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We apply the derivative expansion approach to the Casimir effect for a real scalar field in d spatial

dimensions to calculate the next-to-leading-order term in that expansion, namely, the first correction to the

proximity force approximation. The field satisfies either Dirichlet or Neumann boundary conditions on

two static mirrors, one of them flat and the other gently curved. We show that, for Dirichlet boundary

conditions, the next-to-leading-order term in the Casimir energy is of quadratic order in derivatives,

regardless of the number of dimensions. Therefore, it is local and determined by a single coefficient. We

show that the same holds true, if d � 2, for a field which satisfies Neumann conditions. When d ¼ 2, the

next-to-leading-order term becomes nonlocal in coordinate space, a manifestation of the existence of a

gapless excitation (which does exist also for d > 2, but produces subleading terms). We also consider a

derivative expansion approach including thermal fluctuations of the scalar field. We show that, for

Dirichlet mirrors, the next-to-leading-order term in the free energy is also local for any temperature T.

Besides, it interpolates between the proper limits: when T ! 0, it tends to the one we had calculated for

the Casimir energy in d dimensions, while for T ! 1, it corresponds to the one for a theory in d� 1

dimensions, because of the expected dimensional reduction at high temperatures. For Neumann mirrors in

d ¼ 3, we find a nonlocal next-to-leading-order term for any T > 0.
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I. INTRODUCTION

The determination of the Casimir force [1] for a quite
general situation, namely, when the geometry of the prob-
lem is characterized by two rather arbitrary surfaces, is
interesting and potentially useful. Those surfaces may
correspond, for example, to the boundaries of two mirrors.
Alternatively, the surfaces themselves may describe zero-
width (’’thin’’) mirrors, which will be the situation consid-
ered in this paper. Yet another possibility is that those
surfaces may be the interfaces between media with differ-
ent electromagnetic properties, occupying different spatial
regions. In situations like the ones above, it may be con-
venient to think of the Casimir energy as a functional of the
functions determining the surfaces. Of course, it is gener-
ally quite difficult to compute that functional for arbitrary
surfaces. Rather, exact results are only available for highly
symmetric configurations, the simplest of which being the
case of two flat, infinite, parallel plates. Taking advantage
of the simplicity of the result for this highly symmetric
configuration, the proximity force approximation (PFA)
[2,3] provides an accurate method to calculate the
Casimir energy when the surfaces are gently curved,
almost parallel, and close to each other. Introduced by
Derjaguin many years ago [2] to compute Van der Waals
forces, this approximation consists of replacing both sur-
faces by a set of parallel plates. The energy is then calcu-
lated as the sum of the Casimir energies due to each pair of
plates, each plate paired only with the nearest one in the
other mirror.

In a recent work [4], we have shown that the PFA can be
put into the context of a derivative expansion (DE) for the
Casimir energy, when the latter is regarded as a functional
of the functions which define the shapes of the mirrors.
Indeed, the leading-order term in this expansion, which
contains no derivatives, does reproduce the PFA, while the
higher-order ones account for the corrections. In that ar-
ticle, we considered, for the sake of simplicity, a massless
quantum scalar field satisfying Dirichlet boundary condi-
tions on two surfaces. One of them was assumed to be flat,
and such that if coordinates were chosen so that x3 ¼ 0,
the other surface could be described by a single function:
x3 ¼ c ðx1; x2Þ.
Since the form of the possible terms in the DE may be

determined by dimensional analysis plus symmetry con-
siderations, what is left is the calculation of their respective
coefficients. Note that those coefficients are ‘‘universal,’’
in the sense that they are independent of the shapes of the
mirrors (at least for smooth surfaces). Therefore, one can
fix those coefficients completely, from the knowledge
of their values for a particular surface or for a family of
surfaces. We used, to that effect, a particular family of
surfaces, namely, those obtained by an expansion up to the
second order in �, which is the (assumed small) departure
from flat parallel mirrors: c ¼ aþ �, � � a. The coef-
ficients determined from this family were then used to fix
the coefficients of the first two terms in the DE, which can
then be used to calculate the Casimir energy for more
general (but smooth) surfaces.
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This approach has been generalized by Bimonte et al.
[5,6] in many directions, for example, for the case of two
curved, perfectly conducting surfaces, for scalar fields
satisfying Dirichlet or Neumann boundary conditions,
and also for the electromagnetic case and imperfect bound-
ary conditions. As a validity check, it has been shown that,
whenever analytic results are available for particular
geometries, the corresponding DE does reproduce both
the PFA and its next-to-leading-order (NTLO) correction
[4,5]. The DE approach has also been applied successfully
to compute the electrostatic interaction between perfect
conductors [7].

In Ref. [8], we have extended our previous work [4] to
the case of the electromagnetic field coupled to two thin,
imperfect mirrors, described by means of the vacuum
polarization tensors localized on the mirrors. We have
also calculated the NTLO to the PFA static Casimir force.
For the particular case of mirrors described by a single
dimensionless quantity, we have computed the leading and
NTLO corrections as a function of that quantity. We found
that the absolute value of the NTLO correction falls down
rather quickly for imperfect mirrors [8].

In this article, we apply the DE approach, to models
where the fluctuating field is coupled to two perfect mirrors,
L and R, at zero or finite temperature, in dþ 1 spacetime
dimensions. Special consideration shall be given to the
limiting cases where the fluctuations are either thermal or
quantum mechanical, i.e, infinite or zero temperature.

The role of the fluctuating field is played by a massless
real scalar field ’, with either Dirichlet or Neumann
boundary conditions on both mirrors. This analysis is of
interest because of several reasons. On the one hand, as a
first step toward incorporating thermal effects into the DE
(a fuller treatment should also include finite conductivity
corrections along with finite temperature corrections [6]).
On the other hand, as we will see, this more general
analysis will lead us to a clearer physical picture of the
validity of the DE and will also shed some light about
possible extensions and improvements.

We will mostly consider the first two terms in the DE; in
order to fix their coefficients, we follow the procedure of
expanding the vacuum energy up to the second order in �
and then extracting the coefficients from the corresponding
momentum space kernel. Thus, in what may be considered
as a byproduct of our approach, we also present the general
result for that kernel, valid for any d, both for the Dirichlet
and Neumann cases.

This kernel for the quadratic term in � (regarded now as
a field) may be interpreted as a contribution to its 2-point
one-particle irreducible function, due to a one-loop ’
contribution, which fluctuates satisfying the proper bound-
ary conditions. The coefficients of the DE up to the NTLO
result from that kernel, from its expansion up to the second
order in k, the �-field momentum, as one would do in an
effective field theory approach [9].

