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a b s t r a c t

An intensity dependent nonlinear coupling model of N two-level
atoms (generalized Dicke model) interacting dispersively with a
bimodal cavity field via two-photon transitions is investigated in
a scenario where the rotating wave approximation is assumed. The
model becomes homogeneous in the sense that the spin transition
frequency is the same for all atoms and the coupling constants
emerging from the collective interactions of the atomic system
with the cavity field depend only on the particular radiation field
mode. This allows us to represent the Dicke Hamiltonian entirely
in terms of the total angular momentum J . It is assumed that,
initially, the atomic system and the field are in a disentangled
state where the field modes are in Glauber coherent states
and the atomic system is a superposition of states |JM⟩ (Dicke
states). The model is numerically tested against simulations of
normal squeezing variance of the field, squeezing factors based
on the Heisenberg uncertainty principle, along with the statistical
properties of the light leading to the possible production of
nonclassical effects, such as degree of second-order coherence in
the modes, degree of intermode correlation, as well as violation
of the Cauchy–Schwartz inequality. Analytical expression of the
total density operator matrix elements at t > 0 shows the present
nonlinear model to be strongly entangled, which is reflected in the
time evolution of the linear entropy,where the superposition states
are reduced to statistical mixtures. Thus, the present generalized
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Dicke model does not preserve the modulus of the Bloch vector.
The computations, performed in the weak coupling and strong
field limits, were conducted via second-order Dyson perturbative
expansion of the time evolution operator matrix elements for the
totality of the angular momentum states of the atomic system.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Dicke model [1] describes the collective behavior of an ensemble two-level atoms coupling,
via dipole interaction, with a cavity field of dimension less than the radiation wavelength. It has
attracted considerable attention recently, mainly due to the fact that the Dicke model is closely
related to many interesting fields in quantum optics, such as coupled arrays of optical cavities used
to simulate the behavior of strongly correlated systems [2–4], superconducting charge qubits [5], and
the superrradiant behavior by an ensemble of quantum dots [6]. These studies were motivated by the
pioneering work on cooperative spontaneous emission made by Dicke [1] who realized that radiation
from N identical two-level systems (spins 1/2) cannot be treated as a sum of N independent radiative
processes but rather as a collective quantumphenomenon that involves allN spins and a photonmode
even on the level of perturbation theory.

When the Dicke system is driven by a single mode external laser field in the strong field limit
n ≫ N , where n is the mean photon number in the initial state, it shows strong atom–atom
correlations giving rise to nonclassical behavior of the emitted radiation field [7,8]. Apart from the
standard Dicke model many generalized Dicke models have also been proposed and studied [9–19].
Generally, they all display a rich dynamics, with many interesting nonclassical features [20–23] that
manifest themselves in the clearest way when the cavity field is prepared in the coherent state [24].

Among the various phenomena associated to the generation of nonclassical effects emerging from
the dynamics of the Dicke model, the quantum entanglement has been recently investigated in
detail [25–29]. In fact, it arises when a superposition principle is applied to composite systems. After
two quantum particles have interacted, they can no longer be described independently of each other.
Their ‘‘entangled’’ state is not a tensor product of eigenstates of observables pertaining to the two
particles, which would describe independent systems with well-defined properties. It is instead a
superposition of such products. The state of one particle is determined by a measurement performed
on the other. Moreover, the same entangled state can be written in different forms, corresponding
to different sets of noncommuting observables for the two particles. These quantum correlations
are independent of the particles’ spatial separation and introduce a fundamental nonlocal aspect
in the quantum world. Beyond these fundamental aspects, entangled states might have important
applications for information transmission or processing, e.g. elements of binary information can be
coded in two-state quantum systems called qubits.

Squeezing, which redistributes quantum fluctuations between two noncommuting observables
while preserving the minimum uncertainty product, has also been extensively studied in boson
systems [8,30]. The quantum mechanical correlations between photons, established through
nonlinear interactions, play an essential role in the generation of squeezed states of light.

