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Using an integral equation approach based on the Rayleigh hypothesis, we investigate the scattering of a
plane wave at the rough surface of ametamaterial with a finite number of sinusoidal grooves. To show the
adequacy of the model, we present results that are in agreement with the predictions of physical optics
and that quantitatively reproduce the polarization and angular dependences predicted by the C-
formalism for metamaterial gratings with an infinite number of grooves. © 2012 Optical Society of
America
OCIS codes: 050.1950, 160.3918, 290.5870.

1. Introduction

Among the unique magnetic properties of meta-
materials, the one that has perhaps attracted more
attention from the scientific community is the possi-
bility of having negative refractive index. Many well-
known phenomena associated with the interaction
between electromagnetic radiation and material
surfaces, such as the Doppler effect, the law of refrac-
tion, or the Cerenkov radiation, change dramatically
when the relative refractive index of the surface
changes sign, even in the geometrically simple case
of flat geometries [1].

In the ideal case of a lossless isotropic metamater-
ial, a negative refractive index occurs when there is
a range of frequencies over which both the electric
permittivity and the magnetic permeability are si-
multaneously negative. Therefore, to investigate the-
oretically the new features that the seemingly simple
change of sign of the refractive index produces in the
scattering properties of a nonflat surface, existent
scattering formalisms that usually have been devel-
oped for the conventional optical case of nonmagnetic
(magnetic permeability equal to one) materials, need

to be extended to magnetic media with negative
permeability. A short account of these extensions
for different surface shapes can be found in [2].

Restricting ourselves to the paradigmatic case of
two isotropic half-spaces separated by a nonperiodic
rough surface, this kind of extension has been per-
formed, very recently and almost simultaneously,
for two different scattering formalisms in [2] and [3].
The extension presented in [3] is based on Green’s
theorem surface integral equations [4] and leads to
the numerical resolution of a system of integral equa-
tions, whereas the extension presented in [2] is based
on the Rayleigh hypothesis [5] and leads to twometh-
ods of resolution: a direct numerical method and a
perturbative method, valid when the height of the
corrugation is small compared to the wavelength
of the incident radiation.

Because of the lack of experimental data in the re-
lated literature, the validity of the results obtained
with the magnetic extensions presented in [2] and
[3] has been tested in examples with different geome-
tries by verifying the fulfillment of theoretical criter-
ia. In [3], the scattering from random gratings with
subwavelength roughness is considered and the
angular distributions of intensities for the reflected
fields are shown to exhibit the symmetries that the
phenomenon of backscattering enhancement, due to
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surface plasmon polaritons, is expected to fulfill. In
[2], on the other hand, the scattering from a surface
with a single sinusoidal protuberance is considered,
very good agreement is obtained between the results
predicted by the direct and the perturbative meth-
ods, the results are shown to fulfill the power con-
servation criterion, and the main features of the
diffraction patterns are shown to coincide with the
physical optics predictions.

Although the fulfillment of expected criteria can
provide confidence on the validity of the results
obtained for magnetic media with negative perme-
ability in the geometries considered in [2] and [3],
it seems quite natural and desirable to quantita-
tively compare the results obtained with the scatter-
ing formalisms developed for nonperiodic surfaces
with those obtained for perfectly periodic surfaces,
i.e., metamaterial diffraction gratings [6–8]. The
comparison can be done by considering a grating
with a finite number of grooves, in other words, a sur-
face that is mostly plane but for a limited area that is
periodically corrugated. These kinds of structures
have been considered extensively in the case of non-
magnetic media [9–14], not only because of their var-
ied and important applications but also because they
have provided quantitative tests [10–12,14] for a di-
verse variety of theories of scattering at random
rough surfaces. The purpose of the present paper
is to perform similar quantitative tests for the theo-
retical formalism presented in [2]. To do so, we use
this formalism to obtain the angular distribution
of power scattered from metamaterial surfaces with
a finite number of sinusoidal grooves and compare
the results with those obtained with our numerical
implementation of the formalism presented in [8]
for perfectly periodic diffraction gratings of arbitrary
permittivity and permeability. The perfectly periodic
grating formalism is an extension to metamaterials
of the very well known C-method (see [15] and refer-
ences therein). Originally developed for gratings of
conventional (nonmagnetic) materials [16], the most
distinctive feature of this formalism is its virtually
uniform convergence, regardless of the incident po-
larization state and the permittivity of the refracting
material [17]. As shown in [8], these features are
valid even for diffraction gratings with a negative re-
fractive index. Our examples show that the angular
distribution of power obtained with the scattering
formalism [2] applied to metamaterial gratings with
finite length are in good agreement with the dif-
fracted efficiencies obtained with the C-method for
perfectly periodic gratings and that the infinite-
grating predictions are obtained with a relatively
small number of grooves. These features, already ob-
served for conventional gratings [10–12,14], provide
new evidence on the validity of the Rayleigh methods
for metamaterial rough surfaces.

