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We study the Hochschild cohomology of triangular matrix rings B = (,% %),

where 4 and R are finite dimensional algebras over an algebraically closed field K
and M is an A-R-bimodule. We prove the existence of two long exact sequences of
K-vector spaces relating the Hochschild cohomology of A, R, and B. ®© 2000

Academic Press

Let A be a finite dimensional algebra (associative, with identity) over an
algebraically closed field K.

The Hochschild cohomology groups H'(A4, X) of A with coefficients in
a finitely generated A-4-bimodule X were originally defined by Hochschild
in 1945 [Ho]. When X = A we write H(A) instead of H(A4, A) and
H'(A) is called the ith-Hochschild cohomology group of A.

Computations of the Hochschild cohomology groups for semicommuta-
tive schurian algebras and algebras arising from narrow quivers have been
provided in [H, C1], respectively. The case of monomial and truncated
algebras has been considered in [B, BLM, BM, L]. Recently, M. J.
Redondo and A. Gatica have computed these groups for some incidence
algebras [GR]. However, the actual calculations of Hochschild cohomology
groups have been fairly limited. The reader can refer to [H] for a summary
of the work in this area.

In this paper we will study the Hochschild cohomology of a triangular
matrix algebra B = ( 3 %) where A4, R are arbitrary finite dimensional

K-algebras and M is a finitely generated A-R-bimodule. The main result
of this paper is the following.
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THEOREM. Let B = (AﬁR %). Then there exist long exact sequences of
K-vector spaces of the form

0 —» Ann( M) N Z(R) - HO(B) - H(A) 3 Extpg zeo(R,P,) =
- - > H(B) > H' (A) - EXtB@ rr(R,P) = -,
where e is the idempotent (%)) of B and P, = Be, and
0> H’(B) > H’(A4) ® H'(R) — Extpg go(R, M) > ... >
— H'(B) —» H'(A) ® H'(R) - Exty zo(R, M) -

The existence of the first long exact sequence is proved in Section 1.
In Section 2 we show that Exty'ze(R, M) = Exthege(M, M) =
Extlyg, go(M, M) for all i > 0, and so the second sequence takes the form

0> H’(B) > H’(A4) ® H'(R) » Hom g ger(M, M) > -+ —
— H'(B) » H'(A) ® H(R) — Extlg (M, M) —

This sequence has been obtained also by C. Cibils in [C] and generalizes
a result obtained by D. Happel for one point extensions of artin alge-
bras [H].

We also study the relationship between the groups Ext’, e, rer(R, P,) and
Ext’ Yo, ror(M, M) which occur in the above sequences. We | prove, in addi-
tion, that there exists another long exact sequence connecting these groups
with the Hochschild cohomology groups of R.

It is thus of interest to know the groups Ext';g go(M, M). When ,M is
projective we know a simple way to construct a projective resolution of M
over A ® R°? in terms of a projective resolution of R over R°. We apply
this construction to the particular case R = K|x|/{x'), by considering an
appropriate well known projective resolution of R over R°. Then the
groups Ext'; zo,(M, M) can be obtained with a straightforward calcula-
tion from the resulting resolution of M over A ® R°F.

We recall that a triangular matrix algebra B = ( 5 %) is said to be a

local extension of A4 by M if R is a local algebra. The above methods are
appropriate to study the Hochschild cohomology of a particular class of
standardly stratified algebras A, those having the property that all their
idempotent ideals are projective left A-modules. The reason is that these
algebras can be obtained from a local algebra A, by successive local
extensions A, = (%j;' 1), i =0,...,n by bimodules M, which are pro-
jective left A,--modules.
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Section 3 ends the paper providing examples illustrating the use of the
results obtained.

PRELIMINARIES

Throughout this paper K will denote an algebraically closed field. By an
algebra we mean a finite dimensional K-algebra which we shall also
assume to be basic and indecomposable. So an algebra A can be written as
a bound quiver algebra A = KQ /I where Q is a finite connected quiver
and [ is an admissible ideal of the path algebra KQ.

Given an algebra A, all the modules considered here are finitely
generated left A-modules, and we denote by mod A the category of finitely
generated left A-modules and by ind A the full subcategory of mod A
consisting of one chosen representative of each isoclass of indecomposable
A-modules. We will denote by r, the Jacobson radical of A and the
Jacobson radical of a A-module M will be indicated by rad M.

For a given quiver Q, we will denote by Q, the set of vertices of O and
by Q, the set of arrows between vertices. For each arrow «, s(«) and e(«)
will be the start and end vertices of «, respectively.

For each i in Q,, we denote §; the simple A-module associated to i and
P, I, will denote the projective cover and injective envelope of S;, respec-
tively. Clearly, if A = KQ/I and e; is the idempotent element of A
corresponding to the vertex i of Q then P, = Ae,. In order to be more

clear, sometimes we will write P, instead of P,

For a pair of A-modules X, Y, we denote by TyY the trace of X in Y,
that is, the submodule of Y generated by all homomorphic images of X.
The A-module 7Y is an End, Y-submodule of Y. Furthermore, 7,Y is a
A-(End, Y)°?-subbimodule of Y. For a given K-algebra A we will denote
by A° the enveloping algebra of A, that is A = A ® A°?, and for A € A,
X will be A considered as an element in AP,

If Q is a quiver with vertices 1,...,n then for each indecomposable
projective A-module P, we will call P the sum LI, P.

1

1. A GENERALIZATION OF THE HAPPEL SEQUENCE
FOR TRIANGULAR MATRIX ALGEBRAS

This section is devoted to proving the existence of the first exact
sequence of the theorem stated in the introduction.

The Hochschild cohomology groups of a given algebra are generally
hard to compute by using the definition. For this reason, one often tries to
find alternative methods for computing these groups. An example of this
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fact is the following result due to D. Happel [H] related to one point
extensions, which shows the existence of a long exact sequence of K-vector
spaces connecting the Hochschild cohomology groups of a one point
extension B with the Hochschild cohomology groups of a particular
quotient 4 of B. Sometimes this sequence allows one to compute the
Hochschild cohomology groups of B in terms of the Hochschild cohomol-
ogy groups of A, and the advantage now is that the number of nonisomor-
phic simple A-modules is smaller than the number of nonisomorphic
simple B-modules.

