Sx the cor-
responding simple A-module, and by Px the projective cover of Sx. It can be seen
that HomA(Px, M) ' M(x).

We refer to [ARS, BG] for more details.

1.2 Incidence algebras

An incidence algebra A is a subalgebra of the algebra Mn(k) of square matrices
over k with elements (xij) ∈ Mn(k) satisfying xij = 0 if i 6≤ j, for some partial order
≤ defined in the poset (partially order set) {1, . . . , n}.

Incidence algebras can equivalently be viewed as path algebras of quivers with
relations in the following way. Let Q be a finite quiver without oriented cycles and
such that for each arrow x

α→ y ∈ Q1 there is no oriented path other than α joining
x to y. These quivers are called ordered. The set Q0 of vertices of Q is then a finite
poset as follows: x ≥ y if and only if there exists an oriented path from x to y.
Conversely, if Q0 is a finite poset, we construct a quiver Q with set of vertices Q0,
and with an arrow from x to y if and only if x > y and there is no u ∈ Q0 such that
x > u > y. Clearly we obtain in this way an ordered quiver and a bijection between
finite posets and ordered quivers.

Let us consider kQ the path algebra of Q and I be the parallel ideal of kQ, that
is, I is the two-sided ideal of kQ generated by all the differences γ − δ where γ and
δ are parallel paths (i.e. γ and δ have the same starting and ending points). The
algebra A = kQ/I is the incidence algebra of the poset associated to the ordered
quiver Q.

Remark 1.1 If A = kQ/I is an incidence algebra it is easy to describe the repre-
sentations of the indecomposable projective modules Px for each x ∈ Q0. In fact,
Px(y) = k if y ≤ x and it is zero otherwise, and Px(α) = idk if s(α) ≤ x and it is
zero otherwise.

1.3 Hochschild cohomology groups

We recall the construction of the Hochschild cohomology groups Hi(A) of an
algebra A. Consider the A-bimodule A and the complex C = (Ci, di) defined by:
Ci = 0, di = 0 for i < 0, C0 = A, Ci = Homk(A⊗i, A) for i > 0, where A⊗i

denotes the i-fold tensor product A ⊗k · · · ⊗k A, d0 : A → Homk(A, A) the map
d0(x)(a) = ax − xa and di : Ci → Ci+1 defined by

(dif)(a1 ⊗ · · · ⊗ ai+1) = a1f(a2 ⊗ · · · ⊗ ai+1)

+
i∑

j=1

(−1)jf(a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ ai+1)

+ (−1)i+1f(a1 ⊗ · · · ⊗ ai)ai+1

for f ∈ Ci and a1, . . . , ai+1 ∈ A. Then Hi(A) = Hi(C•) = Ker di/ Imdi−1 is the i-th
Hochschild cohomology group of A with coefficients in A, see [Ho].
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Recall the interpretation of the low-dimensional groups: H0(A) and H1(A). By
definition H0(A) coincides with the center Z(A) of A. So if A is a basic connected
finite dimensional k-algebra whose quiver has no oriented cycles then H0(A) ' k.

To compute H1(A) we may use an alternative complex given by Cibils [C1]
for path algebras of quivers with relations. In this case A = E ⊕ r, where E is the
subalgebra of A generated by the trivial paths {ei, i ∈ Q0} and r is the E-E-bimodule
rad A. So, H1(A) = Ker d1/ Im d0 with

d0 : AE → HomE−E(r, A) d0(a)(x) = ax − xa

d1 : HomE−E(r, A) → HomE−E(r⊗2, A) d1(f)(x ⊗ y) = xf(y) − f(xy) + f(x)y

where AE = {a ∈ A : ae = ea for all e ∈ E}

Remark 1.2 If A = kQ/I is an incidence algebra, [δ] ∈ H1(A) and α : i → j ∈ Q1

then δ(α) = δ(ejαei) = ejδ(α)ei = λαα for some λα ∈ k. Moreover, if [δ] = 0 then
δ(x) = ax − xa, for some a ∈ AE. Now, aei = eia implies that a =

∑n
i=1 aei =∑n

i=1 eiaei =
∑n

i=1 µiei, µi ∈ k, since Q has no oriented cycles.