Besides the importance in the study of fundamentals of quantum theory, the realization of the
Dicke model plays a crucial role in quantum information technology and quantum communication.
Indeed, arrays of atoms (qubits) are ideal candidates for quantum registers and their controlled
interaction with photons allows us to realize atom–light quantum interfaces [31] and to distribute
entanglement to different nodes of quantum networks. As is well-known, pumping multiatom (N ≫

1) samples with externally applied coherent fields can induce sensitive atomic responses due to the
collective interactions of atoms with the environmental electromagnetic field [7].

Spin or angular momentum systems have often been regarded as squeezed if the uncertainty of
one spin component, say ⟨1J2x ⟩ or ⟨1J2y ⟩ is smaller than 1

2 |⟨Jz⟩|. This definition implies that a coherent
spin state (CSS) is already squeezed if it is placed in an appropriate system of coordinates, and also
that spin can be squeezed by just rotating the CSS. This subject has been vigorously studied [32–35]
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due to its close connection to quantum entanglement, the main ingredient for quantum information
in general. More generally, the spin squeezed states can be a source of entanglement in an ensemble
of large number of atoms. Thus, spin squeezing is possible in optical systems which are inherently
nonlinear.

For certain variants of the Dicke Hamiltonian, incorporation of two laser fields with different
amplitudes and frequencies in the quantum regime involving two-photon transitions resists exact
analytical solution, even in the case of exact simultaneous resonance of the N two-level atoms
with both modes of the cavity field. A systematic analysis concerning the nondegenerate two-mode
nonclassical states associated with off-resonant states of the cavity field coupled with an ensemble
of N two-level atoms is not completely documented so far, and this motivates us to introduce
in this paper a generalized Dicke model in which two-photon transitions are mediated by two
modes of photons in off-resonant states. The transient dynamics of such generalized model is an
important issue in view of the possibility of observing a variety of typical nonlinear phenomena, such
as entanglement propagation through the whole atomic system and entangled light via nonlinear
vacuum–multiparticle interactions.

In off-resonant states the interaction picture Hamiltonian of the Dicke model becomes time-
dependent. Moreover, since in this case the set of interaction picture Hamiltonians V(t1), V(t2), . . .,
taken at different times t1, t2, . . . fail to commute, Dyson perturbation expansion of the time evolution
operator matrix elements truncated to a finite order constitutes the ideal tool to deal with this many-
body problem [36,37].

The objective of the present study is to develop a generalized homogeneous Dicke model in which
an intensity dependent nonlinear coupling interacting dispersively with a bimodal cavity field via
two-photon transitions is incorporated in a scenario where the rotating wave approximation (RWA)
is assumed. The system dynamics will be explored through the density operator formalism, assuming
that, initially, the atomic systemand the field are in a disentangled state, the fieldmodes are inGlauber
coherent states, and the atomic system is prepared in a superposition of angular momentum states
|JM⟩ with the initial coherent state of the field given by a Poisson distribution. In particular, analytical
expression of the total density matrix elements at t > 0 reveals that the present nonlinear model is
strongly entangled, which is reflected in the time evolution of the linear entropy. The incorporation
of an ensemble of angular momentum states |JM⟩ represents a novel feature of the present treatment
which helps to understand certain collective effects related to the photon-distribution mechanism
when different specific initial atomic states are used [8].

The present model, emerging from the solution of the time-dependent Schrödinger equation via
second-orderDysonperturbation expansion of the chronologically ordered time-dependent evolution
operator, is numerically tested against numerical simulations of normal squeezing variance of the
field, squeezing factors based on theHeisenberg uncertainty principle, and entanglement asmeasured
by the linear entropy. It is clearly observed, for example, that during the time evolution of the linear
entropy the superposition states are reduced to statistical mixtures. Thus, the present generalized
Dicke model does not preserve the modulus of the Bloch vector. Under certain conditions angular
momentum superposition states may exhibit other nonclassical effects, such as photon antibunching,
sub-Poissonian photon statistics and violation of the Cauchy–Schwartz inequality. Thus, the statistical
properties of the light such as degree of second-order coherence in the modes, degree of intermode
correlation, and possible violation of the Cauchy–Schwartz inequality will also be explored.