When that expansion to order k2 does exist, the NTLO
terms are of second order in derivatives, and therefore
spatially local. However, as in any quantum correction to
a 2-point function, we know that nonanalytic contributions
may arise when the external momentum reaches the thresh-
old to excite modes of the field in the loop. In the present
case, since we expand around k ¼ 0, those nonanalyticities
may only originate in the existence of massless modes.
When present, they result in contributions which, being
nonlocal in space, are similar to the ones which appear in
the context of effective field theories, when including the
effect of massless virtual particles [9]. We shall see that
this kind of nonanalyticity does indeed appear, for
Neumann conditions, in the form of branch cuts. The
physical reason being that when both mirrors impose
Neumann conditions, there are transverse gapless modes
for the fluctuating field. However, except for d ¼ 2 and
zero temperature (T ¼ 0), or d ¼ 3 and T > 0, those
nonanalyticities are of higher order than the NTLO,
when k ! 0. In this, the only ‘‘pathological’’ case (d ¼ 2
and T ¼ 0 or d ¼ 3 and T > 0), the real time version of the
kernel has, if rotated to real time, a logarithmic branch cut
at zero momentum of the form k2 logðk2Þ, which over-
comes the k2 term (which is also present).
We also study the NTLO term as a function of tempera-

ture. In the particular case of d ¼ 3, we shall see that for
Dirichlet boundary conditions, it depends smoothly on the
temperature. For Neumann boundary conditions, as an
indirect consequence of the nonanalyticity at d ¼ 2 and
zero temperature, the Neumann NTLO term is also
nonanalytic at any nonzero temperature.
This paper is organized as follows. In the next section,

we introduce the system and summarize the approach we
follow to calculate the free energy ��. In Sec. III, we

discuss the DE for Dirichlet boundary conditions on thin,
perfect mirrors in dþ 1 dimensions, discussing the zero
and high (infinite) temperature limits. We apply those
results to evaluate the Casimir interaction energy between
a sphere and a plane at very high temperature. Section IV is
devoted to study the DE at zero and high temperatures
limits, for a real scalar field with Neumann boundary
conditions on the mirrors. The special cases of d ¼ 2
with T ¼ 0, and d ¼ 3 with T > 0, are singled out and
dealt with in subsection IVB. Higher-order terms in the DE
are analyzed in Sec. V. Finally, in Sec. VI, we summarize
our conclusions. The appendices contain some details of
the calculations.

II. THE SYSTEM

We shall adopt Euclidean conventions, whereby the
spacetime metric is the identity matrix, and spacetime
coordinates are denoted by x� ¼ x� (� ¼ 0; 1; . . . ; d), x0
being the imaginary time and xi, (i ¼ 1; . . . ; d) the spatial
Cartesian coordinates.
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Regarding the geometry of the system, we shall assume
that one of the surfaces, L, is a plane, while the other, R, is
such that it can be described by a single Monge patch:

LÞ xd ¼ 0 RÞ xd ¼ c ðx0; x1; . . . ; xd�1Þ: (1)

We have included for R in Eq. (1) a more general, time-
dependent boundary, in spite of the fact that we are inter-
ested in the static Casimir effect. We shall, indeed, at the
end of the calculations, impose the condition that the
boundaries are time-independent: c ¼ c ðx1; . . . ; xd�1Þ,
but it turns out to be convenient to keep the more general
kind of boundary condition at intermediate stages of the
calculation. In this way, the treatment becomes more sym-
metric, and one may take advantage of that to simplify the
calculation. Besides, although it is not our object in this
paper, one could rotate back some of the results thus
obtained for a nonstatic c to real time, in order to consider
a dynamical Casimir effect situation.

We follow a functional approach to calculate the free
energy ��ðc Þ, or its zero-temperature limit Evacðc Þ, the
vacuum energy. Both are functionals of c , which defines
the shape of the Rmirror (the plane mirror L is assumed to
be fixed at xd ¼ 0). �� is also a function of the inverse

temperature � � T�1 (we use units such that Boltzmann
constant kB ¼ 1).

In the functional approach, which we shall follow, both
objects are obtained by performing a functional integra-
tion; indeed:

��ðc Þ ¼ � 1

�
log

"
Z�ðc Þ
Zð0Þ

�

#
; (2)

where Z�ðc Þ is the partition function; it may be obtained

by integrating over field configurations which satisfy the
corresponding boundary conditions at L and R, and are
also periodic (with period �) in the imaginary time coor-

dinate x0 (Matsubara formalism).Zð0Þ
� denotes the partition

function in the absence of the mirrors; therefore, it corre-
sponds to a relativistic free Bose gas.

Evacðc Þ is then obtained by taking the limit

Evacðc Þ ¼ lim
�!1

��ðc Þ � �1ðc Þ: (3)

It is worth noting that in Eq. (2), c has to be time-
independent for ��ðc Þ to be a free energy. We do, how-

ever, calculate objects likeZ�ðc Þ for configurations which
may have a time dependence, keeping the same notation.

To avoid an unnecessary repetition of rather similar
expressions, we shall write most of the derivations within
the context of a finite temperature system, presenting
their zero-temperature counterparts at the end of the
calculations.

We shall consider a real scalar field, with either Dirichlet
or Neumann boundary conditions. In both cases, the gen-
eral setup has a similar structure, but there are also some

important differences. Mostly, they come from the
different infrared behavior of their respective Green’s func-
tions, and the impact that that behavior has on the DE.
Accordingly, we present them in two separate sections.

III. DIRICHLET BOUNDARY CONDITIONS

We start from the functional representation of Z�ðc Þ,

Z�ðc Þ ¼
Z

D’�Lð’Þ�Rð’Þe�S0ð’Þ; (4)

where �Að’Þ, A ¼ L, R, is a functional � function which
imposes Dirichlet boundary conditions on the respective
mirror, while S0 is the free Euclidean action for a massless
real scalar field in dþ 1 dimensions, at finite temperature:

S0 ¼ 1

2

Z �

0
dx0

Z
ddxð@’Þ2; (5)

with periodic conditions for ’ in the timelike coordinate,

namely, ’ðx0;xÞ ¼ ’ðx0 þ �;xÞ, for all x 2 RðdÞ.
To proceed, one should then exponentiate the

�-functionals by introducing two auxiliary fields, �L and
�R, functions of xk � ðx0; x1; . . . ; xd�1Þ � ðx0;xkÞ, also

satisfying periodic boundary conditions in the x0 coordi-
nate. In the Dirichlet case, we have

�Lð’Þ ¼
Z

D�Le
i
R

ddxk�LðxkÞ’ðxk;0Þ

�Rð’Þ ¼
Z

D�Re
i
R

ddxk
ffiffiffiffiffiffiffiffi
gðxkÞ

p
�RðxkÞ’ðxk;c ðxkÞÞ;

(6)

where g is the determinant of g��, the induced metric on R:

g��ðxkÞ ¼ ��� þ @�c ðxkÞ@�c ðxkÞ;
) gðxkÞ ¼ 1þ ð@c ðxkÞÞ2: (7)

We have adopted the convention that indices from the
beginning of the Greek alphabet run from 0 to d� 1.
Using the exponential representations above in Eq. (4),

one derives the alternative expression,

Z�ðc Þ ¼
Z

D’D�LD�Re
�S0ð’Þþi

R
ddþ1xJDðxÞ’ðxÞ; (9)

where the ‘‘Dirichlet current’’ JDðxÞ is given by

JDðxÞ ¼ �LðxkÞ�ðx3Þ þ �RðxkÞ
ffiffiffiffiffiffiffiffiffiffiffi
gðxkÞ

q
�ðx3 � c ðxkÞÞ: (10)

It is possible to get rid of the
ffiffiffiffiffiffiffiffiffiffiffi
gðxkÞ

q
factor above just by

redefining �R: �RðxkÞ ! �RðxkÞ=
ffiffiffiffiffiffiffiffiffiffiffi
gðxkÞ

q
. This redefinition

induces a nontrivial Jacobian. However, this Jacobian is
independent of the distance between the mirrors, therefore
irrelevant to the calculation of their relative Casimir force;
hence, we discard it.