1.4 One-point extensions

Let A = kQA/I be an algebra and let x be a source in QA, that is, there is no
arrow α in QA with e(α) = x. Let B = A/ < ex >, where < ex > denotes the
two-sided ideal in A generated by ex. The A-module M = radPx has a canonical
B-module structure, and A is isomorphic to the one point extension algebra

B[M ] =
(

k 0
M B

)

where the operations are the usual addition of matrices and the multiplication is
induced by the B-module structure of M .

The next theorem due to Happel [H] is useful for the computation of the Hochschild
cohomology groups of the algebras considered in this paper.

Theorem 1.3 [H, page 124] Let A = B[M ] be a one point extension of B by a
B-module M . Then there exists a long exact sequence of k-vector spaces connecting
the Hochschild cohomology of A and B:

0 → H0(A) → H0(B) → EndB(M)/k → H1(A) → H1(B) → Ext1B(M, M) → . . .

. . . → Hi(A) → Hi(B) → Exti
B(M, M) → Hi+1(A) → . . .

1.5 Fundamental groups

Let (Q, I) be a connected bound quiver. A relation ρ =
∑m

i=1 λiwi in I(x, y) is
called minimal if m ≥ 2 and for every non-empty proper subset J ⊂ {1, 2, . . . , m}
we have that

∑
j∈J λjwj /∈ I(x, y).

For an arrow α ∈ Q1, we denote by α−1 its formal inverse. A walk from x to y
in Q is a formal composition αε1

1 αε2
2 . . .αεt

t (where αi ∈ Q1, εi =+
− 1 for 1 ≤ i ≤ t)

starting at x and ending at y. We denote by ex the trivial path at x.
Let ∼ be the smallest equivalence relation on the set of all walks in Q such that:
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a) If α : x → y is an arrow then α−1α ∼ ex and αα−1 ∼ ey .

b) If ρ =
∑m

i=1 λiwi is a minimal relation then wi ∼ wj for all 1 ≤ i, j ≤ m.

c) If u ∼ v then wuw′ ∼ wvw′ whenever these compositions make sense.

We denote by [u] the equivalence class of a walk u. Let x0 ∈ Q0 be arbitrary. The
set π1(Q, I, x0) of equivalence classes of all the closed walks starting and ending at
x0 has a group structure defined by the operation [u][v] = [uv]. Clearly the group
π1(Q, I, x0) does not depend on the choice of the base point x0. We denote it simply
by π1(Q, I) and call it the fundamental group of (Q, I) (see [G, MP]).

Recall that an algebra A = kQ/Iv is called triangular if Q has no oriented cycles.
There is a close relation between the first Hochschild cohomology group H1(A) and
the fundamental group π1(Q, Iv) of a triangular algebra A. The following result
makes this relation explicit:

Theorem 1.4 [AP, page 200] Let A be a triangular algebra and (Q, Iv) be a pre-
sentation of A. Then there exists an injective morphism of abelian groups

s : Hom(π1(Q, Iv), k+) → H1(A)

(where k+ denotes the underlying group of the field k).

De la Peña and Saoŕın give necessary and sufficient conditions for H1(A) to be
isomorphic to Hom(π1(Q, Iv), k+) (see [PS]). In the particular case of incidence
algebras this result can be proved using a construction given by De la Peña in [P].

Let (Q, Iv) be a presentation of a k-algebra A. Let C0(A, Iv, k
+) be the set of all

k+-valued functions on Q0. Let Z1(A, Iv, k
+) be the set of all k+-valued functions g

on Q1 such that
∑s

i=1 g(αi) =
∑t

j=1 g(βj) whenever there exists a minimal relation
ρ =

∑m
i=1 λiwi such that w1 = α1α2 . . .αs and w2 = β1β2 . . . βt.