This article is organized accordingly as follows. In Section 2, the Hamiltonian of the homogeneous
Dicke model under the RWA is described in detail. The coherent atomic states (Bloch states) obtained
by the rotation of the angular momentum ground state, and radiation field Glauber states which
comprise both the initial state wavefunction are given and the interaction picture representation
of the generalized Dicke model is introduced and discussed. This allows us to obtain the time-
dependent density operatormatrix elements, fromwhich the dynamical behavior of thewhole system
can be analyzed, even during short periods of time at the very beginning of the time evolution.
Section 3 is devoted to a brief discussion of the numerical simulations. A summary and some
concluding remarks are finally given in Section 4. The article is complementedwith two appendices. In
Appendix A, the radiation field matrix elements in the Fock space are listed along with some formulas
necessary to compute the antibunching effect, sub-Poissonian statistics of the field, and violation of
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the Cauchy–Schwartz inequality. In Appendix B, a set of rotated operators on the Bloch sphere are
obtained via total (atomic system plus field) density operator matrix elements valid to all orders.

2. Atom–cavity interaction in the generalized Dicke model

Let us consider a bosonic system S, with Hilbert space H (S) which is coupled with an ensemble
of N two-level atoms, with Hilbert space H (B). Let us assume that the complete system is in thermal
equilibrium with a reservoir at temperature β−1. It is important to keep in mind that the presence
of the reservoir only takes the N two-level atoms and the bosonic modes in thermal equilibrium. Let
us denote by HS , HB, and HI the Hamiltonians of the bosonic field, the N two-level atoms, and the
interaction between both systems, respectively. The Hamiltonian for the total system can be written
as

H = HS ⊗ IB + IS ⊗ HB + HI ≡ H0 + HI , (1)

where IS and IB denote the identities in the Hilbert spaces of the bosonic field and the ensemble of N
atoms.

The aim of this section is to introduce the necessary formalism to develop generalizedmodels of N
two-level systems (qubits) interacting dispersively with a cavity in which the validity of the RWA is
assumed. In this scenario, we consider a generalized version of Dickemodel that describes a collection
ofN two-level atoms interactingwith a two-mode radiation field and induces two-photon transitions.
Furthermore, an intensity dependent nonlinear coupling is explicitly incorporated in theHamiltonian.
This makes the present model to be highly nonlinear and therefore only approximate solutions can be
developed. The system dynamics will be explored through the density operator formalism emerging
from the chronologically ordered time-dependent perturbation Dyson expansion of the evolution
operator matrix elements. We consider the situation where the linear dimension of the total atomic
system is small compared to the correlation length of the reservoir; therefore, the N atoms interact
collectively with the reservoir. We can further proceed by assuming that for a fixed mode j of the
reservoir all the coupling constants Gij, i = 1, 2, . . . ,N , are equal, i.e., Gij ≡ Gj. We will ignore the
interaction between the atoms (qubits) and treat the atomic system as a large spin (N = 2J).

Assuming that the frequency νj of one of the cavity modes is near resonant with the (constant)
energy gap ω of the two-level atoms, such a situation generates a homogeneous physical model in
which the two-level atoms effectively interact only with that mode, and the other bosonic mode does
not couple with the two-level atoms. Under these circumstances the model is reduced to a single
mode of the bosonic field with the photon operators interacting with an ensemble of atoms. This
rather simplified situation will not be considered in this paper, as it was extensively investigated over
the past decade. Instead, we will consider the much more complex homogeneous model involving
intensity dependent photon operators along with two modes of the cavity, i.e., we will assume a
nonzero detuning for each mode involving off-resonant states (this corresponds obviously to the
nondegenerate case of the two modes of the field). The resulting complete Hamiltonian under the
RWA for such model reads (h̄ = 1)

H =

2−
j=1

νja
Ď
j aj ⊗ IB + ωIS ⊗ Jz +

2−
j=1

Gj
√
N
(J+ ⊗ Rk

j + J− ⊗ RĎkj ), (2)

where the first two terms and the last term on the rhs correspond toH0 andHI , respectively. νj and Gj
are the photon frequency and atom–field coupling constant (vacuum Rabi frequency) for the mode j;
aĎj (aj) is the canonical creation (annihilation) bosonic operator for the mode j, the zero-point energy
of the bosonic field was omitted, and a constant term 1/2(ωa +ωb), whereωa andωb are the energies
of the ground (|a⟩) and excited (|b⟩) states of the two-level many-atom system, was ignored. The
two-level many-atom operators Jz , J± are the usual angular momentum operators for a pseudospin
of length J = N/2 (collective modes associated to the atomic pseudospin operators) which satisfy
the standard angular momentum commutation relations [Jz, J±] = ± J±, along with the angular-
momentum-like commutation relations J × J − iJ = 0 corresponding to a 2J +1-dimensional space of
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angular momentum J and therefore they constitute a basis of the Lie SO(3) algebra. These collective
Pauli mode spin operators are constructed by single-atomic operators {σ α