DERIVATIVE EXPANSION FOR THE CASIMIR EFFECT . . . PHYSICAL REVIEW D 86, 045021 (2012)

045021-3



The integral over ’, a Gaussian, yields

Z�ðc Þ ¼ Zð0Þ
�

Z
D�LD�Re

�ð1=2Þ
R

xk ;x0k
�AðxkÞTABðxk;x0kÞ�Bðx0kÞ

;

(11)

where we have introduced the objects

TLLðxk; x0kÞ ¼ hxk; 0jð�@2Þ�1jx0k; 0i (12)

TLRðxk; x0kÞ ¼ hxk; 0jð�@2Þ�1jx0k; c ðx0kÞi (13)

TRLðxk; x0kÞ ¼ hxk; c ðxkÞjð�@2Þ�1jx0k; 0i (14)

TRRðxk; x0kÞ ¼ hxk; c ðxkÞjð�@2Þ�1jx0k; c ðx0kÞi (15)

where we use a ‘‘bracket’’ notation to denote matrix ele-
ments of operators, and

hxjð�@2Þ�1jyi ¼ X1
n¼�1

Z ddk

ð2�Þd
eið!nðx0�y0Þþk�ðx�yÞÞ

ð!2
n þ k2Þ

� �ðx� yÞ; (16)

where we have introduced the Matsubara frequencies:
!n � 2�n

� , n 2 Z. The free energy ��ðc Þ is then

��ðc Þ ¼ 1

2�
Tr logT; (17)

where c is regarded as time-independent, something that
one can impose at the end of the calculation.

�� still contains ‘‘self-energy’’ contributions, i.e., con-

tributions invariant under the rigid displacement c ðxkÞ !
c ðxkÞ þ �. Since we are just interested in the Casimir

force, we shall neglect them altogether whenever they
emerge in the calculations below.

A. Derivative expansion

The DE is implemented by following the same idea and
approach introduced in Ref. [4]. The calculation is, in
many aspects, identical to the one in Ref. [4], with the
only differences in the number of dimensions and in the
fact that the time coordinate is compact (periodic), so
frequency integrations have to be replaced by sum over
Matsubara frequencies. Therefore, we do not repeat all the
steps presented there; rather, we limit ourselves to convey
the relevant results.

First, we note that in the DE approach applied to this
case, keeping up to two derivatives, the Casimir free en-
ergy can be written as follows:

��ðc Þ ¼
Z

dd�1xk
�
b0

�
c

�

�
1

½c ðxkÞ�d
þ b2

�
c

�

� ð@c Þ2
½c ðxkÞ�d

�

(18)

where the two dimensionless functions b0 and b2 can be
obtained from the knowledge of the Casimir free energy
for small departures around the c ðxkÞ ¼ a ¼ constant

case. Indeed, setting

c ðxkÞ ¼ aþ �ðxkÞ; (19)

one expands �� in Eq. (17) in powers of�, up to the second

order. Thus,

��ða;�Þ ¼ �ð0Þ
� ðaÞ þ �ð1Þ

� ða; �Þ þ �ð2Þ
� ða;�Þ þ . . . (20)

where the index denotes the order in �.

For the expansion above, �ð0Þ
� is proportional to the area

of the mirrors, Ld�1. In terms of the Matsubara frequen-
cies, !n � 2�n

� , n 2 Z, the explicit form of the zero-order

term per unit area is as follows:

�ð0Þ
� ðaÞ
Ld�1

¼ 1

2�

Xþ1

n¼�1

Z dd�1pk
ð2�Þd�1

log
h
1� e

�2a
ffiffiffiffiffiffiffiffiffiffiffi
!2

nþp2
k

p i

¼ 1

ad
b0

�
a

�

�
; (21)

where

b0ð	Þ ¼ 	

2

Xþ1

n¼�1

Z dd�1pk
ð2�Þd�1

log½1� e
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�n	Þ2þp2

k
p

�

¼ 	
�ð1�dÞ=2

2d�1�ðd�1
2 Þ

Xþ1

n¼�1

Z 1

0
d

d�2

� log½1� e�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�n	Þ2þ
2

p
� (22)

is the dimensionless function which appears in the DE for
the zero-order term (	 ¼ a=�).

Regarding �ð2Þ
� , which is necessary in order to find b2,

the result can be presented in a more compact form in terms
of its Fourier space version. Defining the spatial Fourier
transform of � by

�ðxkÞ ¼
Z dd�1kk

ð2�Þd�1
eikk�xk ~�ðkkÞ; (23)

we have

�ð2Þ
� ¼ 1

2

Z dd�1kk
ð2�Þd�1

fð2Þð0;kkÞj~�ðkkÞj2 (24)

where
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fð2Þð!n;kkÞ ¼ � 2

�

Xþ1

m¼�1

Z dd�1pk
ð2�Þd�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

m þ p2
k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!m þ!nÞ2 þ ðpk þ kkÞ2

q

� 1

1� expð�2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

m þ p2
k

q
Þ

1

exp½2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!m þ!nÞ2 þ ðpk þ kkÞ2

q
� � 1

� a�ðdþ2ÞFð2Þ
�
a

�
; n; ajkkj

�
(25)

with

Fð2Þð	;n; jlkjÞ ¼ �2	
Xþ1

m¼�1

Z dd�1pk
ð2�Þd�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�m	Þ2 þ p2

k
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�ðmþ nÞ	Þ2 þ ðpk þ lkÞ2
q

� 1

1� exp½�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�m	Þ2 þ p2

k
q

�
1

expf2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2�ðmþ nÞ	�2 þ ðpk þ lkÞ2

q
g � 1

�
; (26)

which is also a dimensionless function with dimensionless
arguments. We have made explicit the fact that the result
will only depend on the modulus of lk, as any dependence
on its direction may be gotten rid off by a redefinition of the
integration variables.

The coefficient b2 can be immediately defined in terms

of Fð2Þ. Indeed,

b2ð	Þ ¼ 1

2

�
@Fð2Þð	; n; jlkjÞ

@jlkj2
�
n!0;jlkj!0

: (27)

In the following subsection, we consider the low and
high temperature limits of the two coefficients b0 and b2,
since they determine the form of the DE in the correspond-
ing limits. We note that the relevant scale to compare the
temperature with is the inverse of the distance between the
mirrors. Thus, in terms of the variable 	, the relevant cases
are 	 ! 0 (zero-temperature limit) and 	 ! 1 (infinite-
temperature limit). We discuss them below.

1. The zero and high temperature limits

The zero-temperature limit corresponds to 	 ! 0, and it
can be implemented by replacing a sum over discrete
indices by an integral over a continuous index. Defining
k0 ¼ 2�n	, we get an integral over k0, the Jacobian being
1=ð2�	Þ. The results for the two coefficients, in d dimen-
sions (we introduce the number of dimensions as an
explicit parameter), are

½b0ðd; 	Þ�	�1 � 1

2

Z ddpk
ð2�Þd log½1� e�2jpkj� � b0ðdÞ;

(28)

and

½b2ðd; 	Þ�	�1 ¼ 1

2

�
@Fð2Þ

0 ðd; jlkjÞ
@jlkj2

�
lk!0

� b2ðdÞ; (29)

where

Fð2Þ
0 ðd; jlkjÞ ¼ �2

Z ddpk
ð2�Þd jpkjjpk þ lkj 1

1� e�2jpkj

� 1

e2jpkþlkj � 1
: (30)

It is possible to give a more explicit expression for b2ðdÞ,
since this coefficient may be obtained by taking derivatives
inside of the integrand of Eq. (30). Also, the b0ðdÞ coeffi-
cient can be exactly evaluated as a function of d. We
present, in the following table, the ratio between the two
coefficients as a function of d, for 1 � d � 6.
It is interesting to remark that the relative weight of the