THEOREM (Happel). Let B be a one point extension of A by an A-module
M. Then there exists an exact sequence of K-vector spaces connecting the
Hochschild cohomology of A and B of the form

0 - H°(B) » H(A) » Hom,(M,M)/K - H'(B) - H'(A) - -
- Ext;y'(M,M) - H(B) » H(4) - Exty,(M,M) - --.

Let now B be the path algebra of a quiver Q with relations, that means
B = KQ /I for some admissible ideal /. If i is a source in Q and e, is the
corresponding idempotent element in B then B can be written as the one
point extension of 4 = (1 —¢,)B(1 — ¢;) by the A-module (1 — ¢;) Ae;,
that is, B = ((; %4, 4)- So, in this case the above theorem holds. How-
ever, there exist many algebras which cannot be written as a one point
extension of other algebras.

For two K-algebras A, R and an A-R-bimodule , My, we will consider
the triangular matrix K-algebra B = (| ,’f}R 9). In this section we prove the
following result which generalizes the preceding result to triangular matrix
K-algebras.

THEOREM. Let B = (3 4). Then there exists an exact sequence of K-vec-
tor spaces connecting the Hochschild cohomology of A and B of the form

0 - Ann M N Z(R) » H’(B) » H’(A) - Extpe gew(R,P,) =
- H'(B) > H'(A4) > Ext}, r(R,P,) - = — H(B) -

- HI(A) g EXtiB+®1KRUp(R, Pe) > ey,
where e is the idempotent ('# () of B and P, = Be.

We start by recalling the construction of the Hochschild cohomology
groups of a K-algebra A by a finite dimensional A-bimodule X.
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Let A4 be an algebra and let A®' be the i-fold tensor product over K of
A with itself, that is, 4° = A4 & -+ & A. For an A-bimodule , X, of
finite dimension over K, the Hochschild complex C'= (C,d"), ., associ-
ated to A and X is defined as C' =0, d' =0, for all i <0, C° =,X,,
C' = Hom (A%, X), for all i >0, d”: X > Homy (A4, X) is given by
(d°x)a) = ax —xa, for all x € X and a € A, and d': C! — C'™! with

(df)(a, ® - ®a,,) =af(a,® - ®a;,)
+ ZI: (_1)jf(al ® - ®a;a;.,® " ® ry1)
j=1

+(_1)l+lf(a1 ®  ®a;)a;,,
for fe C'and ay,...,a,,, € A.

Then the ith Hochschild cohomology group H'(A4, X) of A with coeffi-
cients in X is by definition H'(C) = Kerd'/Im d'~'. When X = A4 we
write H(A) instead of H(A, A) and H'(A) is called the ith Hochschild
cohomology group of A.

The following are well known interpretations of H(A) and H'(A4, X),
respectively. By definition H°(A) coincides with the center Z(A) of A and
H!(A, X) = Der(A, X)/Der’(A4, X), where Der(A4, X) = {6 €
Hom (A4, X): 8(ab) = ad(b) + 8(a)b} is the K-vector space of deriva-
tions of 4 in X, and Der’(A4, X) = {5, € Hom(A4, X): § (a) = ax — xa
Vx € X} is the subspace of inner derivations from A4 to X.

A different way of defining the Hochschild cohomology groups of A is
to consider the enveloping algebra 4° of 4. Any A-bimodule X may be
regarded as a left A°-module by setting (a ® b°)x = axb for all a,b € A,
and x € X.

In particular, 4 is a left A°-module and H(A4, X) = Ext’.(A4, X) for
all i > 0. This is proven by constructing an A°-projective resolution
S.(A) = (S(A),8"),., of A, which is called the standard resolution of
A [Ho, CE].

Our aim now is to prove the main result of this section. The following
considerations will be useful throughout the paper.

Remark 1.1. Let B = (5 %). From now on we denote by e the

idempotent element (' ) of B and, as we said before, we denote by P, the
indecomposable projective B-module Be. Consider the ring morphisms
y:B—->A, y((r%)=a,and 7:B >R, w((} ) =r.
The A-R-bimodule ,My is a B-B-bimodule via ¢ and , respectively.
On the other hand, the two-sided ideal ( y, ) of B may be considered

as an A-R-bimodule since (Ker ). (3, o) = ( 3 o). (Kerm) = 0.
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Now, it is easy to verify that the mapping M — ( 5 ) which maps m

into (2 9)isa B, B, B ® R°’, and A ®& R°’-isomorphism.
Similarly the B¢-module P, may be regarded as a B ®  R°’-module

e

via ar, since P,(Ker w) = 0, and finally, the morphism = makes R a B*-
module.

According to the above remark, the canonical sequence

0O->M->P,-R—-0

e

is B, B¢, and B ® R°’-exact.

Let B =( . %. Any B-R-bimodule X, may be considered as a
B‘-module via the morphism 7 of Remark 1.1, and the B-module struc-
tures of R and X make Homg.(R, X) a B¢-module by setting [(a ®
b°)f1(r) = af(br) for all (a ® b°) € B® and f € Homyo(R, P,).

In addition, the mapping Homg.,(R, X) — X which sends any R°’-
morphism f: R — X into the element f(1;) of X is a B°-isomorphism.
Using now the fact that the canonical sequence

0—->P,->B—>A4-0 (1)
is B‘-exact we obtain the following result.

THEOREM 1.2. Let B = (5 %). Then
Hom.(B, A) = Homg.( A, A) = Hom (A, A) = H(A)
Exty(B, A) = Bxth.(A, A),  foralli > 1.
Proof. 'The above sequence (1) gives rise to the long exact sequence
0 - Homyg.(A, A) » Homy(B, A) » Homy(P,, A) —
— Exty.(A, A) = Extp(B, A) = Extp(P,, A) - -+ —
— Exthe(A, A) - Bxth.(B, A) = Exth(P,, 4) - .