+
, σ α

−
, σ αz ;α = 1, . . . ,N}

which are kinematically independent and obey the usual SU(2) commutation relations. Thus, these
atom-flip operators characterize an effective single two-level atom with transition frequency ω =

ωb−ωa. Note that inhomogeneities inGij and/orωj would have forbidden to represent theHamiltonian
in Eq. (2) in terms of the total angular momentum J . In Eq. (2), the radiation field operators Rk

j and RĎkj
are intensity dependent shifting operators involving k photons, i.e.,

Rk
j = akj (a

Ď
j aj)

1/2, (3)

and its hermitian conjugate

RĎkj = (aĎj aj)
1/2aĎkj . (4)

A simplified model is achieved if we assume that the N two-level atoms and the bosonic modes
are in the interior of a high-Q lossless cavity.

2.1. Coherent atomic states and Glauber states: initial state wavefunction

The Hilbert space of the collective atomic operators is spanned by the Dicke states, which
are simply the usual angular momentum states |JM⟩ (M = −J,−J + 1, . . . , J) obtained as the
simultaneous eigenstates of the SU(2) Casimir operators J2 and Jz = 1/2[J+, J−]. They are given by
[38]

|JM⟩ =
1

(M + J)!


2J

M + J

−1/2

JM+J
+ |J − J⟩, (5)

with eigenvalue M and where the ground state |J − J⟩ is defined by J−|J − J⟩ = 0. Let us
consider the rotation operator Rθ,φ which produces a rotation through an angle θ about an axis
n̂ = (sinφ,− cosφ, 0)

Rθ,φ = e−iθ Jn = e−iθ(Jx sinφ−Jy cosφ) = eζ J+−ζ∗J− , (6)

where

ζ =
1
2
θe−iφ (0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π). (7)

A coherent atomic state, or Bloch state, |θ, φ⟩ is obtained by rotation of the ground state |J − J⟩, i.e.,

|θ, φ⟩ ≡ Rθ,φ |J − J⟩, (8)

which is the group definition of the atomic coherent states. The Bloch states |θ, φ⟩ satisfy a
completeness relation given by

(2J + 1)
∫

|θ, φ⟩
dΩ
4π

⟨θ, φ| = 1, (9)

where dΩ = sin θ dθ dφ is the solid-angle volume element at (θ, φ) on S2 (Bloch sphere). The Bloch
sphere is a well-known tool in quantum optics, where the simple qubit state is faithfully represented,
up to an overall phase factor, by a point on a standard sphere with radius unity, whose coordinates
are expectation values of the atomic set operators of the system.

Using the disentangling theorem for angular momentum operators [39], the rotation Rθ,φ given by
Eq. (6) becomes

Rθ,φ = e−τ∗J−e− ln(1+|τ |2)Jz eτ J+ = eτ J+eln(1+|τ |2)Jz e−τ∗J− , (10)

where

τ = e−iφ tan
1
2
θ, (11)



2850 H. Grinberg / Annals of Physics 326 (2011) 2845–2867

defines the stereographic projection from the south pole of the sphere to the plane passing through
the equator, with complex coordinates τ , τ ∗.