NTLO correction grows with the number of dimensions.
Indeed, the general results for b0ðdÞ and b2ðdÞ in an
arbitrary number of dimensions are

b0ðdÞ ¼ ��ððdþ 1Þ=2Þ�ðdþ 1Þ
ð4�Þðdþ1Þ=2 (31)

and

b2ðdÞ ¼ � 1

12�2

�d=2

2d

�ðd� 3Þðd� 1Þ
d

�

�
2� d

2

�
�ð2� dÞ

þ �3=2�dðdþ 1Þ�
�
dþ 1

2

�
�ðdþ 1Þ

�
: (32)

These expressions are consistent with those derived in
Ref. [10], using a different method and in the context of
the dynamical Casimir effect. Figure 1 shows that the ratio
b2ðdÞ=b0ðdÞ is an increasing function of d, tending to 1 as
d ! 1.
Let us now consider the very high (infinite) temperature

limit. When 	 	 1, we see that only the n ¼ 0 term in the
sum representing b0 yields a nonvanishing contribution,

b0ðd; 	Þ � 	

2

Z dd�1pk
ð2�Þd�1

logð1� e�2jpkjÞ; (33)

or, introducing explicitly the dependence on the number of
space dimensions, d,
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½b0ð	; dÞ�		1 � 	½b0ð	; d� 1Þ�	!0 ¼ b0ðd� 1Þ; (34)

a reflection of the well-known dimensional reduction phe-
nomenon at high temperatures, for bosonic degrees of
freedom.

For the b2 coefficient, a similar analysis shows that only
m ¼ 0 has to be kept, and

½b2ð	; dÞ�		1 � 	½b2ð	; d� 1Þ�	!0 ¼ b2ðd� 1Þ: (35)

Putting together Eqs. (34) and (35), we finally get for the
DE up to the second order in the high-temperature limit:

½��ðc ; dÞ�c =�	1 � 1

�

Z
dd�1xk

�
b0ðd� 1Þ 1

½c ðxkÞ�d�1

þ b2ðd� 1Þ ð@c Þ2
½c ðxkÞ�d�1

�
: (36)

In particular, the free energy reads, for d ¼ 3,

½��ðc ; 3Þ�c =�	1 �� �ð3Þ
16��

Z
d2xk

1

½c ðxkÞ�2
� f1þ 0:569ð@c Þ2g: (37)

As an example, let us now apply the results above to the
evaluation of the Casimir interaction between a sphere and
a plane at very high temperatures. The sphere has radius R,
and is in front of a plane at a minimum distance a (a � R).
Although the surface of the sphere cannot be covered by a
single function z ¼ c ðxkÞ, as in previous works, we will

nevertheless consider just the region of the sphere which is
closer to the plane [4]. We shall see that this procedure still
produces results which are quantitatively adequate within
the present approximation and assumptions, even beyond
the lowest order.

The function c is

c ð
Þ ¼ aþ R

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

R2

s �
; (38)

where we are using polar coordinates (
,�) for the x3 ¼ 0
plane. This function describes the hemisphere when
0 � 
 � R. The DE will be well-defined if we restrict
the integrations to the region 0 � 
 � 
M < R. We will
assume that 
M=R ¼ Oð1Þ< 1. Inserting this expression
for c into Eq. (37) and performing explicitly the integra-
tions, we obtain

½��ðc ; 3Þ�c =�	1 �� �ð3ÞR
8�a

�
1þ 0:569

a

R
log

�
a

R

��
:

(39)

Note that, as long as a � R, the force will not depend on

M. As expected on dimensional grounds, the R=a2 behav-
ior of the leading contribution in the zero-temperature case
changes to R=a� at very high temperatures. The NTLO
correction is analytic when written in terms of derivatives
of the function c , but nonanalytic in a

R . This behavior

has been already noted in numerical estimations of the
Casimir interaction between a sphere and a plane in the
infinite-temperature limit, for the electromagnetic case in
Ref. [11].
It is interesting to remark that the expression for the free

energy at high temperatures in d ¼ 3 is quite similar to that
corresponding to the electrostatic force Fz between two
surfaces held at a constant potential difference V [7]

Fz ’ � �0V
2

2

Z
d2xk

1

c 2

�
1þ 1

3
ð@c Þ2

�
: (40)

Therefore, when considering an arbitrary surface over a
plane, the high-temperature limit of the free energy will
have the same behavior than the electrostatic force. For
instance, from the results of Ref. [7], for a cylinder of
radius R and length L at a distance a of a plane, we expect
the leading term of the free energy to be proportional to
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FIG. 1. The function b2=b0 tends to 1 for large values of d.
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FIG. 2. Ratio between coefficient b2ð	Þ given by Eq. (27) and
the coefficient b0ð	Þ of Eq. (22), as a function of the dimen-
sionless temperature 	 for d ¼ 3. The plot interpolates between
the value b2=b0 ¼ 0:67 for zero temperature and 0.57 at high
temperatures.
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L
�

ffiffiffiffi
R
a3

q
while its NTLO correction must be a coefficient

times L
�

ffiffiffiffiffi
1
aR

q
.

Going back to the general case, at intermediate tempera-
tures, the coefficients b2ð	Þ given by Eq. (27) and b0ð	Þ of
Eq. (22) should interpolate between their zero- and high-
temperatures values. This is shown in Figs. 2 and 3, where
we plot the ratio b2=b0 as a function of the dimensionless
temperature 	 for d ¼ 3 and d ¼ 4, respectively. The plot
for d ¼ 3 interpolates between the value b2=b0 ¼ 0:67 for
zero temperature and 0.57 at high temperatures. On the
other hand, for d ¼ 4, b2=b0 interpolates between 0.74 for
zero temperature and 0.67 at high temperatures. These
limits are in agreement with the results in Table I. The
ratio b2=b0 gives a quantitative measure of the relevance of
the NTLO correction to the PFA. Note that, both for d ¼ 3
and d ¼ 4, it converges quickly to the infinite temperature
value.

Finally, it is worth stressing that, as the coefficients b0
and b2 are functions of 	 ¼ Tc , the evaluation of these
functions is crucial in order to compute the Casimir free
energy using the DE in any concrete example, at a fixed

temperature. The previous plots describe the dependence
of their ratio with distance, at a fixed temperature. In Fig. 4,
we plot b0ð	Þ in 3þ 1 dimensions. We can see that, at
low temperatures, the curve is very flat. Indeed, it is
well-known that the low-temperature corrections to the
free energy for parallel plates are proportional to 	3 for
	 � 1, and this behavior is well-reproduced in the numeri-
cal evaluation. Moreover, the function b0ð	Þ acquires very
quickly the linear behavior expected at very high tempera-
tures. For the sake of completeness, in Fig. 5, we plot the
function b2ð	Þ, which has similar characteristics.
These results may be useful to understand the nontrivial

interplay between geometry and temperature for open
geometries, like the sphere-plate and the cylinder-plate
configurations, described in Ref. [12]. Indeed, it was
pointed out there that local approximation techniques
such as the PFA are generically inapplicable at low tem-
peratures. From our results, we see that both functions b0
and b2 approach their high-temperature behavior for rela-
tively low values of 	. Therefore, it would not be valid to
insert the low-	 expansions of these functions into Eq. (18)
and then apply the result to open geometries for which the
condition 	 � 1 is not satisfied.