It follows from the structure of B¢-module of A that Homgz.(A4, A) =
Hom ,.(A, A) = H(A). Thus, in order to prove the first part of the
theorem it suffices to show that Hom z.(A, A) = Hom (B, A). This result
follows from the equality Homg.(P,, A) = 0, which is a direct con-
sequence of Homz(P,, A) = 0. The rest of the theorem follows from the

fact that Ext.(P,, A) = 0 for all i > 1, which will be proved next in Cor-
ollary 1.4. 1|

To prove that Exty(P,, A) = 0 for all i > 1 we will construct a projec-
tive resolution of P, over B°.

e
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First we recall some basic properties of the enveloping algebra A° of an
algebra A over an algebraically closed field K.

Let {e,, ..., e,} be a complete set of primitive orthogonal idempotents in
A. Since K is an algebraically closed field, {e; ® €},_; ;_, is a complete
set of primitive orthogonal idempotents in A° = A ® A°”?. As we pointed
out under Preliminaries, we denote by P the indecomposable projec-
tive A“-module A°.(e; ® €7). Let S, be the simple A’-module top
(P, o) It is known that S, ;. = Homy (S}, S;) where S; is the simple
A-module Ae,;/rye; = P,/r\P.

We are ready now to describe a B‘-projective resolution of P,.

PROPOSITION 1.3. Let B = ( f %) and let {e, e,,...,e,} be a complete

0) —
0)_61

+ -+ +e,. Then there exists a projective resolution of P, over B® of the form

set of primitive orthogonal idempotents in B. Suppose that e = (|

-->Q0,> >0, —->0,2P, -0

e

with Q,, € add(11; P, ), for all n > 0.

Proof. We use the following general fact true for any module X over a
K-algebra A. Let

- >R, > >R >R >X—-0

n

be a minimal projective resolution of X and § a simple A-module. Then
the multiplicity of P,(S) is a summand of R, is dimy Hom,(X, S). Using
this fact it follows that the multiplicity of Py (S) as a summand of R, is
dim , Exti(X, S) for all i > 0.

The proof of the theorem follows now the arguments of Happel [H, 1.5].
First we will prove that each indecomposable projective P, , 1 < k < ¢, has
a B‘-projective resolution of the form

-—>R(k)—>---—>R§k)—>R(k)—>P -0
n 0 e
with R\ € add(I1; P, o .:) for all n > 0. Assume that
. > RM 5 .. S R SR 5P 5
n 1 0 ey
is a minimal projective resolution of P, over B“. Then

ng) = ]—[i,j[Pe,@e? ] B

where r;; = dim g Extp(P, Sei@,e;) = dimy Extj.(P, ,Homg(S;, S)).
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Now, [CE, Theorem 2.8a, Chap. IX] in this case states that

Extje( P, ,Homy (S}, S,)) = Extjog (P, Homy(DS,, DS;))

J2

= Ext}(P,, ®. DS, DS,)

and so, r;; = dimg Exty(P, ®., DS;, DS)), for all i,j. Since for each i,
P, ®0 DS; = DS; ® Be, and DS, ® Be, is DS, if i = e, and 0 other-
wise, it follows that Ext3(P, ®.» DS;, DS;) = Extyp(DS;, DS,) is different
from zero just for i = e,. Observe that, here Ext(DS;, DS;) denotes the

extensions group between the right B-modules DS; and DS;. Finally the
desired result follows from the fact that Exti(DS;, DS;) = Extj(S;, S,),

]7
where Extj(S;, ;) denotes the extension group between the left B-mod-

ules §; and §,.
Hence, P, has a projective resolution of the form

. —>Qn—> _)Q1_>QO_)Pe_)O

)forall n>0. |

j

with Q, € add(1I; P,

J T e®e

This proposition has the following corollary which completes the proof
of Theorem 1.2.

COROLLARY 1.4. With the hypothesis of Theorem 1.2, Ext%,.(P,, A) = 0,
foralli > 1.

Proof.  Applying the functor Homg.( , A) to the B¢-projective resolu-
tion of P, given in the above theorem we obtain the long exact sequence

0 — Homg(P,, A) - Homg.(Q,, A) — -+ - Homg(Q,,A) = -,

where Q, € add[11; (P,q,;)] for all n > 0.

So it is enough to prove that HomBe(Pem?,A) =0, forall j=1,...,n.
This is an immediate consequence of the equality Hom Be(Pem?, A) = ede;
since ede; clearly vanishes and ends the proof of the corollary. |

Keeping our aim in mind, we apply now the functor Hom z.(B, ) to the
B‘-exact sequence (1) above considered:

0—->P,-B—>A-0.
Then we obtain a long exact sequence of the form
0 — Homg.(B, P,) - Homy.(B, B) - Homg.(B, A) —
— Exth.(B, P,) - Bxty.(B,B) = Exth.(B, A) - .  (2)
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Remark 1.5. For any B-R-bimodule ;X we have Exty.(B,X) =
Exth.(B,Homgo(R, X)) = Exty.(B,Homy(DX, DR)) and the formula
given in [CE, Chap. IX, Theorem 2.8a] yields in this case

Extly.(B, Hom (DX, DR)) = Exthg por(DX & B, DR)

= Ext§3®KRap(R,X)
for all i > 0.

Now, using our last remark for X = P,, we have that Exty.(B, P,) =
Exte reo(R, P,), and so the sequence (2) induces a long exact sequence
of the form

A
0 - Homy,, ger(R, P,) = H(B) - H(A) > Exth, por(R, P,) =
— H'(B) - Extp(A4,A) > - - Extyg re(R,P,) - H(B) >
- Exti (A, A) > - 3

via the above isomorphisms and the isomorphisms given in Theorem 1.2.