The last formof Eq. (10)whichwe call the normally ordered form, immediately gives the expansion
of |θ, φ⟩ in terms of Dicke states

|τ ⟩ ≡ |θ, φ⟩ = Rθ,φ |J − J⟩ =


1

1 + |τ |2

J

eτ J+ |J − J⟩, (12)

whence, expanding the exponential and using Eq. (5)

⟨JM | θ, φ⟩ =


2J

M + J

1/2
τM+J

[1 + |τ |2]J

=


2J

M + J

1/2

sinJ+M

1
2
θ


cosJ−M


1
2
θ


e−i(J+M)φ . (13)

These coherent states are non-orthogonal, with

⟨τ1 | τ2⟩ =
(1 + τ ∗

1 τ2)
2J

(1 + |τ1|2)J(1 + |τ2|2)J
. (14)

In particular, ⟨τ |τ ⟩ = 1. In this model the initial state vector involving two modes of the field is
represented by

|Zτ ⟩ ≡ |Z⟩ ⊗ |τ ⟩ = |z1z2⟩ ⊗ |θ, φ⟩, (15)

i.e., the direct product of a field canonical coherent state |Z⟩ and a pseudospin coherent state |τ ⟩ ≡

|θ, φ⟩. Thus,while |Z⟩ is defined in the ‘particle’ Hilbert space, |τ ⟩ is defined in the (2J+1)-dimensional
space. The coherent states (Glauber states) |zj⟩ are given by (j = 1, 2)

|zj⟩ = exp

zja

Ď
j −

1
2
|zj|2


|0⟩j, (16)

where the zj are complex numbers and |0⟩j is the bosonic oscillator vacuum state for the j-mode. These
coherent states are non-orthogonal

⟨z1 | z2⟩ = exp(−|z1|2/2 + z∗

1 z2 − |z2|2/2), (17)

and satisfy the closure relation∫
|zj⟩

d2zj
π

⟨zj| = 1j, (18)

with 1j the unit operator for the j-mode and the overlap ⟨n1n2|z1z2⟩ given by a Poisson distribution

⟨n1n2 | z1z2⟩ = ⟨n1 | z1⟩⟨n2 | z2⟩, (19)

with

|⟨nj | zj⟩|2 = exp(−|zj|2)
|zj|2nj

nj!
. (20)

The dynamics of the present model is not stationary and depends on the initial conditions of the
system and the cavity field. Thus, it is assumed that, initially, the field modes are in coherent states
|z1z2⟩ and the atomic system is a superposition of states |JM⟩, that is, the atomic system and the field
are initially in a disentangled state with density operator

ρ(0) = ρ f (0)⊗ ρS(0) = |ψ(0)⟩⟨ψ(0)|, (21)
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where ρ f (0) and ρS(0) are density operators at t = 0 of the field and the atomic ensemble
respectively, and

|ψ(0)⟩ =

J−
M=−J

∞−
n1=0

∞−
n2=0

CM(0)Cn1n2(0)|JM⟩ ⊗ |n1n2⟩, (22)

with coefficients CM(0) ≡ ⟨JM|θ, φ⟩, Cn1n2(0) ≡ ⟨n1n2|z1z2⟩. It is further assumed that at t = 0, the
two modes have the same photon distribution, i.e., the density operator of the field is written as

ρ f (0) =

∞−
n1=0

∞−
n2=0

∞−
m1=0

∞−
m2=0

Cn1(0)Cn2(0)C
∗

m1
(0)C∗

m2
(0)P n1m1

n2m2
, (23)

where P
n1m1
n2m2 = |m1m2⟩⟨n1n2| is the two-mode Fock space projection operator. Thus, we write

Cm1m2(0) = [ρ f
m1m1

(0)ρ f
m2m2

(0)]1/2, (24)
while the density operator of the 2N-level atomic system is given by

ρS(0) =

J−
M=−J

J−
M ′=−J

CM(0)C∗

M ′(0)P JM
JM ′ , (25)

where P
JM
JM ′ = |JM⟩⟨JM ′

| is the projection operator in the angular momentum space.
It is well known that the quantum coherences which are built up during the interaction

process significantly affect the dynamics of the atomic system. Thus, in order to investigate the
nonclassical behavior of the presentmodelwe introduce in the next Subsection the interaction picture
representation of this generalized Dicke model.