IV. NEUMANN BOUNDARY CONDITIONS

Again, we start from the functional representation of
Z�ðc Þ given in Eq. (4), but now we use the functional �

functions which impose Neumann (rather than Dirichlet)
boundary conditions on the two mirrors. We assume the
mirrors to be characterized by the same surfaces we used in
the Dirichlet case.
The boundary conditions may be written as follows:

LÞ ½@d’ðxk; xdÞ�xd¼0 ¼ 0

RÞ ½@n’ðxk; xdÞ�xd¼c ðxkÞ ¼ 0;
(41)

TABLE I. Values of the ratios b2ðdÞ
b0ðdÞ for the lowest dimensions.

b2ðdÞ
b0ðdÞ �

d ¼ 1 1
�2 ð1þ �2

3 Þ 0.435

d ¼ 2 1þ6�ð3Þ
12�ð3Þ 0.569

d ¼ 3 2=3 0.667

d ¼ 4 ��ð3Þþ10�ð5Þ
12�ð5Þ 0.737

d ¼ 5 10�2�21
10�2 0.787

d ¼ 6 �2�ð5Þþ7�ð7Þ
6�ð7Þ 0.824
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FIG. 3. Ratio between coefficient b2ð	Þ given by Eq. (27) and
the coefficient b0ð	Þ of Eq. (22), as a function of the dimen-
sionless temperature 	 for d ¼ 4. The plot interpolates between
the value b2=b0 ¼ 0:74 for zero temperature and 0.67 at high
temperatures.
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FIG. 4. The function b0ð	Þ in 3þ 1 dimensions.
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where @n ¼ n�@�, with n� the unit normal to the surface

xd � c ðxkÞ ¼ 0,

n�ðxkÞ ¼ N�ðxkÞ
jNðxkÞj N�ðxkÞ ¼ �

�
d � �

�
�@�c ðxkÞ; (42)

and jNðxkÞj ¼
ffiffiffiffiffiffiffiffiffiffiffi
gðxkÞ

q
.

To exponentiate the �-functionals, we again introduce
two auxiliary fields, �L and �R:

�Lð’Þ ¼
Z

D�Le
i
R

ddxk�LðxkÞ½@d’ðxk;xdÞ�xd¼0

�Rð’Þ ¼
Z

D�Re
i
R

ddxk
ffiffiffiffiffiffiffiffi
gðxkÞ

p
�RðxkÞ½@n’ðxk;xdÞ�xd¼c ðxkÞ

¼
Z

D�Re
i
R

ddxk�RðxkÞ½@N’ðxk;xdÞ�xd¼c ðxkÞ ; (43)

where we introduced the notation @N ¼ N�@�. Thus, using

those exponential representations, we derive

Z�ðc Þ ¼
Z

D’D�LD�Re
�S0ð’Þþi

R
ddþ1xJNðxÞ’ðxÞ; (44)

where, by analogy with the Dirichlet case, we introduce the
‘‘current’’ JNðxÞ:
JNðxÞ ¼ �LðxkÞ@d�ðxdÞ þ �RðxkÞ@N�ðxd � c ðxkÞÞ: (45)

Note that there is no need to get rid now of any metric-
dependent factor, as we did for the Dirichlet case.
The integral over ’ becomes then

Z �ðc Þ ¼ Zð0Þ
�

Z
D�LD�Re

�ð1=2Þ
R

xk ;x0k
�AðxkÞUABðxk;x0kÞ�Bðx0kÞ

;

(46)

where

U LLðxk; x0kÞ ¼ �
Z ddkk

ð2�Þd e
ikk�ðxk�x0kÞ jkkj

2
ULRðxk; x0kÞ ¼ �

Z ddkk
ð2�Þd e

ikk�ðxk�x0kÞe�jkkjc ðx0kÞ
jkkj þ ikk � @c ðx0kÞ

2

URLðxk; x0kÞ ¼ �
Z ddkk

ð2�Þd e
ikk�ðxk�x0kÞe�jkkjc ðxkÞ jkkj � ikk � @c ðxkÞ

2

URRðxk; x0kÞ ¼
Z ddkk

ð2�Þd e
ikk�ðxk�x0kÞe�jkkj½c ðxkÞ�c ðx0kÞ� 1

2

�
�jkkj � ikk � ½@c ðxkÞ þ @c ðx0kÞ� þ

1

jkkj ðkk � @c ðxkÞkk � @c ðx0kÞÞ
�
:

(47)

The free energy ��ðc Þ is then

��ðc Þ ¼ 1

2�
Tr logU; (48)

which, as in the Dirichlet case, does contain self-energy
contributions, to be discarded here by the same reason as
there. Again, � is assumed to be time independent.

A. Derivative expansion

Assuming that one could proceed as in the Dirichlet
case, keeping up to two derivatives, the derivative ex-
panded Casimir free energy could be written as follows:

��ðc Þ ¼
Z

dd�1xk
�
c0

�
c

�

�
1

½c ðxkÞ�d
þ c2

�
c

�

� ð@c Þ2
½c ðxkÞ�d

�

(49)

with two new dimensionless functions c0 and c2. Those
coefficients may be determined from the knowledge of the
Neumann Casimir free energy for small departures around
the c ðxkÞ ¼ a ¼ constant case, up to the second order in

the departure. Again, we focus on the cases of purely
quantum or purely thermal effects, except for the more
realistic case of d ¼ 3. As we will show in what follows,
the NTLO term is quadratic, except when d ¼ 2 at zero
temperature, or when d ¼ 3 and there is a nonzero (finite
or infinite) temperature.
We present the calculation of the terms contributing to

that expansion in Appendix A.
It is quite straightforward to see that the zero-order

term coincides with the one for the Dirichlet case, namely:
c0 ¼ b0.
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FIG. 5. The function b2ð	Þ in 3þ 1 dimensions.
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�ð2Þ
� has the following form:

�ð2Þ
� ¼ 1

2

Z dd�1kk
ð2�Þd�1

gð2Þð0;kkÞj~�ðkkÞj2 (50)

where

gð2Þð!n;kkÞ ¼ � 2

�

Xþ1

m¼�1

Z dd�1pk
ð2�Þd�1

� ½!mð!m þ!nÞ þ pk � ðpk þ kkÞ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

m þ p2
k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!m þ!nÞ2 þ ðpk þ kkÞ2

q

� 1

1� expð�2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

m þ p2
k

q
Þ

� 1

exp½2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!m þ!nÞ2 þ ðpk þ kkÞ2

q
� � 1

¼ a�ðdþ2ÞGð2Þ
�
a

�
; n; ajkkj

�
(51)

with

Gð2Þð	; n; jlkjÞ

¼ �2	
Xþ1

m¼�1

Z dd�1pk
ð2�Þd�1

� ½ð2�	Þ2mðmþ nÞ þ pk � ðpk þ lkÞ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�	Þ2m2 þ p2

k
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�	Þ2ðmþ nÞ2 þ ðpk þ lkÞ2
q

� 1

1� expð�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�	Þ2m2 þ p2

k
q

Þ

� 1

exp½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�	Þ2ðmþ nÞ2 þ ðpk þ lkÞ2

q
� � 1

: (52)

c2ð	Þ ¼ 1

2

�
@Gð2Þð	;n; jlkjÞ

@jlkj2
�
n!0;jlkj!0

: (53)

1. The zero-and high-temperature limits

As before, the zero-temperature limit can be imple-
mented by replacing a sum over discrete indices by an
integral over a continuous index. The result for the coeffi-
cient c2 in d dimensions is

½c2ðd; 	Þ�	�1 ¼
�
@Gð2Þ

0 ðjlkjÞ
@jlkj2

�
�lk!0 � c2ðdÞ; (54)

where

Gð2Þ
0 ðd; jlkjÞ ¼ �2

Z ddpk
ð2�Þd

½pk � ðpk þ lkÞ�2
jpkjjpk þ lkj

1

1� e�2jpkj

� 1

e2jpkþlkj � 1
: (55)