We have an exact sequence of abelian groups

0 → k+ d0

−→ C0(A, Iv, k
+) d1

−→ Z1(A, Iv, k
+)

p−→ Hom(π1(Q, Iv), k+) → 0

where d0 associates to the element m ∈ k+ the constant function f : Q0 → k+

with value m; d1 associates to a function f : Q0 → k+ the function g : Q1 → k+

which maps α : y → z to g(α) = f(y)− f(z), and finally p maps a function g to the
morphism of groups h : π1(Q, Iv) → k+ defined by h([αε1

1 αε2
2 . . .αεt

t ]) =
∑t

i=1 εig(αi).
Recall the description of H1(A) given in Remark 1.2. Let ξ : Z1(A, Iv, k

+) →
H1(A) be given by ξ(g) = [δ] where

δ(v) = (
p∑

k=1

g(αk)) v

for v = α1 . . .αp a non trivial path in kQ with residual class v ∈ r = radA. A direct
computation shows that ξ is well defined and is a group morphism.
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Proposition 1.5 Let A be an incidence algebra and (Q, Iv) be a presentation of A.
Then there exists an exact sequence of abelian groups

0 → k+ d0

−→ C0(A, Iv, k
+) d1

−→ Z1(A, Iv, k
+)

ξ−→ H1(A) → 0

Proof: The exactness can be checked by considering the description of H1(A)
given in Remark 1.2, using the following trivial fact: if [δ] ∈ H1(A) we have that
δ(α) = λαα for any arrow α ∈ Q1. Then ξ(g) = [δ] for g ∈ Z1(A, Iv, k

+) given by
g(α) = λα. �

Corollary 1.6 Let A be an incidence algebra and (Q, Iv) be a presentation of A.
Then

Hom(π1(Q, Iv), k+) ' H1(A)

It follows from the definition that the fundamental group π1(Q, I) depends es-
sentially on I, thus it is not an invariant of A. Bardzell and Marcos [BM] proved
that if the algebra is constricted then the fundamental group does not depend on
the presentation. Constricted algebras include incidence algebras.

Theorem 1.7 [BM] If A = kQ/I is an incidence algebra then π1(Q, I) ' π1(Q, Iv)
for any presentation (Q, Iv) of A.

2 Hochschild cohomology computations

It is known [D, IZ] that the Hochschild cohomology groups of an incidence algebra
vanish if the associated poset does not contain crowns, that is, subposets of the form
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• • • • •

.....................................................
.......................................................

.......................................................
........................................................

.......................................................
.......................................................

.......................................................
........................................................

.......................................................
...........................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
.....................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
.......................................................................... ...........

...........
...........
...........
...........
...........
...........
...........
...........
.....................................................................................
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..........................................................................y1 y2 yn−2 yn−1 yn

x1 x2 x3 xn−1 xn

· · · · · ·

· · ·· · · · · ·

where xi > yi and xi > yi−1, for 1 ≤ i ≤ n, with y0 = yn, n ≥ 2.
Now we are going to prove that the Hochschild cohomology groups of incidence

algebras also vanish if the associated posets have a unique maximal or minimal
element. In order to prove this, given an incidence algebra A = kQ/I , we construct
a new poset Q̃0 by adding to Q0 two new elements a and b. The partial order
between the elements of Q̃0 coincides with the partial order on Q0 and a > u, u > b,
∀u ∈ Q0.

A source of Q is a vertex x ∈ Q0 such that there is no arrow in Q1 ending on x
and a sink of Q is a vertex y ∈ Q0 such that there is no arrow in Q1 starting on y.

The corresponding quiver Q̃ is the quiver Q with two new vertices a and b, a
new arrow from a to each source of Q and a new arrow from each sink of Q to b.
Then Q̃0 is a finite poset having a unique maximal element a and a unique minimal
element b. Let Ĩ be the parallel ideal of kQ̃ and Ã = kQ̃/Ĩ. We denote by Sa and
Sb the simple left Ã-modules corresponding to a and b.
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Theorem 2.1 [C, page 225] Let A = kQ/I be an incidence algebra. Then Hi(A) =
Exti+2

Ã
(Sa, Sb), ∀i ≥ 1.

Theorem 2.2 Let A = kQ/I be an incidence algebra. If Q0 has a unique maximal
(minimal) element then Hi(A) = 0 for all i ≥ 1.