The plan of the paper is as follows. In Section 2 we
give a brief description of the boundary value problem
for the scattering of a plane wave at a locally periodic
metamaterial surface and outline the method used

for the calculation of the scattered fields. The compar-
ison between the numerical results obtained for finite
[2] and infinite gratings [8] is presented in Section 3
and finally, concluding remarks are given inSection4.
Weuse a time dependence of the type exp�−iωt�where
ω is the angular frequency of the incident radiation, t
the time, and i �

������
−1

p
.

2. Theory

We consider a rough surface represented by the func-
tion y � g�x� [see Fig. 1]. This surface separates two
homogeneous and isotropic materials characterized
by the constitutive parameters ϵi (electric permittiv-
ity) and μi (magnetic permeability), i � 1; 2. Medium
1 (y > g�x�, medium of incidence, usually air) is a con-
ventional material with positive refractive index
ν1 � ����������ϵ1μ1

p
, ϵ1 > 0, μ1 > 0, while medium 2�y < g�x��

is a metamaterial with frequency-dependent consti-
tutive parameters ϵ2 � ϵ2R � iϵ2I and μ2 � μ2R�
iμ2I, real parts ϵ2R and μ2R of arbitrary sign and
positive imaginary parts ϵ2I > 0 and μ2I > 0. The con-
ditions for the refractive index of the metamaterial
ν2 � � ����������ϵ2μ2

p
being positive or negative are given

in [18].
The rough surface is illuminated by an electromag-

netic, linearly polarized plane wave that propagates
along the �x; y� plane (incidence plane) and forms an
angle θ0 with the y axis. We analyze two independent
polarization cases separately: s (electric field in the
z direction) and p (magnetic field in the z direction)
polarization. In both cases, the scattered fields
conserve the polarization of the incident wave.

We denote by Ψ�x; y� the z-directed component
either of the total electric field (s polarization) or
the total magnetic field (p polarization). Outside the
corrugated region (min g�x� ≤ y ≤ max g�x�), Ψ�x; y�
can be rigorously represented by superpositions of
plane waves. If y > max g�x�,

Ψ1�x; y� � exp�i�α0x − β�1�0 y��

� 1
2π

Z�∞

−∞

R�α� exp�i�αx� β�1�α y��dα (1)

Fig. 1. Scattering of a plane wave from a metamaterial surface
with a finite number of equally spaced identical grooves. θ0 is
the angle of incidence and θs is the observation angle.
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represents the incident plane wave (first term, with
unit amplitude) and the scattered fields in medium 1
(second term, reflected field), while if y < min g�x�,