Let now B = KQ /I for some finite quiver O and an admissible ideal [/
of the path algebra KQ. As is usual in representation theory, we consider
A also as the K category whose objects are the vertices of Q and the set of
morphisms from x to y is the vector space KQ(x, y) of all linear combina-
tions of paths in Q from x to y modulo the subspace I(x,y)=1nN
KO(x, y).

We say that an algebra A4 is a convex subcategory of B if there is a
path-closed full subquiver Q' of Q such that 4 = KQ' /(I N KQ').

For example, if B is the triangular matrix algebra B = ( 5 %) then A4
and R are convex subcategories of B.
The following known fact will be necessary in the sequel.

LEMMA 1.6. Let A be a convex subcategory of B = KQ/I. Then
Exth(X,Y) = Exty(X,Y), foralli > 1 and X,Y in mod A.

Let A and A be two K-algebras (not necessarily finite dimensional)
with fixed presentations A = KQ/I and A = KQ'/I'. Assume Q =
(Qy,0)) and Q' = (Qj, Q) are finite quivers; that means Q,, Q;, O, Q)
are finite sets.

Then A ® A is also a K-algebra, and so A ® A’ is the path algebra of
a quiver Q,, , With relations. To know how to describe A & A’ as the
path algebra of a quiver with relations motivated some of the proofs and
examples of this paper. So, even though such description is known [GM, 3]
we describe briefly the construction of the quiver Q,, , and the ideal
I of relations of A & A.
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Let {e;,...,e,} and {e],..., €/} be complete sets of primitive orthogonal
idempotents in A and A, respectively Since K is an algebraically closed
1dempotents 1n A ®K A’. So, for each primitive orthogonal idempotent
e; ® ¢; of A & A there exists a vertex Veoe, N Qre, -

We shall investigate now the set (Q,4, ), of arrows of O, . For any
pair of vertices Veoo and v, g, the number of arrows from v, G0V, 5,
is dimg[(e, ® e;)rA®KA,/rA®KA,(e, ® el

Since 1y, v =7y & A + A & ry we get that i, v =7 y + 7y &
ry + A ® ri.

The next lemma enables us to describe the set of arrows (Q, g, v );-

LEMMA 1.7. There exists an isomorphism of K-vector spaces ® :ryq r/
i n = (ry/ri & 117, Kej) X (L7, Ke; & ry/ry) where {e,,... ,en}
- A and {¢),..., e} € N are complete sets of primitive orthogonal idempo-
tents of A and N, respectively.

According to the preceding result the arrows of Q,, , are given as
follows. For each arrow B :i — j in Q; we have m arrows fge, 10, g0 =
Ue®e, s =1,...,m and for each arrow B’ : k — [ in Q] we have n arrows
fc ®B' L®L _)Ue,®e;?t= 1""”1 in (QA®KA')1'

Note that if A = KQ/I and X' = KQ'/I' then Q,g, x = Qkos, ko'

We illustrate the construction of Q,4 , in the following example.

ExampLE 1.8. Let Q be the quiver O1 LA 2 and Q' the quiver Ol.
a Y o

Then Qoo ko 18

fa@e'l fy®e’,
@ f[s@g’l

Ueioe) Ve, ey

f81®rx' fz’2®u’

We will describe now the ideal I, , of relations of A & A.

First we assume that A = KQ and A = KQ', that is, I = I' = 0. Con-
sider the morphism of K-algebras 6:KQ oy @ A ® A = KO ® KQ'
defined over (Q 4 )o and (Qy40); as

O(Ue,®e}) =e¢; ® 6}
O(fpme}) = B®e}§ O(fe,@B') =e®p

for all Ue;@e; < (QA®A’)O and fﬁ@e;’ fe,@ﬁ’ < (QA®A/)1'
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Then 6 is an epimorphism and we can now state the first result relative
to the ideal I, of relations of A & A.
LEmMMA 1.9. The set
Z={(e(a) ® B)(a®@s(B)) — (a®e(B))(s(a) ®B)
with a € Q,, B € 0}}
generates the ideal 1,4  of relations of A & A.

Let J be the ideal generated by the set .% of the preceding result. Then
we have the following description of I4 .

LemMA 1.10. Let A = KQ/I and N = KQ'/I'. Then
Loy =[KO & I'+1& KO'] 117
as K-vector spaces.

Finally, the next result gives a set of generators of the ideal of relations
of A® N=KQ/I ® KO'/I'

CoROLLARY 1.11.  The following set generates the ideal I, of relations
of A ®& A:

FU {st1 77777 5[f5[®e}_ --~f51®e} : stl 7777 5,01 .. 6, is a relation 0fA>
U{Zka; """" sifoost - foosyt 2uksy 581 ... 8/ is a relation ofA’}.

Let B =( 3. %). As we had already mentioned, 4 and R are convex

subcategories of B. Hence, it is not difficult to see, using the above
description, that 4°, R°, and A ® R°? are convex subcategories of B°.
Then, we have the following straightforward consequence of Lemma 1.6.

PROPOSITION 1.12. Let B = (3 4). Then for all i > 1,
Exth.(X,Y) = Ext'(X,Y), X,Yin mod A°
Exti.(X,Y) = Exth.(X,Y), X, Y in mod R

Exth o por( X,Y) = Extljgper(X,Y),  X,Yin mod(A ® R°P).
In particular,
Extl.(A, A) = Exti.(A, A) = HI( A)
Exti,.(R, R) = H(R)
Exti.(M, M) = Extl,q por( M, M).
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The next lemma will be needed in the proof of the main result of this
section.

LEmmA 1.13. Let B = ( 5 %). Then

HOH]B@,KR(;,;(R, M) = 0
Homyg ger(R, P,) = Ann(Mg) N Z(R).

Proof. The equality Homyg go(R, M) = 0 follows from the fact that
Homz(R, M) = 0.