For d ¼ 1, the coefficient c2 coincides with its Dirichlet
counterpart b2. In higher dimensions, the structure of the
form factor is different. We present, in Table II, the ratio
between c2ðdÞ and c0ðdÞ � b0ðdÞ as a function of d, for
d � 2.
We see that the ratio c2ðdÞ=c0ðdÞ is nonmonotonous and

always negative for d � 1. We have also checked that
c2ðdÞ=c0ðdÞ ! �1 for large values of d.
In the particular case, d ¼ 2 is not possible to compute

the coefficient by introducing the derivative with respect to
jlkj2 inside the integral in Eq. (55) because of infrared

divergences. This is a signal of a branch cut at zero
momentum, as we will show in Sec. IVB.
The high-temperature limit can be obtained, as for the

Dirichlet case, taking the limit 	 	 1. ‘‘Dimensional re-
duction’’ takes place, and the free energy becomes

½��ðc ;dÞ�c =�	1� 1

�

Z
dd�1xk

�
b0ðd�1Þ

� 1

½c ðxkÞ�d�1
þc2ðd�1Þ ð@c Þ2

½c ðxkÞ�d�1

�
:

(56)

Regarding intermediate temperatures, Fig. 6 shows the
ratio between coefficients c2ð	Þ and c0ð	Þ, as a function of
the dimensionless temperature 	, for the Neumann bound-
ary condition in d ¼ 4 dimensions. The plot interpolates
between the value c2=c0 ¼ �1:00 and �1:36 at zero and
high temperatures, respectively, in agreement with the
results shown in Table II.

B. Non analytic terms: d ¼ 2 with T ¼ 0,
and d ¼ 3 with T > 0

Let us consider the particular case of d ¼ 2 at
zero temperature. As shown in Appendix A, for small

TABLE II. Values of the ratios c2ðdÞ
c0ðdÞ for the lowest dimensions.

Note that we have excluded the case d ¼ 2.

c2ðdÞ
c0ðdÞ �

d ¼ 1 1
3 � �ð0Þ

3�ð2Þ 0.435

d ¼ 3 2
3 � 4�ð2Þ

3�ð4Þ �1:360

d ¼ 4 5
6 � 19�ð3Þ

12�ð5Þ �1:002

d ¼ 5 1� 9�ð4Þ
5�ð6Þ �0:915

d ¼ 6 7
6 � 2�ð5Þ

�ð7Þ �0:890

d ¼ 7 4
3 � 46�ð6Þ

�ð8Þ �0:886
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departures of the plane-plane geometry c ðxkÞ ¼
aþ �ðxkÞ, the correction to the Casimir energy reads, up

to second order in �,

�ð2Þ1 ¼ 1

2

Z d2kk
ð2�Þ2 ½g

ð2ÞðkkÞ�k0!0j~�ðkkÞj2; (57)

with

gð2ÞðkkÞ ¼ �2
Z d2pk

ð2�Þ2
½pk � ðpk þ kkÞ�2
jpkjjpk þ kkj

1

1� e�2ajpkj

� 1

e2ajpkþkkj � 1
: (58)

Naively, one would expect the form factor gð2ÞðkkÞ to admit

an expansion in powers of k2k, which is the necessary

condition in Fourier space to produce a DE in configuration
space. However, this is not the case for d ¼ 2, as suggested
by the fact that the formal expression

@gð2Þ

@k2k
jkk!0 ¼ �2

Z d2pk
ð2�Þ2

1

jpkjð1� e�2ajpkjÞ
@

@k2k

�
�½pk � ðpk þ kkÞ�2

jpkjjpk þ kkj
1

e2ajpkþkkj � 1

�
kk!0

(59)

has an infrared logarithmic divergence at pk ¼ 0.

The behavior of gð2ÞðkkÞ for small values of kk can be

determined by studying the integral which defines it in
Eq. (58) in the region ajpkj � 1. In this region, and

assuming also that ajkkj � 1, one can make the approxi-

mation

1

e
2x � 1
� 
 1

2x
(60)

and compute the integrals analytically. In this way, it is
possible to show that

gð2ÞðkkÞ � gð2Þð0Þ � k2k
16�a2

logðk2ka2Þ þOðk2k=a2Þ: (61)

This behavior of gð2Þ, which we confirmed with a numeri-
cal evaluation of Eq. (58), shows that a local DE breaks
down for Neumann boundary conditions at d ¼ 2.
However, one can still perform an expansion for smooth
surfaces, including nonlocal contributions in the Casimir
energy. For instance, in the present case, the NTLO cor-
rection to the PFA will be nonlocal and proportional toZ

d2xk�ðxkÞr2
k logð�a2r2

kÞ�ðxkÞ: (62)

As we will describe more generally in the next section,
the breakdown of the local expansions is related to the
existence of massless modes in the theory. These modes
are generally allowed by Neumann but not for Dirichlet
boundary conditions, which impose a mass gap of
order 1=a.
The logarithmic behavior of the form factor in d ¼ 2

induces a similar nonanaliticity for d ¼ 3 at finite tem-
perature. Indeed, the m ¼ n ¼ 0 term in the finite-
temperature form factor given in Eq. (52) is formally

identical to the Neumann form factor gð2Þ in d ¼ 2.
Therefore, in an expansion for small values of jkkj, in
addition to a term proportional to k2k, there is a contribution
proportional to ðTaÞk2k logðk2ka2Þ at any nonvanishing tem-

perature, which is not cancelled by the rest of the sum over
Matsubara frequencies.

V. HIGHER-ORDER TERMS IN THE DE

In this section, we discuss some general aspects of the
derivative expansion, related with the calculation of higher
orders and the eventual breakdown of the expansion.
In this and previous works, we considered just the

NTLO correction to the PFA, which contains up to two
derivatives of the function c in the free energy. We expect
the next-to-NTLO (NNTLO) order corrections to contain
terms of the form

j@c j4; c j@c j2@2c ; c 2@2c @2c ;

c 2@�@�c @�@�c ; c 3@2@2c ;
(63)

and terms containing more derivatives for higher orders.
The main question to be answered is whether the free

energy can be expanded or not in local terms up to any
desired order. For this to hold true, a necessary condition is
that the expansion must hold true for a particular case:
when c ¼ aþ �, with � � 1, and one keeps just the
quadratic term in �.
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FIG. 6. Ratio between coefficient c2ð	Þ and the coefficient
c0ð	Þ, as a function of the dimensionless temperature 	, for
the Neumann boundary condition in d ¼ 4 dimensions. The plot
interpolates between the value c2=c0 ¼ �1:00 and�1:35 at zero
and high temperatures, respectively.
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For simplicity, we deal with the T ¼ 0 case in d ¼ 3
dimensions, an example that will illuminate several aspects
of the problem. From the previous sections, we see that the
quadratic contribution to the Casimir energy has the form

�ð2Þ1 ¼ 1

2a5

Z d2kk
ð2�Þ2 h

ð2Þð0; akkÞj~�ðkkÞj2; (64)

where the form factor hð2Þ depends on the boundary con-
ditions of the quantum field. In most of the paper, we
considered the case of static surfaces, but here it will be
useful to discuss the more general case in which the right
mirror can be in motion. In this situation, on general
grounds, we expect the form factor to be a function of

aðk20 þ k2
kÞ1=2 � ajkkj, and of course the explicit calcula-

tions confirm this fact. Within these approximations, the
Casimir energy will not admit an expansion in derivatives
if the form factor includes, for instance, odd powers or logs
of its argument. Note that at higher orders, and relaxing the
condition of a quadratic approximation in �, new non-
analytic terms may arise, which can be of the same order
in the DE as the ones which come from the term quadratic
in �.