Ψ2�x; y� �
1
2π

Z�∞

−∞

T�α� exp�i�αx − β�2�α y��dα (2)

represents the scattered fields in medium 2 (trans-
mitted field). The quantity α0 � k0ν1 sin θ0, k0 �
ω∕c, represents the x component of the incident wave
vector. Note that the integrand in (1) represents a
plane wave with amplitude R�α� and wave vector
k⃗�1r��α� � αx̂� β�1�α ŷ, while the integrand in (2) repre-
sents a plane wave with amplitude T�α� and wave
vector k⃗�2t��α� � αx̂ − β�2�α ŷ. The components along y

of the wave vectors k⃗�1r� and k⃗�2t� are

β�j�α � β�j��α� � �k20ϵjμj − α2�1∕2; j � 1; 2; (3)

and we define β�j�0 � β�j��α0�. Also, note that the quan-
tities β�1�α are real or purely imaginary. In the first
case, which occurs in the so-called radiative zone
jα∕k0j < ν1, we must fulfill the condition Re β�1�α ≥ 0,
so that the fields in Eq. (1) represent propagating
plane waves that move away from the surface into
the half-space y > g�x�. In the second case, which oc-
curs in the so-called non radiative zone jα∕k0j ≥ ν1,
we must fulfill the condition Im β�1�α ≥ 0, so that these
fields represent evanescent waves that attenuate
for y → �∞. Taking into account that in this paper
we are considering real (lossy, Im ϵ2 > 0, Im μ2 > 0)
metamaterials, the quantities β�2�α are always com-
plex and, in order that the fields in Eq. (2) attenuate
for y → −∞, their nonzero imaginary part must fulfill
the condition Im β�2�α > 0.

The Rayleigh methods presented in [2] are based
on the assumption that the equations (1) and (2)
can be used to satisfy the boundary conditions at y �
g�x� (Rayleigh hypothesis [5]). After some manipula-
tions, the problem can be reduced to the solution of a
Fredholm integral equation of the first kind, with the
complex amplitudes R�α� as the unknown function
(see [2] for details).

From the definition of the outgoing, time-averaged
scattered flux it is easy to show that the fraction of
the incident power that is scattered (reflected) into
the incident medium is given by

Pr �
Re
2πa

Z�∞

−∞

β�1�α

β�1�0

jR�α�j2dα ; (4)

which shows that only the values of R�α� in the ra-
diative zone, jα∕k0j < ν1, contribute to the scattered
power. In this spectral zone the integrand in Eq. (1)
represents plane waves propagating away from the
surface along a direction that forms an angle θs,

(jθsj < π∕2, see Fig. 1) with the �y axis. Thus, the in-
tegrand in Eq. (1) gives the normalized angular dis-
tribution of power scattered into medium 1. To better
visualize the finite-length effect, in the examples be-
low we redefine R�α� � ~R�α� �R�0�δ�α − α0�, with R�0�

the Fresnel coefficient of the infinite plane and δ��
the Dirac delta distribution, and we plot the quantity

dP
dα � Re

2πa
β�1�α

β�1�0

j ~R�α�j2; (5)

which represents the contribution of the limited area
a where the surface is periodically corrugated.

The C-method [8,15–17] for perfectly periodic dif-
fraction gratings avoids the use of the Rayleigh
hypothesis and is based in the introduction of a
new coordinate system that not only maps corru-
gated grating surfaces to planar surfaces, making
the matching of boundary conditions easy, but also
transforms Maxwells equations into a matrix eigen-
value problem and thus makes the numerical solu-
tion of the grating problem straightforward [15].
Traditionally [16,17], Maxwells equations written
in covariant form and tensor theory have been used
to formulate the C-method. For details, we refer the
interested reader to [15], where the C-method has
been reformulated without using any tensor notation
or tensor concepts.

3. Results

In order to compare the scattering formalism for
nonperiodic rough surfaces with the C-method for
perfectly periodic gratings, we consider finite
sinusoidal gratings with a finite number N of
grooves, represented by a roughness function g�x� �
h
2 sin�2πd x�rec�x∕a�, where h is the groove height, d is
the period of the grating, a � Nd, and rect�u� is the
rectangular function centered at the origin with unit
width and height. The medium of incidence is va-
cuum (ϵ1 � 1, μ1 � 1) and for the magnetic metama-
terial we have chosen constitutive parameters ϵ2 �
−4� 0.001i and μ2 � −1.5� 0.001i, that is, a lossy
metamaterial with negative refractive index [18]
ν2 � −2.449� 0.001i.