Proof: Suppose Q0 has a unique maximal element x. Then x is a source of Q.
Since Hi(A) = Exti+2

Ã
(Sa, Sb), ∀i ≥ 1, it is enough to show that Exti+2

Ã
(Sa, Sb) = 0,

∀i ≥ 1. The result follows immediately from the short exact sequence in mod Ã

0 → Px → Pa → Sa → 0

�
In [IZ] Igusa and Zacharia give a combinatorial algorithm to find an upper bound

for the cohomological dimension of Exti
Ã
(Sa, Sb). They show how to construct the

so-called reduced subposet Q0 of Q0 which has the property that all elements x ∈ Q0,
neither minimal nor maximal elements, are such that {y ∈ Q0 : y ≥ x} has at least
two minimal elements and {z ∈ Q0 : x ≥ z} has at least two maximal elements.
The Hochschild cohomology groups are invariant under this construction. Hence it
is enough to compute them for incidence algebras associated to reduced posets that
contain crowns.

Now we are going to compute the Hochschild cohomology groups of the incidence
algebras Aqn+s associated to reduced posets P where all elements x ∈ P , neither
minimal nor maximal elements, are such that {y ∈ P : y ≥ x} has exactly two
minimal elements and {z ∈ P : x ≥ z} has exactly two maximal elements.

We will denote by Aqn+s (n ≥ 2, q ≥ 0, 0 ≤ s < n) the incidence algebra
associated to the poset (Qqn+s)0 given by

(Qqn+s)0 = [qn + s] × [n − 1]

where [m] = {0, . . . , m}, (l, j) < (l + 1, j), (l, j) < (l + 1, j + 1) and (l, n) = (l, 0).
This means that Aqn+s is the incidence algebra with ordered quiver:
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We will prove two lemmas that will be useful for the computations of Hi(Aqn+s).
Given an A-module M , we denote supp M = {x ∈ Q0 : M(x) 6= 0}. Consider the
following conditions:

1) for any x ∈ supp M , M(x) = k;

2) if α ∈ Q1 and s(α), e(α) ∈ supp M then M(α) = idk.

Lemma 2.3 Let M1, M2 be two A-modules satisfying conditions (1) and (2) above.
If ∅ 6= supp M1 ⊆ supp M2 and supp M1 is connected then HomA(M1, M2) ' k.

Proof: Let A = kQ/I be an algebra and let f be an A-homomorphism from M1

to M2. Hence, f is given by a family of linear maps (fx : M1(x) → M2(x))x∈Q0
such

that for any arrow α : x → y in Q1 the corresponding diagram is commutative. From
our assumptions we deduce that fx = fy whenever there exists an arrow α : x → y,
x, y ∈ supp M1. Now, supp M1 is connected so fx = fy for all x, y ∈ supp M1 and
fx = 0 for all x ∈ Q0 r supp M1. Therefore our claim follows. �

Lemma 2.4 Let A = B[M ] be a one point extension of B by a B-module M ,
Hi(A) = 0 for all i > 0 and EndB(M) = k. Then H0(A) = H0(B) and Hi(B) =
Exti

B(M, M), ∀i > 0.

Proof: We get the desired result using the long exact sequence given in Theorem
1.3. �

We are now in a position to compute the Hochschild cohomology groups of the
incidence algebras Aqn+s .

Theorem 2.5 Let Aqn+s (n ≥ 2, q ≥ 0, 0 ≤ s < n) be the incidence algebra
associated to the poset (Qqn+s)0. Then:
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Hi(Aqn+s) =





k if i = 0
k if i = 2q + 1
0 otherwise

, s 6= 0

Hi(Aqn) =





k if i = 0
kn−1 if i = 2q

0 otherwise

Proof: The result is known for n = 2 (see [GPPRT]). Assume n ≥ 3.
Let A = Aqn+s be the incidence algebra whose ordered quiver is Q = Qqn+s.

This quiver is connected and has no oriented cycles, then H0(A) = Z(A) = k.
In order to compute Hi(A) for i > 0 we construct the quiver Q̂ by adding to Q

one new element a and a new arrow from a to each source of Q. Let Â = kQ̂/Î

be the incidence algebra associated to the ordered quiver Q̂. Then Â = A[M ], with
M = rad Pa, and the associated poset has a unique maximal element a. Hence
Theorem 2.2 implies that Hi(Â) = 0 for all i > 0. By the previous lemmas we
get that Hi(A) = ExtiA(M, M), ∀i > 0. So, it is enough to compute ExtiA(M, M),
∀i > 0.