Let now f: R — P, be a B-R-morphism. Then f is uniquely determined
by the element f(1,) = (7 9). In addition, for all b = (7, %) € B, we have
that f(b) = f(b.15) = b. f(1z) and f(b.1z) = f(+') = f(Dr'. Thus, it eas-
ily follows that f(1,) = (;9) with r € Ann(My) N Z(R). Hence the map
0 : Ann(My) N Z(R) - Hompgg go(R, P,) given by 6(r)(1D) = () is a

group isomorphism. |

We are now in a position to prove the desired result.

THEOREM 1.14.  Let B be the triangular matrix algebra (5, ). Then there

exists a long exact sequence of K-vector spaces connecting the Hochschild
cohomology of A and B of the form

A
0 = Ann(Mg) N Z(R) - H(B) - H(A) = Exth, za(R, P.) —

. . Ai .
> o HY(B) - HI(A) > Exty gn(R.B) = . @)

Proof. Combining Theorem 1.2 with Proposition 1.12 and Lemma 1.13
we obtain

and

Homg, geo(R,P,) = Ann(Mg) N Z(R)
Therefore, the exact sequence (3) induces an exact sequence of the desired
form. 1

The following easy lemma gives necessary and sufficient conditions for
Ann(M) being zero when R is a local ring.

LEMMA 1.15. Let B = KQg/I and R be a local ring. Assume that Qp has
no oriented cycles which are not loops and let a be a vertex of (Qp),. Suppose
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that there are no arrows except loops ending at a. Then the following
conditions are equivalent:

(a) Homg(S,,P) =0
()  Ann((75P,)gpg per) = 0

() If a is a loop at a and i is minimum such that o' = 0 in B, then
for all j < i there exists an arrow B which is not a loop such that Ba’ # 0.

We finish this section with the following remark.

Remark 1.16. If B is the one point extension of 4 by M, that is, the
ring R is the field K, D. Happel proved in [H, 5.3] that Exty, gzer(R, P,)
= Ext}; '(M, M), for all i > 2 and Extp, g.(R,P,) = Hom (M, M)/K.
Clearly, in this case we have that Ann M, = 0 and therefore our main
theorem coincides with the result given by D. Happel [H, 5.3] for one point
extensions.

2. OTHER LONG EXACT SEQUENCES

Let B =( 3. %) with R and A arbitrary K-algebras. In Section 1 we
gave a long exact sequence of K-vector spaces connecting the Hochschild
cohomology of B with the Hochschild cohomology of 4 and the groups
Exthe geo(R, P,). A natural question to ask is if it is possible to get
information about the Hochschild cohomology of B in terms of the
Hochschild cohomology of R and A. In this section we prove the following
result which provides a long exact sequence of K-vector spaces connecting
directly the Hochschild cohomology of B, A4, and R with the groups
Extlyg ger(M, M) (see also [C].

PROPOSITION.  Let B = (3 ). Then there exists a long exact sequence of

K-vector spaces connecting the Hochschild cohomology groups of A, B, and R
of the form

0 - H’(B) » H’(A) ® H'(R) » Hom g, ger(M, M) —> -+ —

— H/(B) - H'(A) ® H(R) - Ext;y gor(M, M) > .

Since the groups Extye re(R, P,) appear in the main result of Section

1 and the groups Extlg re(M, M) in the just stated result, it is of
interestto relate them. We end the section by proving the existence of
another long exact sequence which connect these groups with the
Hochschild cohomology groups of R.
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Consider first the canonical B‘-exact sequence

0-M5B—>A®R—0.

Applying the functor Homz.(B, ) to this sequence we have a long exact
sequence of K-vector spaces of the form

0 —» Homg(B, M) » Homy.(B,B) » Homg(B,A ®R) — -

Extie(B, )
_

— Exti.(B, M) Exti.(B, B) — Exti.(B, A ®R) — .

(*)

It is easy to see that Homgz.(B, M) = 0. We know that Exty.(B, X)
= Extyg, geo(R, X) for any B-R-bimodule X (see Remark 1.5), and
Ext4.(B, A) = Extk.(A, A), as we proved in Theorem 1.2. Combining this
with the fact that A4¢, R, and B ® R°? are convex subcategories of B¢
we get (see Proposition 1.12)

Exty (B, M) = Ext§3®KRap(R,M)
Exty.(B, A ® R) = H(A) ® H'(R).
So the above sequence induces a long exact sequence
0> H’(B) » H’(A4) ® H'(R) — Extp, go(R, M) - - —
- HY(B) » H'(A) @ H(R) - Extj;r@lKRap(R,M) — e (5)
We shall prove now that
Exti:'(R, M) = Exth (M, M) = ExtimKRop(M,M)

for all i > 0. This will easily follow from the fact that Exty.(P,, M) = 0. It
is worthwhile to mention that this fact can be proven by using the
B¢-projective resolution of P, constructed in Proposition 1.3. However, we
think that the next construction of a new projective resolution of P, over
B ® R°? is useful for computing examples. With this purpose in mind,
the next general lemmas will be needed.

Let A and A be two K-algebras and let & = (C,, 8,),. , be a projective
resolution of A over A°.

LEMMA 2.1.  Let X, be a right A-module. Then X ®,, € = (X ®,C,,1 ®
8,); o is an exact sequence.
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Proof. Let K;= Keré,. Since A is a projective left A-module, it
follows that the sequence
B
0->K,—»Cy—>A—0
splits in mod A. Thus K, is a projective left A-module. Iterating this
argument we have that each short exact sequence
5;
0-K,—-C,—»K,_, =0
splits in mod A, which proves the statement. [

LEmMMA 2.2.  Let y X, be a N-A-bimodule. Assume that y X is projective.
Then X ®, % = (X ®,C;,1 ® §,),., is a projective resolution of X over
N & A°P. In particular, if C; is the i-fold A® = A ® -+ & A then
(X®,%), =X C, =X & A%

ExampLE 2.3. Let B = ( 3 %) and let P, be the B-R-module B.e =
B.('#0). Then P, has a B ® R°’-projective resolution of the form
%’: ..._)Qn_)..._)Q]_>QO_)Pe_)0
with Q; € add(P, & R).
In fact, let & be the standard resolution of R over R°. That is,
8, EN
%: -+ >R® S5 R®°2>5R-0.