To show the evolution of the results from the lo-
cally periodic to the infinitely periodic case, in Fig. 2
we have plotted the angular distribution of power
scattered into medium 1 [Eq. (5)] for similar sinusoi-
dal gratings (h∕λ � 0.02, d∕λ � 2) with an increasing
number of grooves (N � 3, 9 and 15), illuminated by
a plane wave at an angle of incidence θ0 � 20°. The
results in the left-hand column correspond to s-
polarized incident waves, whereas the results in the
right-hand column correspond to p-polarized inci-
dent waves. We observe that all the scattering
patterns shown in this figure exhibit maxima at
the angular positions θs predicted by the grating
equation,

sin θs � n
λ
d
� sin θ0 ; (6)
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with n an integer. Taking into account that ~R�α� in
Eq. (5) is associated with the difference between
the total field scattered by the finite grating and
the field reflected by an infinite plane, the strongest
maxima in Fig. 2 occur for n � −1�θs ≃ −9.09°� and
n � �1�θs ≃ 57.35°�, but not for n � 0 (θs � θ0, spec-
ular direction). In other words, the relatively low in-
tensities observed in the specular direction θs � θ0
indicate that for these geometrical parameters, the
finite gratings and the flat surface scatter almost
the same power into this direction. The results in
Fig. 2 also show that when we increase the number
of grooves, the width of the interference maxima
located at the angular positions predicted by the

grating equation decreases, as expected for infinitely
periodic gratings, where each scattering pattern be-
comes a set of Dirac’s delta functions located at these
angular positions.

In full analogy with the results presented in [2] for
the case of magnetic surfaces with a single corruga-
tion, the results in Fig. 2 clearly evidence that, when
magnetic gratings with a finite number of grooves
are considered, the angular distributions of intensi-
ties obtained with the scattering formalism sketched
in Section 2 exhibit cinematic features –such as posi-
tion and width of the peaks—that are in perfect
agreement with the results predicted by physical op-
tics. However, what physical optics fails to predict is

Fig. 2. (Color online) Angular distribution of power scattered into medium 1 for three sinusoidal finite gratings with identical geometrical
(h∕λ � 0.02, d∕λ � 2) and constitutive parameters (ϵ2 � −4� 0.001i and μ2 � −1.5� 0.001i) but different number of grooves (N � 3, 9 and
15), illuminated by a linearly polarized plane wave at an angle of incidence θ0 � 20°. Left-hand column: s polarization; right-hand column:
p polarization.
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the dynamical or energetic features, such as the right
distribution of power between peaks corresponding
to a given set of constitutive parameters, roughness
function g�x�, incident polarization, etc. This state-
ment is particularly true for structures such as the
finite gratings considered here, with d∕λ � 2, where
a typical dimension of the scatterer is comparable to
the wavelength of the incident radiation, as can be
clearly seen in Fig. 2 by noting the different relative
intensity between the height of the n � �1 peaks
obtained at this angle of incidence for identical struc-
tures with the same value of N in the cases of s or p
polarized incident waves: whereas for s polarization
the height of the n � −1 peak is always lower than
the height of the n � �1 peak, for p polarization the
opposite relation holds.

To involve energetic features, we first use the re-
ciprocity theorem [19], which states that the re-
sponse is not different when source and detector are
interchanged. In Figure [3] we have plotted the an-
gular distribution of power scattered into medium 1
for a finite grating with N � 15 sinusoidal grooves,
illuminated by s and p-polarized plane waves at
angles of incidence θ0 � 9.09° and −57.35°. Using
Eq. (6) and the sign convention for the angles θ0
and θs shown in Fig. 1, it is easy to show that an angle
of incidence θ0 � 9.09° is used when illuminating the