2.2. Interaction picture representation of the generalized Dicke model

Introducing the unitary time evolution operator for the unperturbed Hamiltonian
U0(t) = exp(−iH0t), (26)

whichmerely contributes a phase factor in each atomic subspace, the interaction picture Hamiltonian
is given by

V(t) = U
Ď
0(t)HIU0(t), (27)

whereHI is given by the last termon the rhs of Eq. (2). Using the Baker–Campbell–Hausdorff expansion

exp(αA) B exp(−αA) = B + α[A, B] + α2/2! [A, [A, B]] + . . . , (28)
along with the commutation relations

[aĎj aj, R
k
i ] = −kRk

i δij, (29)

[aĎj aj, R
Ďk
i ] = kRĎki δij, (30)

and consequently noting that

eiνja
Ď
j ajtRk

j e
−iνja

Ď
j ajt = Rk

j e
−iνjkt , (31)

eiνja
Ď
j ajtRĎkj e−iνja

Ď
j ajt = RĎkj eiνjkt , (32)

and

eiωtJz J+e−iωtJz = J+eiωt , (33)
the interaction picture Hamiltonian in Eq. (27) can be written as

V(t) ≡ V1(t)+ V2(t) =

2−
j=1

Gj
√
N
(J+ ⊗ Rk

j e
i∆jt + h.c.), (34)
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with the detuning parameter∆j for the mode j given by

∆j = ω − kνj. (35)

These detunings between the cavity mode and the atomic transition can have an important influence
on the nonclassical effects, as recently reported in the case of a two-level atom coupled to a single
mode of cavity fields [40].

To proceed further it is observed from Eq. (34) that

[V1(t),V2(t)] =
G1G2

J
Jz ⊗ (Rk

1R
Ďk
2 ei(∆1−∆2)t − h.c.). (36)

Thus, the nonvanishing of this commutator requires special care.Moreover, since in thismodel system
H0 does not commute with HI , the set of interaction picture Hamiltonians V(t1), V(t2), . . ., taken at
different times t1, t2, . . ., fail to commute. In fact, after some rather lengthy algebra, the commutator
[H(t1),H(t2)] is found to be

[V(t1),V(t2)] =

2−
i=1

2−
j=1

[Vi(t1),Vj(t2)]

=


i

2−
j=1

G2
j

J
(J+J− ⊗ [Rk

j , R
Ďk
j ] + 2Jz ⊗ RĎkj Rk

j ) sin[∆j(t1 − t2)]

+
G1G2

J
Jz ⊗ (Rk

1R
Ďk
2 (e

i(∆1t1−∆2t2) − ei(∆1t2−∆2t1))− h.c.)


, (37)

which clearly does not vanish, except in the (nontrivial) particular case of exact simultaneous
resonance of both modes with the spin transition frequency. In the present paper, we assume that
the boson modes are not tuned in resonance with the spins ω. If the boson modes are strongly
detuned (|ω− kνj| ≫ ⟨G2

j ⟩
1/2) the interaction between them is weak and the model can be analyzed

perturbatively. To this end, perturbation expansion of the time evolution operator matrix elements
truncated to a finite order will be used. This time evolution operator in the interaction picture
representation reads (Dyson expansion)

UI(t) = F exp
[
−i
∫ t

0
V(t)dt

]
, (38)

whereF is the time-ordering chronological operator, which is a shorthand notation for the expansion

F exp
[
−i
∫ t

0
V(t)dt

]
= 1 − i

∫ t

0
V(t1)dt1

+ (−i)2
∫ t

0
dt1

∫ t1

0
dt2V(t1)V(t2)+ · · · ≡

∞−
n=0

UIn(t). (39)

The entangled interaction picture state vector at any time t emerges from the coherent state |ψ(0)⟩
in Eq. (22) via the unitary time-evolution operator UI(t)

|ψI(t)⟩ =

J−
M=−J

∞−
n=0

∞−
m1=0

∞−
m2=0

CM(0)Cm1m2(0)UIn(t)|JM⟩ ⊗ |m1m2⟩. (40)

The different contributions to the interaction picture time evolution operator up to second-order
are given by (UI0 = 1)

UI1(t) =

2−
j=1

Gj
√
N
(J+ ⊗ Rk

j φj(t)− h.c.), (41)
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where the time-dependent first-order scalar function φj(t) is given by