According to Lemma 2.2, P, & & = (P, & R®,1® §,) is a projective
resolution of P, over B ® R‘’.

Now, P, & R® =P, ® R® " !'=(P, & R)
and therefore P, ®, R®' € add(P, ® R).

We are now ready to prove that Extyt'(R, M) = Extp(M, M) =
Extlyggor(M, M) for all i > 0.

(i=2) .
! where ¢ = dimg R,

PROPOSITION 2.4.  Let B = ( 5 %). Then Ext}.'(R, M) = Exty(M, M)
= Extly geo(M, M) forall i > 0.

Proof.  Applying the functor Homg.( , M) to the canonical short exact
sequence
0>M—->P,>R—0

and using the fact that Hom (R, M) = Homgz.(P,, M) = 0, we obtain a
long exact sequence of the form

0 — Homy (M, M) — Extpg po(R, M) — Extpy go(P,, M) —

- EXt%}@KRop(My M) d EXt}f@;{Rap(R’M) — ..,
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We apply now the same functor to the B ® R°P-projective resolution of
P, given in Example 2.3. Since Homg, gor((P, & R)', M) = Homg((P,
& R)', M) = (eMe)' = 0 for all ¢ > 1, it follows that ExtiB®KR,)p(Pe, M) =
Oforalli>1. |

Finally we have the following result which shows the existence of the
desired long exact sequence.

PROPOSITION 2.5 [Cl.  Let B = (5 %). Then there exists a long exact

sequence of K-vector spaces connecting the Hochschild cohomology groups of
A, B, and R of the form

0> H’(B) » H’(A4) ® H'(R) — Hom g ger(M, M) — -+ —

— H/(B) - H(A) ® H(R) > Extl;, _gor(M, M) 4 Hi*Y(B) - .
(6)

Proof. The result is an immediate consequence of the sequence (5) and
Proposition 2.4. |

In particular when M is a projective A ® R°’-module we obtain the
following nice consequence of Proposition 2.5.

COROLLARY 2.6 [Cl. Let B be the triangular matrix algebra ( § ).

Suppose that M is a projective A ®, R°P-module. Then H'(B) = H'(A) &
H/(R) foralli > 2.

We observe here that Proposition 2.5 follows from the work of Cibils
[C]. However, his approach is quite different.
The main point of our proof is to consider the cohomology long exact

j
sequence associated to the sequence 0 > M - B - A & R — (. The rest
of the proof relies on certain Cartan—Eilenberg identifications, the fact
that A4°, R° and B ® R°” are convex subcategories of the enveloping

algebra of B = (3 %), and on the construction of some projective resolu-

tions of B over B*, given in Lemma 2.2 and Example 2.3. This approach
applies to finite dimensional (basic) algebras and the projective resolutions
constructed turn out to be useful also in calculations, as we show in the
next section.

In a more general context, Cibils considers in [C] the tensor algebra T
corresponding to a ring A and an A-bimodule M, and he studies the
Hochschild homology and cohomology of factors T/I of T by positive
ideals I. In the particular case when the quiver of M is an arrow the
corresponding tensor algebra 7 is a triangular matrix algebra and he
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obtains a long exact sequence similar to the one given in Proposition 2.5.
However, his result is more general so that it involves the Hochschild
cohomology groups of T" with coefficients in an arbitrary bimodule X, and
he also describes the connecting homomorphism in terms of a cup product
associated to the arrow of the quiver of M. The main tool used by Cibils is
a projective resolution of 7" obtained through a certain separable sub-alge-
bra of T.

We end this section by showing the existence of another long exact
sequence connecting the groups Exty, go(R, P,), of the main result of
Section 1, and the groups Extlo g.(M, M), which occur in Proposition
2.5, with the Hochschild cohomology groups of R.

Applying the functor Homg, (R, ) to the B ® R°P-exact sequence

0->M->P,->R—-0
we obtain a long exact sequence of K-vector spaces of the form
0 = Homgg, gor(R, P,) = Homgg gor(R, R) — EX%@KR”P(R’ M) —
- Extpe, ger(R, P,) = Extyg gor(R,R) = . (7)

Then, arguments similar to those used throughout the section prove the
following result.

THEOREM 2.7.  Let B be the triangular matrix algebra ( § %). Then there
exists a long exact sequence of K-vector spaces of the form

0 - Ann(Mg) N Z(R) - H°(R) — Extlyg ge(M, M) —
- Exthe po(R,P,) » H(R) > - = Extly go(M, M) -

- EXt§9®KR0P(R’Pe) - Hi(R) - .

3. EXAMPLES

In this section we develop some examples illustrating how to use the
results of Sections 1 and 2.

We start by recalling that the Hochschild cohomology groups of the
polynomial ring R = K[x]/{x") are known [W, p. 304].

Remark 3.1. Let R = K[x]/{x"). Then

L iti=0
(B) =1\R/x1y  ifi>o.
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Our first example is the following.
B
3.2. Let Q be the quiver H1—2¢ and B be the K-algebra KQ/
@ ¥
(a?,y2, Ba — yB). Then

End P70
TP2P1 A

K[x]/<{x*) 0
™, Py K[x]/{x*) |

It is not difficult to see that H(B) = H(A) = K?. We will prove that
H(B) = H'(A) = H(K[x]/{x*)) = K, for all i > 0.

Since Ann(My) = 0 we have, using Theorem 1.14, the following long
exact sequence of K-vector spaces:

0~ H'(B) - H'(A) - Exthy p(R, P,) > H'(B) - H'(A) -
> o Exthy, gn(R, P) — H(B) > H(A) -

- Extjg+®1KR(),,(R, P) > -

We will prove that for all j > 1, Ext}e ge(R, P;) = 0 by constructing a
B ® R°P-injective resolution of P,.

We begin by showing that the map ¢: P, =B.e; > P, o, .(¢; ® a +
a® 1) givenby ¢p(b.e) =(b®1).(¢, ®a+a®1)foral beB,isa
B ®; R°P-isomorphism.