surface along a direction opposite to the propagation
direction of the n � −1 peak in Fig. 2. We observe
that for this new angle of incidence a strong maxi-
mum occurs for θs � −20°. The value of this maxi-
mum for s polarization (≈0.00537) agrees quite well
with the value of the n � −1 peak in Fig. 2
(≈0.00535). A similar agreement is observed for p
polarization, but now both maxima take the value
≈0.00901. In a similar manner, it can be shown that
the angle of incidence θ0 � −57.35° is used when il-
luminating the surface along a direction opposite to
the propagation direction of the n � �1 peak in Fig. 2
and that for this new angle of incidence a strongmax-
imum occurs again for θs � −20°. The value of this
maximum for s polarization is ≈0.00585 whereas
the value of the n � −1 peak in Fig. 2 is ≈0.00591. A
similar agreement is observed for p polarization but
now the values are ≈0.00317 and ≈0.00311.

The comparison between the scattering patterns in
Figs. 2 and 3 indicates that in these cases the results
obtained with the scattering formalism developed in
[2] are in good agreement with the reciprocity theo-
rem. To perform quantitative tests more demanding
than those provided by physical optics and the reci-
procity theorem, in what follows we compare these
results with those obtained in the limit N → ∞ with
the magnetic extension of the C-method [8], an

Fig. 3. (Color online) Angular distribution of power scattered into medium 1 for a finite grating with N � 15 sinusoidal grooves,
illuminated by linearly polarized plane waves at angles of incidence θ0 � −57.35° and 9.09°. The geometrical and constitutive parameters
are as in Fig. 2. Left-hand column: s polarization; right-hand column: p polarization.
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electromagnetically rigorous and a completely differ-
ent procedure that has shown to provide reliable re-
sults for perfectly periodic, magnetic diffraction
gratings with a negative index of refraction [20–23].
The efficiencies of the n � −1 and n � �1 diffracted
orders calculated with the C-method for a perfectly
periodic grating with the same parameters as the
finite gratings used in Fig. 2 (ϵ2 � −4� 0.001i,
μ2 � −1.5� 0.001i, h∕λ � 0.02 and d∕λ � 2) are
shown in Fig. 4 (s polarization) and Fig. 5 (p polari-
zation) as functions of the angle of incidence θ0. Re-
garding the secondary peak observed in Fig. 2 in the
specular direction, for the same parameters we have
verified with the C-method that in the limit N → ∞

the value of this peak must take very small values
for all angles of incidence. In this limit the peak
should behave as the squared modulus of the differ-
ence between the amplitude of the field diffracted by
the infinite grating in the specular direction (ob-
tained with the C-method) and the amplitude of

the field reflected by the surface without corrugation
(obtained with the Fresnel coefficient).

The curves in Fig. 4 for s polarization show that at
the angle of incidence θ0 � 20°, the efficiency of the
n � −1 diffracted order is lower than the efficiency of
the n � �1 diffracted order, in total agreement with
the results shown in the left-hand column in Fig. 2,
even for the finite grating with the lowest number of
grooves (N � 3). Moreover, the ratio e−1∕e�1 between
the efficiencies of the perfectly periodic grating at
this angle of incidence is e−1∕e�1 ≈ 0.9, while the cor-
responding ratio between the heights of the n � −1
and the n � �1 peaks in the scattering patterns in
the left-hand column in Fig. 2 takes the values
≈0.92 (N � 3), ≈0.916 (N � 9), and ≈0.903 (N � 15).
We observe that the values of this ratio obtained for
the finite gratings not only agree well with the value
predicted by the perfectly periodic grating formal-
ism, but are also almost independent of the number
of grooves. This rather curious fact (considering the
relatively small number of grooves considered in our
example), has already been observed for conven-
tional gratings [10–12].

Analogously, the curves in Fig. 5 for p polarization
show that at the angle of incidence θ0 � 20°, the ef-
ficiency of the n � −1 diffracted order is greater than
the efficiency of the n � �1 diffracted order, in total
agreement with the results shown in the right-hand
column in Fig. 2, even for the finite grating with the
lowest number of grooves (N � 3). Moreover, the
ratio e−1∕e�1 between the efficiencies of the perfectly
periodic grating at this angle of incidence is
e−1∕e�1 ≈ 2.85, while the corresponding ratio be-
tween the heights of the n � −1 and the n � �1
peaks in the scattering patterns in the right-hand
column in Fig. 2 takes the values ≈2.91 (N � 3),
≈2.897 (N � 9), and ≈2.87 (N � 15). As obtained in
the other polarization case, we observe that the va-
lues of this ratio for the finite gratings agree well
with the value predicted by the perfectly periodic
grating formalism, even for the rather small number
of grooves considered in these examples.