Let us denote M = Mqn+s. Then for each p such that 0 ≤ p ≤ q we consider the
following short exact sequences in mod A

0 → Kpn+s
inc−→ qn−1

i=0 P(pn+s,i)
fpn+s−→ Mpn+s → 0

0 → M(p−1)n+s
∆−→ qn−1

i=0 P(pn+s−1,i)
gpn+s−→ Kpn+s → 0 (1)

where M−n+s = 0. The morphisms fpn+s, ∆ and gpn+s are induced respectively by
the linear maps

fpn+s(l, j)(x0, . . . , xn−1) =
n−1∑

i=0

xi

∆(l, j)(x) = (x, . . . , x)

gpn+s(l, j)(x0, . . . , xn−1) = (−xn−1 + x0,−x0 + x1, . . . ,−xn−2 + xn−1)

In order to describe the corresponding representations of these modules we define
the following subspaces of kn:

Cj,t = {(x0, . . . , xn−1) ∈ kn : xi = 0 ∀i 6≡ j, j + 1, . . . , j + t(mod n)}

and

Cj,t
0 = {(x0, . . . , xn−1) ∈ Cj,t :

n−1∑

i=0

xi = 0}

with 0 ≤ j < n, t ≥ 0. Now, for any (l, j) ∈ (Qqn+s)0, we have that:

Mpn+s(l, j) =
{

0 if l ≥ pn + s + 1
k if l ≤ pn + s
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qn−1
i=0 P(pn+s,i)(l, j) =





0 if l ≥ pn + s + 1
Cj,pn+s−l if (p − 1)n + s + 2 ≤ l ≤ pn + s

Cj,n−1 = kn if l ≤ (p − 1)n + s + 1

Kpn+s(l, j) =





0 if l ≥ pn + s

Cj,pn+s−l
0 if (p− 1)n + s + 2 ≤ l ≤ pn + s − 1

Cj,n−1
0 if l ≤ (p− 1)n + s + 1

The corresponding linear maps are induced by the identity. Recall that M = Mqn+s.
Hence, applying the functor HomA(−, M) to the short exact sequences (1) we get
that, for i ≥ 0,

Ext2i+1
A (M, M) =

{
Ext1A(M(q−i)n+s, M) if i ≤ q

Ext2(i−q)+1
A (Ms, M) if i > q

and for i > 0,

Ext2i
A (M, M) =

{
Ext1A(K(q−i+1)n+s, M) if i ≤ q

Ext2(i−q)+1
A (Kn+s, M) if i > q

Note that the short exact sequences (1) allows us to construct a projective resolution
of Ms. A direct computation shows that

Ext2(i−q)+1
A (Ms, M) = 0 for i > q

Ext1A(M0, M) = 0 and Ext1A(Ms, M) = k if s > 0

Analogously a projective resolution of Kn+s constructed using (1) shows that

Ext2(i−q)+1
A (Kn+s, M) = 0 for i > q

To finish the proof we have to compute Ext1A(Mpn+s, M) and Ext1A(Kpn+s, M) for
p > 0. This can be done by applying the functor HomA(−, M) to the short exact se-
quences (1). We compute now the dimensions of the k-vector spaces HomA(Mpn+s, M)
and HomA(Kpn+s, M). Applying Lemma 2.3 we get that

HomA(Mpn+s, M) ' k for pn + s > 0

Now we are going to compute HomA(Kpn+s, M) for p > 0. If r ∈ HomA(Kpn+s, M)
then r(l − 1, j) is uniquely determined by r(l, j) and r(l, j + 1), for any l such that
1 ≤ l ≤ pn + s − 1. So, the map r is uniquely determined by the linear maps

r(pn + s − 1, j) : Cj,1
0 → k

for all j such that 0 ≤ j < n. Denote by vi = (y0, . . . , yn−1) ∈ kn with yi = −yi+1 = 1
and yr = 0 otherwise, where yn = y0. All the subspaces Cj,pn+s−l

0 has as basis a
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subset of {v0, . . .vn−1}. Let r(pn + s− 1, j)(vj) = λj . This implies that r(l, j)(vi) =
λi, for all vi in the given basis of Cj,pn+s−l

0 and the map r is uniquely determined
by λ0, λ1, . . . , λn−1. In particular, take l = 0. Since p > 0, v0, . . . , vn−1 ∈ Cj,pn+s