It is easy to verify that ¢ is a B ® R°P-morphism. Now, since dim P,
=dimg P, ;(¢; ® @+ a ® 1) =4, it is enough to prove that ¢ is a
monomorphism. Let b = ke, + ke, + ko + kB8 + kyy + ksyB € B.
Then

¢(be)) =0=20=(b®1)(e;®a+a®l)=be, ® a +ba®1
=ko(e;® a) +hk(a®a) +k(BO )
+ks(Ba® a) +ky(a®l)+k(Ba®1).

Since {¢; ® a,a ® a, B® a,Ba® a,a ® 1, Ba ® 1} is linearly indepen-
dent, it follows that k, = k, = k; = ks = 0. Then b = ke, + k,y and so
b.e, = 0, which proves that ¢ is a monomorphism.

Now, for constructing the required injective resolution of P, over
B ® R°? we will use the fact that the indecomposable projective B ®, R°?
module P, ; coincides with the indecomposable injective /, ;. Although
it is not necessary in the proof, it is useful to keep in mind the structures
of the indecomposable projective B-module P; and the indecomposable
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Ser:
S0
S Se1®}<5el®s>(5ez®1
S S 1
~ 8,7 Ses@1 Seswi Se£®1
~ | 7
Se;@%

projective B ® R°’-module P, ; which we indicate in the picture

To prove that P, o, =1, o it is enough to show that Soc(P, 41) = S, &
and top(/,,51) = S, o1-

Let & be the path (B8 ® 1)« ® 1)e; ® a) of KQp, g and let & be
the corresponding path in B ®, R°”. Since & is the unique nonzero path
of maximal length starting in the vertex e, ® 1, it follows that soc(P, ) is
simple and generated by 6.

On the other hand, the path §:(e; ® 1) — (e, ® 1) induces by right
multiplication a nonzero B ®, R°-morphism (. §): P, o1 = P, g1 It fol-
lows from the maximality of the length of & that (. §)Xrad P, ,,)) = 0, and
so there exists a monomorphism S, o, = P, ¢,. Hence, Sez®1_= soc(P, g1)-

Similarly, we can prove that

soc(PO(DSezm)) = DS, o1

where Py(DS, ,,) denotes the projective cover of the simple (B &
R°P)°P-module DS, g

Then we have that S, o, = D soc(Py(DS, ) = top(DPy(DS, ) =
top I, o, which completes the proof of P, o1 = 1,5

Now, it is not difficult to check that the following sequence is a
B ® R‘P-injective resolution of P,

¢ dyo d, d;
0P =P g 2P o = 2P o=,
where d,, =¢,® a —a®land d,, ., =¢;, ® a+ a® 1forall k >0.
Since S, ¢ = top((gggery R) and S, o, is not a composition factor of
the socle of P,y;, we have that Hom gz (R, P, ) =0 and so

e

Exth o ror(R, P;) = 0 for all i > 1.

33. Let B=( 5 %) with R=K[x]/{x') and suppose that ,M is
projective.

In order to compute the groups H(B) using Proposition 2.5, we need to
know the groups Extq re(M, M) and the kernel of the morphisms A,.
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We indicate a way to compute easily the groups Extyq re(M, M) using
the projectivity of M as a left 4-module.

It is known that the following is a R°-projective resolution of R (cf.
[W, 9.1.4]),

4, d dy m
- 5R® R”—> - >R& R? >R R?5R-0,

where m(r' ® r°) =r'.r, for all ¥ ® r°* € R ® R°" and the morphisms
d,;, d,; ., are given by right multiplication by the elements (1 ® x —x ® 1)

and i (x" %71 ® x*), respectively, for all j > 0. Then we have that

di o dl o dO o m
- >M® R?— -+ >M® RP->Me® RP?P—>M-—0

is a projective resolution of M over B ®, R°?, by Lemma 2.2. Here the
morphism m is also the multiplication (m' ® r°) — m'r, and for all j > 0
the morphisms d,; and d,;,, are given by right multiplication by the
elements (1 ® x —x ® 1) and i} (x" ¥~ ! ® x*), respectively, as above.

Since 4, M is projective, it is easy to compute ExtimK roo(M, M) using this
resolution.

We illustrate this considering the case ;,M = A =B.(1 —¢) and M.x
= 0, which will be needed in the next example.

In this particular case, applying the functor Homyg go( , M) to the
latter long exact sequence and identifying Homp, zo(M ® R°P, M) with
M we obtain that the morphisms Homg gor(d;, M) are given by right
multiplication by x and so, Ext}q ger(M, M) = M for all i > 1.

We can apply the same idea to the general case when ,M is projective.
As we mentioned at the beginning, to finish the calculation of the groups
H'(B) using Proposition 2.5, we should know the kernel of the map
A; 1 Extlyy go(M, M) —» H"*'(B). Through our identification of
Ext!;q go(M, M) with Exti! zo(B, M) the kernel of A, coincides with
the kernel of the morphism Extj' (B, j) of the sequence (*) given at
the beginning of Section 2.

3.4. Let Q be the quiver ?1 £, 2%) and let B = KQ/{a?, v, Ba).

We will prove that H°(B) = K?, H'(B) = K*, H**(B) = K, and
H**Y(B) = K3 for all k > 1.

The algebra B is isomorphic to the triangular matrix algebra (£ 9)
where R = K[al/{a?), A=K[y]l/{y?), and M = 7p.,Be, = KB @
KvyB. Then Ann M, = K. a and 4M = Be,. So, according to Example 3.3,
we know that Ext'; go(M, M) = M = K? for all i > 1.

On the other hand, both 4 and R are isomorphic to K[x]/< x2), so as
we observed in Remark 3.1, H(A) = H°(R) = K? and H'(A4) = H(R)
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= K. Thus the exact sequence of Proposition 2.6 yields an exact sequence
of the form

13 8
0> HB) »K*—>K2>H!(B) > K2—> K*->HB) » . (%)

So, to compute H( B) we need to know the kernel of §,. As we observed in
Subsection 3.3, this amounts to knowing Ker Ext%.(B, j): Exty(B, M) —
Ext%.(B, B) where j: M — B denotes the inclusion map.