As shown in Figs. 4 and 5, the ratio e−1∕e�1
between the efficiencies of the perfectly periodic grat-
ing depends on the angle of incidence. Figure 4 shows
that when the angle of incidence is changed from
θ0 � 20° to θ0 � 28°, the ratio e−1∕e�1 changes from
the value ≈0.9 to the value ≈1.293, that is, the effi-
ciency of the n � −1 diffracted order is greater
(and not lower, as it was for θ0 � 20°) than the effi-
ciency of the n � �1 diffracted order. To see if the
formalism for nonperiodic magnetic surfaces exhibits
this angle of incidence behavior, in Fig. 6 we have
plotted the angular distribution of power scattered
into medium 1 [Eq. (5)] for a finite sinusoidal grating
with N � 15 grooves illuminated by an s-polarized
wave at an angle of incidence θ0 � 28°, with the re-
maining parameters considered in Fig. 2. The scat-
tering pattern in this figure shows that the ratio
between the heights of the n � −1 and the n � �1
peaks takes the value ≈1.294, in total agreement

Fig. 4. (Color online) Efficiency of the n � −1 and n � �1 dif-
fracted orders as functions of the angle of incidence θ0 for a
perfectly periodic grating with the same geometrical and constitu-
tive parameters as those in Fig. 2 (s polarization).

Fig. 5. (Color online) Efficiency of the n � −1 and n � �1
diffracted orders as functions of the angle of incidence θ0 for a per-
fectly periodic grating with the same geometrical and constitutive
parameters as those in Fig. 2 (p polarization).
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with the angle of incidence behavior predicted in s
polarization by the C-method for a similar magnetic
grating with an infinite number of grooves. Similarly,
the scattering pattern in Fig. 7, obtained for the same
finite grating and the same angle of incidence consid-
ered in Fig. 6 but now illuminated by a p-polarized
incident wave, also exhibits the angle of incidence be-
havior predicted by the C-method in the N → ∞ case,
as can be seen from the fact that in Fig. 5 the ratio
e−1∕e�1 between the efficiencies for θ0 � 28° takes
the value ≈8.0, while the ratio between the heights
of the corresponding n � −1 and n � �1 peaks in
Fig. 7 takes the value ≈7.9.

4. Conclusions

In this paper we have provided qualitative and quan-
titative evidence proving the validity of the theoreti-
cal method presented in [2] for the study of the
scattering of electromagnetic waves at the nonperio-
dic rough surface of a metamaterial with arbitrary

values (positive or negative) of its magnetic perme-
ability and electric permittivity. By considering
metamaterials with a negative refractive index
and locally periodic gratings with a finite number
of grooves, we have shown that the angular distribu-
tions of scattered power obtained with the method
presented in [2] exhibit all the characteristics pre-
dicted by physical optics. Moreover, we have shown
that the polarization and the angle of incidence de-
pendence of the results obtained with this Rayleigh
method are in excellent quantitative agreement
with the diffracted efficiencies obtained with the
C-method for perfectly periodic gratings. As a bypro-
duct of this study, and in complete agreement with
the results known in the grating literature for con-
ventional materials, we have shown that in surfaces
with a negative refractive index, the infinite-grating
predictions are obtained with a relatively small num-
ber of grooves. As a final remark, it should be noted
that the quantitative agreement between the
Rayleigh method of 2 and the C-method (not invok-
ing the Rayleigh hypothesis) provides new evidence
on the validity of the Rayleigh hypothesis –one of
Lord Rayleigh’s profound intuitions [5]—for nega-
tively refracting rough surfaces.
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