0

and
∑n−1

i=0 vi = 0. So

0 = r(0, j)(
n−1∑

i=0

vi) =
n−1∑

i=0

λi

Hence, dimk HomA(Kpn+s, M) ≤ n − 1. On the other hand the k- linear maps

rt(pn + s − 1, j) : C
j,1
0 → k, t = 0, . . . , n − 2

given by

rt(pn + s − 1, j)(vj) =
{

1 if j = t

0 otherwise

induce n−1 morphisms in HomA(Kpn+s, M) which are linearly independent. There-
fore

HomA(Kpn+s, M) ' kn−1 for p > 0

So, applying HomA(−, M) to the short exact sequences (1), we get that:

Ext1A(Mpn+s, M) = 0 for all p > 0
Ext1A(Kpn+s, M) = 0 for all p > 0, pn + s 6= n

Ext1A(Kn, M) = kn−1

�

Remark 2.6 Since the Hochschild cohomology of incidence algebras is isomorphic
to the cohomology of simplicial complexes, it would be nice to describe the simplicial
complexes associated to the given posets (Qqn+s)0.

This is not difficult in particular cases: if n = 2, the underlying space of the
simplicial complex is homeomorphic to the (2q + s)-sphere S2q+s (see [GPPRT]); if
q = 0 and s = 1, it is homeomorphic to S1; if q = 0 and s = 2, it is homeomorphic
to a cylinder if n is even, and to a Möbius band if n is odd.

3 The fundamental group of any presentation of Aqn+s

In Section 2 we compute the first Hochschild cohomology group H1(Aqn+s). Using
the close relation between the first Hochschild cohomology group and the fundamen-
tal group, we can prove the following theorem.

Theorem 3.1 For any presentation (Qqn+s, Iv) of the incidence algebra Aqn+s,
qn + s > 0,

π1(Qqn+s, Iv) '
{

Z if q = 0
0 if q > 0

11



Proof: Since the fundamental group does not depend on the presentation of the
incidence algebra Aqn+s, we may consider Iv = I the parallel ideal. We denote the
arrows in (Qqn+s)1 in the following way:

α(l,j) : (l, j) → (l − 1, j) and β(l,j) : (l, j) → (l − 1, j − 1)

First we are going to prove that the fundamental group of π1(Qqn+s, I) is cyclic.
Let ∼ be the equivalence relation defined in Section 1.5. Considering the minimal
relations in I we have that α(l,j)β(l,j)

−1 ∼ β−1
(l−1,j)

α(l−1,j−1). Then any closed walk u

starting and ending at (0, 0) is equivalent to a walk which is a composition of some
arrows α(1,j), β(1,j) and their formal inverses. Hence

[u] =
[
α(1,0)β(1,0)

−1α(1,n−1)β(1,n−1)
−1 . . .α(1,2)β(1,2)

−1α(1,1)β(1,1)
−1

]r

for some r ∈ Z.
By Corollary 1.6 we know that Hom(π1(Qqn+s, I), k+) ' H1(Aqn+s) and from

Theorem 2.5 we have that H1(Aqn+s) = k if q = 0, and it is zero if q > 0.
If q > 0, then Hom(π1(Qqn+s, I), k+) = 0 for any field k. Since π1(Qqn+s, I) is a

cyclic group then Hom(π1(Qqn+s, I), k+) = 0 implies that π1(Qqn+s, I) is isomorphic
to Z/mZ for some m. If m > 1 we get a contradiction if we take a field k with
car k = p and p/m. Therefore the fundamental group of any presentation of Aqn+s

is the trivial group when q > 0.
If q = 0, we have that Hom(π1(Qs, I), k+) ' H1(A) = k, for any field k. There-

fore, π1(Qs, I) 6= 0. If π1(Qs, I) ' Z/mZ for some m, we get a contradiction since
Hom(Z/mZ, k+) = 0 for any field k such that car k does not divide m. Therefore
our claim follows. �

Recall that a triangular algebra is simply connected if, for every presentation
(Q, I) of A, the fundamental group π1(Q, I) is trivial.

Corollary 3.2 The incidence algebra Aqn+s is simply connected if and only if q ≥ 1.
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