In 3þ 1 dimensions, this question can be answered from
the explicit expressions of the form factors [13] presented
in Appendix B. For Dirichlet boundary conditions, the
expansion of the form factor contains, in addition to even
powers of the argument, a term proportional to a5jkkj5 [see
Eq. (B3)]. The nonanalytic term becomes a nonlocal con-
tribution in configuration space, which cannot be expanded
in derivatives of �. Note that this contribution does not
depend on the distance between mirrors. There is a simple
interpretation of this term: when considering a flat moving
boundary, photon creation produces an imaginary part in
the vacuum persistence amplitude when rotated from
Euclidean to Minkowski spacetime. Therefore, the expres-

sion for �ð2Þ1 cannot be analytic in k2k. For a single non-

relativistic mirror, this will lead to a dissipative force
proportional to the fifth time derivative of the position.
Indeed, the proper analytic continuation of the Euclidean
term proportional to jk0j5 to real time produces this dis-
sipative force. For the Dirichlet case, there are no non-
analyticities dependent on the distance between mirrors.
Physically, this is due to the fact that there is a frequency
threshold to produce real photons between mirrors, which
is of order 1=a. The conclusion is that, for Dirichlet
boundary conditions, the a-dependent part of the DE is
well-defined up to any order. On the other hand, the
a-independent part contains a nonanalytic contribution
related to the possibility of creating photons of arbitrary
low energies from the vacuum.

The situation changes for the case of Neumann boundary
condition. As shown in Eq. (B5), in addition to the non-
analytic term proportional to jkkj5a5, which as before

produces a contribution to �ð2Þ1 which is independent of

a, there is a term proportional to jkkj3a3. The physical

reason of the existence of this term is again clear using the
connection with the dynamic Casimir effect. Indeed, this
term comes from the possibility of creating TM photons
between mirrors, moving parallel to the mirrors, for which
there is no energy threshold. If the DE is used to compute
the force on a moving mirror, this a-dependent dissipative
contribution to the force will be missed, i.e. it is only
possible to get the dispersive part of the force. On the other
hand, for a static and nonflat mirror, this term produces a
nonlocal component of the force, which will be smaller
than the NTLO, but the dominant part of the NNTLO.
It is interesting to remark that both the nonanalytic

contributions proportional to jkkj5 for Dirichlet and

Neumann boundary conditions in 3þ 1 dimensions, and
the jkkj3 term for the Neumann case, could be derived from

the form factors described in the previous section by
analyzing the infrared behavior of the integrals in pk, as
we did in Sec. IVB. Moreover, it is clear that all of them
have the same physical origin: the existence of massless
degrees of freedom. For Neumann boundary conditions
at T ¼ 0, the nonanalyticities show up in the NTLO for
d ¼ 2, and in the NNTLO for d ¼ 3. For Dirichlet bound-
ary conditions, the nonanalytic term is independent of the
distance between mirrors, and therefore does not contribute
to the Casimir force.
The situation is analogous to that of effective field

theories which involve massless particles. In that case, in
addition to local terms in the effective action, there are
nonlocal (or nonanalytic contributions) which can be in-
terpreted as arising from the fact that there is no threshold
for creating such particles [9]. A prototypical example is
quantum field theory under the influence of external (clas-
sical) backgrounds. For massive quantum fields in curved
spaces [14], the effective action and the energy momentum
tensor of the quantum fields can be approximated by a DE
(usually known as the Schwinger-DeWitt expansion in that
context). Each subsequent term in the expansion contains
additional derivatives of the metric and inverse powers of
the mass of the quantum field. The expansion is valid as
long as the typical scale of variation of the classical back-
ground is much larger than the inverse mass. However, for
massless quantum fields, it is necessary to consider non-
local contributions. In our case, the role of the background
is played by the curved surface, and there are both massive
and massless excitations; the massive ones are the Dirichlet
modes (TE photons) inside the ‘‘cavity.’’ The massless
ones are the Neumann modes (TM photons) with momen-
tum in the direction parallel to the plates, and TE and TM
photons outside the cavity.
The physical picture suggests possible ways out to

improve the PFA even beyond the NTLO correction.
This would involve a separate treatment of massless and
massive excitations. We hope to address this issue in a
future work.

DERIVATIVE EXPANSION FOR THE CASIMIR EFFECT . . . PHYSICAL REVIEW D 86, 045021 (2012)

045021-11



VI. CONCLUSIONS

We have obtained explicit expressions for the NTLO
term in a DE for the Casimir free energy for a real scalar
field in d spatial dimensions. The field satisfies either
Dirichlet or Neumann boundary conditions on two static
mirrors, one of them flat and located at the xd ¼ 0 plane,
while the other is described by the equation xd ¼
c ðx1; x2; . . . ; xd�1Þ. We have shown that, for Dirichlet
boundary conditions, the NTLO term in the Casimir energy
is always of quadratic order in derivatives, regardless of the
number of dimensions. Therefore, it is local and deter-
mined by a single coefficient. We evaluated the ratio
between that coefficient and the one for the PFA term,
for different values of d at zero and high temperatures.

We have also shown that the same holds true, if d � 2,
for a field which satisfies Neumann conditions. When
d ¼ 2, the NTLO term becomes nonlocal in coordinate
space, which is a clear manifestation of the existence of
gapless excitations allowed by the Neumann conditions
[15]. It may be seen that among all the possible combina-
tion of linear boundary conditions on the mirrors, just this
case, Neumann conditions on both mirrors can produce
these modes.

When including thermal effects, we have shown that, for
Dirichlet mirrors, the NTLO term in the free energy is also
well-defined (local) for any temperature T. Besides, it
interpolates between the proper limits; namely, when
T ! 0, it tends to the one we had calculated for the
Casimir energy, while for T ! 1, it corresponds to the
one for a d ¼ 2 theory, realizing the expected dimensional
reduction at high temperatures. On the contrary, for
Neumann mirrors in d ¼ 3, we found a nonlocal NTLO
term for any T > 0, which vanishes linearly when T ! 0.
This leaves room, when the temperature is sufficiently low,
to use just the local term (of second order in derivatives) as
the main correction to the PFA. But of course, the nonlocal
term will always break down for a higher temperature,
whose value will depend on the actual shape of the surface
involved. We stress once more that this nonanalytic behav-
ior is a consequence of the Neumann boundary conditions
and may not be present for imperfect boundary conditions,
as those considered in Ref. [6].

In the course of our derivations, we have obtained
integral expressions for the momentum space kernels
which determine the quadratic contribution to the free
energy for small departure from the planar case. Those
kernels are well-defined in any number of spatial dimen-
sions and temperatures, and agree with the known results
for d ¼ 3 and T ¼ 0 [13]. They can be used to extract the

NTLO terms, be they local or nonlocal. Although for
the static cases, we have considered in this article they
are only needed for time-independent configurations, we
also present the expressions for the kernels at nonzero
frequencies.
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APPENDIX A: EXPANSION TO ORDER Oð�2Þ,
NEUMANN CASE.