φj(t) =
1 − ei∆jt

∆j
, (42)

while the second-order contribution emerges as

UI2(t) =

2−
i=1

2−
j=1

GiGj

N
[(J2

+
⊗ Rk

i R
k
j φ

++

ij (t)+ J+J− ⊗ Rk
i R

Ďk
j φ

+−

ij (t))+ h.c.], (43)

with the different signatures of the second-order time-dependent functions φij(t) given by (i, j =

1, 2; i ≠ j)

φ++

ij (t) =
ei(∆i+∆j)t − 1
(∆i +∆j)∆j

−
ei∆it − 1
∆i∆j

, (44)

φ+−

ij (t) =
ei∆it − 1
∆i∆j

−
ei(∆i−∆j)t − 1
(∆i −∆j)∆j

, (45)

φ−+

ij (t) = φ∗+−

ij (t), (46)

φ−−

ij (t) = φ∗++

ij (t), (47)

φ+−

jj (t) =
ei∆jt − 1 − it∆j

∆2
j

. (48)

Up to this point the developed formalism is completely general, allowing to investigate k photons
transitions within the framework of time-dependent perturbation theory. The present study will be
restricted to two-photon transitions, i.e., k = 2 in Eqs. (41) and (43). In real physical processes, the
two-photon algebra acts on theharmonic-oscillator Fock space. Thus,matrix elements of the operators
R2
j , R

2
i R

2
j , R

2
i R

Ď2
j and their hermitian conjugates implicit in Eqs. (41) and (43) are easily computed with

respect to the standard number states |ni⟩ (i = 1, 2) which form a basis for each subspace. Different
contributions to the time-evolution operator matrix elements can be evaluated through

api |ni⟩ =


p!

ni
p


|ni − p⟩, (49)

aĎqj |nj⟩ =
1

(−q)!


nj
−q

 |nj + q⟩, (50)

with i, j = 1, 2, p ≤ ni, and the matrix elements of the different radiation field operators acting on
|nj⟩ are listed in Appendix A. With these ingredients and from the angular momentum coefficients

λ±

JM =


(J ∓ M)(J ± M + 1), (51)

along with the definition emerging in the evaluation of matrix elements in the Fock space

Qnj = nj(nj − 1)1/2, (52)

the first- and second-order contributions to the time evolution operatormatrix elements are obtained
as

⟨JM ′
| ⊗ ⟨m1m2|UI1(t)|JM⟩ ⊗ |n1n2⟩

=

2−
j≠k

Gj
√
N
(λ+

JMQnjφj(t)δM ′M+1δmjnj−2 − λ−

JMQnj+2φ
∗

j (t)δM ′M−1δmjnj+2)δmknk , (53)
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and

⟨JM ′
| ⊗ ⟨m1m2|UI2(t)|JM⟩ ⊗ |n1n2⟩

=

2−
j≠k


G2
j

N
(λ+

JMλ
+

JM+1QnjQnj−2φ
++

jj (t)δM ′M+2δmjnj−4

+ (λ−

JMλ
+

JM−1Q
2
nj+2φ

∗+−

jj (t)+ λ+

JMλ
−

JM+1Q
2
njφ

−+

jj (t))δM ′Mδmjnj

+ λ−

JMλ
−

JM−1Qnj+2Qnj+4φ
−−

jj (t)δM ′M−2δmjnj+4)δmknk

+
GjGk

N
(λ+

JMλ
+

JM+1QnjQnkφ
++

jk (t)δM ′M+2δmjnj−2δmknk−2

+ λ−

JMλ
+

JM−1Qnj+2Qnkφ
+−

jk (t)δM ′Mδmjnj−2δmknk+2

+ λ+

JMλ
−

JM+1QnjQnk+2φ
−+

jk (t)δM ′Mδmjnj+2δmknk−2

+ λ−

JMλ
−

JM−1Qnj+2Qnk+2φ
−−

jk (t)δM ′M−2δmjnj+2δmknk+2)


. (54)

Note that the different contributions of the time evolution operator act on the ensemble of the totality
of angular momentum states |JM⟩ and not merely on the ground stateM = −J , the fully excited state
M = J , or the half-excited Dicke state M = 0. The collective effects for different initial atomic states
were studied in detail some time ago [8]. It was claimed that if the atoms are prepared initially in
the ground state (M = −J) or in the fully excited state (M = J), then the system behaves rather
similarly to the single-atom case. But, the results are different when the atoms are prepared initially
in the half-excited Dicke state (M = 0). This state is well known as the superradiant atomic state in
the context of collective spontaneous emission in open space. In the present study, the global initial
state is given by the tensor product of the simultaneous superposition of the totality of Dicke atomic
states |JM⟩ and the field modes, given in terms of Glauber coherent states as Eq. (22) shows.