With this purpose in mind we construct a projective resolution & =
(C;,d,) of B over B ®, B°’.

We know by [H, 1.5] that the multiplicity of P, ;. as a summand of C;

e

is dim Extj(S;, S,). From this fact we get that C, = P, g ® P, 5,5 and
Ci=P, o2 ®P, 55 ® P, ¢, We consider next the chain complex
d; d m
= Cyy 2C > C1—>C0—>B—>O
where m is the multiplication map,
[a®e —¢e,®a B 0
dO = o o o
0 —e,®pB° y®e, —e,®y
and
[a®es +(~1)" e, ®a° B®e 0
d; = 0 (-1)"e, ® @ 0
0 0 [yoe+(-1)""e, 7]
for all i > 0.

A straightforward computation shows us that dimy Im d; = 10 for all
i = 0. Since dimy C; = 20 for all i > 0, dimy C, = 16, and dimy B = 6 it
follows that & = (C;,d;) is exact and so, it gives a minimal projective
resolution of B over B°.
We consider now the cochain complex Hom z.(%, B). Since
HomBe(P o B) = ¢,;Be; and e,Be, =M

e;®ej

this complex is

(dy, B)
0 — e, Be, ® e,Be, 5 s e,Be, ® M & e, Be,

(d;, B)
—— e, Be, ® M ® e,Be, > -,
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where
a®el —e ®a’ 0
(dy,B) = B ® e} —e, ® B’
0 y®e —e, ®y°
and
(d:, B)
[a@e; + (~1)"e, ® o 0 0
- Bee (- e, ® @ 0
0 0 [y@e‘%-ﬁ-(—l)i“ez@y"]
foralli > 1,
and
[a®e +(-D)e,@a®] 0 0
(d;,B) = B® e e, ® a’ 0
0 0 [y®e3+(—1)’e2®y°]
foralli > 1.

On the other hand, Ext4.(B, M) is given by the homology of the
complex

( (
Homy (%, M):0 > M — - > M->M— - >M -

So we have to see which elements of M are boundaries in Hom (%, B).
Let B, = Im(d,, B). Since (d,, B)e,) = B, (d,, B)y) = yB we have
that M N B, = M. It is not difficult to see that M N B, = KB = K for all
oddi > 1,and M N B, = 0if i is even. Thus, Ker Hom (B, j) = M = K?,
Ker §; = Ker Exty.(B, j) is isomorphic to K?* if i = 1, to K for all odd
i>1and0if i > 1is even.
Therefore the long exact sequence () yields short exact sequences

0->HB) >K'>K*—>0

0->K*->H'(B)>K*->0

0->H*(B) >K*>K~-0

0> K- H*'(B)>K*>0
for all k > 1.
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Hence, H(B) = K?, H(B) = K*, H**(B) = K, and H**(B) = K3
for all k > 1.

3.5. We recall that a triangular matrix algebra B = (5 %) is said to be

a local extension of A4 by the A-R-bimodule M if R is a local algebra.

On the other hand, an algebra A is called an IIP-algebra if all the
idempotent ideals of A are projective left A-modules.

The results obtained in Section 1 are useful to study the Hochschild
cohomology of IIP-algebras, since they can be obtained from a local
algebra by successive local extensions by appropriate bimodules. And,
moreover, these bimodules are projective left modules [CMaMP].

The algebras given in Subsections 3.2 and 3.4 are, in fact, [IP-algebras.
Another example of an IIP-algebra is an algebra B = KQ /I where Q is a
quiver with loops, without other oriented cycles, and I is generated by
relations involving only the loops of Q.

Let B = KQ/I be such an IIP-algebra and assume that B = ( 5 %).

Then M is a projective A ® R°P-module. In fact, let B,,..., B8, be all the
arrows starting in the new vertex e of Q and P = LI} Pz, = LI;_; 4.
e( B;). We shall prove briefly that M = P & R as A-R-bimodules.

Each arrow B; induces an A-morphism m;: P, ) — M by right multi-
plication. Let m = [m,...m,]: P = M. Clearly, m is an A-morphism. We
define now f: P & R — M by f(p ® r) = m(p)r.

Then f is an A-R-epimorphism by definition. Since the relations in B
involve only loops it follows that f is also a monomorphism.

As we said before, B can be obtained from a local ring R, by successive
local extensions 4, , = (Rjgll fj’), i=0,....,.n—1, Ay =R,, and 4, = B.
Moreover, at each step we have that M, is a projective left A4; & R??,-
module.

We see now that the groups H/(B) can be computed in terms of the
groups H/(R,), H/(R)),...,H/(R,) for all j > 2, and for H'(B) we are
able to give its dimension over K.

Suppose M; = (A; ® R{?,).f, for some idempotent element f; of
A; & R{P,. Then it follows from Corollary 2.6 that

H/(A;,,) = H/(R,.,) ® H/(4,)

forall j >2andi=0,...,n — 1. Hence,
H/(B) = @ HI/(R))

i=0

for all j > 2.
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Concerning H'(B), for each i =0,...,n — 1 we have the exact se-

quence

0— HO(Ai+1) - HO(Ai) ® HO(Ri+1) - HomAi®KR?£1(Mi7Mi) -

- H'(A4;,,) > H'(4;) ® H(R,,,) - 0.

Since Hom, o gop (M;, M;) = f;M; for all i = 0,...,n — 1 we have that

n—1

dimy H'(B) = dimy Z(B) — i dimg Z(R,) + Y. dimg(f;M;)

(B]
[BLM]

[BN]

[L]

[C]

[C1]

[CE]
[CMaMP]
[dIPM]
[GM]
[GR]

(H]

[Ho]

(W]

i=0 i=0

+

L

dim, H'(R)).

it
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