We present here the main steps and intermediate results
corresponding to the calculation of the free energy up to
the second order in the function �, which measures the
departure from the planar case. We assume that c ðxkÞ ¼
aþ �ðxkÞ, with a equaling the average of c . Namely, we

want to construct the terms in

�� ¼ �ð0Þ
� þ �ð1Þ

� þ �ð2Þ
� þ . . . (A1)

where the index denotes the order in �. The term of order 1
vanishes, and, in terms of the expanded matrix elements of
U, we may write the more explicit expressions,

�ð0Þ
� ¼ 1

2�
Tr½logUð0Þ� �ð2Þ

� ¼ �ð2;1Þ
� þ �ð2;2Þ

� ; (A2)

where

�ð2;1Þ
� ¼ 1

2�
Tr½ðUð0ÞÞ�1Uð2Þ�

�ð2;2Þ
� ¼ � 1

4�
Tr½ðUð0ÞÞ�1Uð1ÞðUð0ÞÞ�1Uð1Þ�:

(A3)

In order to simplify, and at the same time render the
expressions more compact, we shall keep the 0 component
of momenta to appear below continuous, as if they corre-
sponded to zero temperature. In order to obtain the proper
finite temperature expressions, one should just replace
integrals over the 0 component of the momenta by sums
over Matsubara frequencies, namely,

Z dk0
2�

. . .Aðk0; . . .Þ ! 1

�

Xþ1

n¼�1
Að!n; . . .Þ: (A4)

Let us consider the explicit form of ðUð0ÞÞ and its inverse,
since both of them are required to construct the terms
contributing to �� above. We first note that the zero-order

term is given by

U ð0Þðxk; x0kÞ ¼
@d@

0
d�ðx� x0Þjxd;x0d!0 @d@

0
d�ðx� x0Þjxd!0;x0

d
!a

@d@
0
d�ðx� x0Þjxd!a;x0

d
!0 @d@

0
d�ðx� x0Þjxd!a;x0

d
!a

 !
; (A5)

which, because of its independence of �, can be conveniently Fourier transformed in the parallel coordinates

FOSCO, LOMBARDO, AND MAZZITELLI PHYSICAL REVIEW D 86, 045021 (2012)

045021-12



U ð0Þðxk; x0kÞ ¼ Uð0Þðxk � x0kÞ

¼
Z ddkk

ð2�Þd e
ikk�ðxk�x0kÞ ~Uð0ÞðkkÞ; (A6)

where

~U ð0ÞðkkÞ ¼ � jkkj
2

1 e�jkkja
e�jkkja 1

 !
: (A7)

Thus,

ðUð0ÞÞ�1ðxk � x0kÞ ¼
Z ddkk

ð2�Þd e
ikk�ðxk�x0kÞ ð�2Þ

jkkjð1� e�2jkkjaÞ

� 1 �e�jkkja

�e�jkkja 1

 !
: (A8)

Regarding Uð1Þ, we see that

U ð1Þ
RR ¼ Uð1Þ

LL ¼ 0; (A9)

and

Uð1Þ
LRðxk;x0kÞ¼

1

2

Z ddkk
ð2�Þd

�eikk�ðxk�x0kÞ½jkkj2�ðxkÞþ ik�@��ðxkÞ�e�jkkja

¼Uð1Þ
RLðx0k;xkÞ: (A10)

Finally, to the second order, Uð2Þ
LL ¼ 0, and

Uð2Þ
RRðxk; x0kÞ ¼

1

2

Z ddkk
ð2�Þd e

ikk�ðxk�x0kÞ

�
�
jkkj3 þ k�k�

jkkj @�@
0
�

�
�ðxkÞ�ðx0kÞ: (A11)

Regarding Uð2Þ
LR and Uð2Þ

LR, they are nonvanishing, but it may
be seen that they do not contribute to the second-order
term.

Thus,

�ð2;1Þ
� ¼ 1

2�
Tr½ðUð0Þ

RRÞ�1Uð2Þ
RR�

¼ 1

2�

Z
ddxkddx0kðUð0Þ

RRÞ�1ðxk; x0kÞUð2Þ
RRðx0k; xkÞ;

(A12)

and (using the properties of the matrix elements under the
exchange of arguments)

�ð2;2Þ
� ¼ � 1

2�
Tr½ðUð0Þ

LLÞ�1Uð1Þ
LRðUð0Þ

RRÞ�1Uð1Þ
RL�

� 1

2�
Tr½ðUð0Þ

RLÞ�1Uð1Þ
LRðUð0Þ

RLÞ�1Uð1Þ
LR�: (A13)

In Fourier space, after some algebra, one then finds

�ð2Þ
� ¼ 1

2

Z ddkk
ð2�Þd g

ð2ÞðkkÞj�ðkkÞj2; (A14)

with

gð2ÞðkkÞ ¼ �2
Z ddpk

ð2�Þd
½pk � ðpk þ kkÞ�2
jpkjjpk þ kkj

1

1� e�2ajpkj

� 1

e2ajpkþkkj � 1
: (A15)

APPENDIX B: EXACT EXPRESSIONS FOR THE
FORM FACTORS IN 3þ 1 DIMENSIONS.

In this appendix, we present exact expressions and series

expansions for the form factors fð2ÞðkkÞ and gð2ÞðkkÞ at zero
temperature and d ¼ 3. These expressions have been pre-
viously obtained in Ref. [13] (see also Ref. [16]). We will
use the dimensionless quantity x ¼ ajkkj.
For Dirichlet boundary conditions, the form factor fð2Þ

reads

fð2ÞðkkÞ ¼ �2
Z d3pk

ð2�Þ3
jpkjjpk þ kkj

ð1� e�2ajpkjÞðe2ajpkþkkj � 1Þ :
(B1)

An explicit evaluation gives [13]

a5fð2ÞðxÞ ¼ � x3Li2ðe�2xÞ
48�2

� x2Li3ðe�2xÞ
24�2

� xLi4ðe�2xÞ
16�2

� Li5ðe�2xÞ
16�2

� �2Li2ð1� e�2xÞ
240x

þ
�6

945 � Li6ðe�2xÞ
32�2x

þ x4 logð1� e�2xÞ
120�2

� �2x

240
;

(B2)

where Lin denote polylogarithm functions. This result can
be expanded in powers of x as follows:

a5fð2ÞðxÞ � � �2

120
� �2x2

1080
þ ð45þ �4Þx4

27000�2
� x5

720�2

þ ð315� 2�4Þx6
793800�2

þ ð�4 � 105Þx8
5103000�2

þ ð 8
165 � 8�4

16335Þx10
30240�2

þOðx12Þ (B3)

which shows the presence of a nonanalytic term propor-
tional to x5, which is independent of a.

For Neumann boundary conditions, the form factor gð2Þ
is given in Eq. (A15) with d ¼ 3. Evaluating explicitly this
integral, it is possible to show that [13]
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a5gð2ÞðxÞ ¼ 1

24

�
x2

2�2
þ 1

�
xLi2ðe�2xÞ þ

�
1

16
� x2

48�2

�
Li3ðe�2xÞ � 5xLi4ðe�2xÞ

32�2
� 7Li5ðe�2xÞ

32�2
� �2Li2ð1� e�2xÞ

240x

þ �2Li4ðe�2xÞ � 7Li6ðe�2xÞ
2 � �6

135

32�2x
þ x4 logð1� e�2xÞ

120�2
� �2x

720
: (B4)

Expanding this result for x � 1, we obtain

a5gð2ÞðxÞ � � �2

120
þ ð30� �2Þx2

1080
� x3

64
þ ð1095þ 50�2 þ �4Þx4

27000�2
� 11x5

720�2
þ ð2205� 42�2 � 2�4Þx6

793800�2

þ ð100�2 þ 7�4 � 3045Þx8
35721000�2

þ 4

�
47

38102400�2
� 1

23328000
� �2

246985200
�

1
1403325 þ �2

4677750

128�2

�
x10 þOðx12Þ:

(B5)

We see that the Neumann form factor has nonanalytic terms proportional to x3 and x5.
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