The time-dependent density operator emerges as the perturbative solution of the Heisenberg
equation of motion via

ρ(t) = e−iV̂(t)ρ(0)

= 1 − i[V(t), ρ(0)] +
(−i)2

2!
[V(t), [V(t), ρ(0)]] + · · · , (55)

where V̂(t) is a superoperator defined by V̂(t)ρ(0) = [V(t), ρ(0)]. Truncated to second-order, the
matrix elements of this density operator are given by

ρ
n1m1n2m2
MM ′ (t) = Cm1m2

M ′ (t)Cn1n2
M (t), (56)

with the coefficients

Cm1m2
M ′ (t) = CM ′(0)[ρ f

m1m1
(0)ρ f

m2m2
(0)]1/2

+

2−
j≠k

[
Gj

√
N
(λ+

JM ′−1Qmj+2φj(t)CM ′−1(0)[ρ
f
mj+2mj+2(0)ρ

f
mkmk

(0)]1/2

− λ−

JM ′+1Qmjφ
∗

j (t)CM ′+1(0)[ρ
f
mj−2mj−2(0)ρ

f
mkmk

(0)]1/2)

+
G2
j

N
(λ+

JM ′−2λ
+

JM ′−1Qmj+4Qmj+2φ
++

jj (t)CM ′−2(0)

× [ρ
f
mj+4mj+4(0)ρ

f
mkmk

(0)]1/2 + (λ−

JM ′λ
+

JM ′−1Q
2
mj+2φ

+−

jj (t)

+ λ+

JM ′λ
−

JM ′+1Q
2
mj
φ−+

jj (t))CM ′(0)[ρ f
mjmj

(0)ρ f
mkmk

(0)]1/2

+ λ−

JM ′+2λ
−

JM ′+1Qmj−2Qmjφ
−−

jj (t)CM ′+2(0)[ρ
f
mj−4mj−4(0)ρ

f
mkmk

(0)]1/2)
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+
GjGk

N
(λ+

JM ′−2λ
+

JM ′−1Qmj+2Qmk−2φ
++

jk (t)CM ′−2(0)[ρ
f
mj+2mj+2(0)ρ

f
mk+2mk+2(0)]

1/2

+ λ−

JM ′λ
+

JM ′−1Qmj+4Qmk−2φ
+−

jk (t)CM ′(0)[ρ f
mj+2mj+2(0)ρ

f
mk−2mk−2(0)]

1/2

+ λ+

JM ′λ
−

JM ′+1Qmj−2Qmk+4φ
−+

jk (t)CM ′(0)[ρ f
mj−2mj−2(0)ρ

f
mk+2mk+2(0)]

1/2

+ λ−

JM ′+2λ
−

JM ′+1QmjQmkφ
−−

jk (t)CM ′+2(0) [ρ
f
mj−2mj−2(0)ρ

f
mk−2mk−2(0)]

1/2)

]
. (57)

The rather complex structure of the density operator matrix elements shows that the model
becomes strongly entangled at times t > 0, which is reflected in the behavior of the time evolution
of the linear entropy and of other nonclassical effects, as discussed in the next section.

3. Results and discussion

In the computations to be described below, the density operator matrix elements of the field at
t = 0 are given in terms of the Poisson distribution of Eq. (20)

ρ f
njnj(0) =

n
nj
j e

−nj

nj!
, (58)

where nj (≡|zj|2) is the initial mean photon number. The model parameters will be characterized in
terms of the strength of the coupling as measured by the dimensionless ratio κi = Gi/(ω − 2νi).

The photon number distribution is a stationary property. Thus, computation of this quantity can
be realized at any arbitrary time. In Fig. 1, we plot the photon number distribution for the initial state
(i.e. t = 0) as given by

p(n1) =

∞−
n2=0

TrSρ(0) ≡

∞−
n2=0

J−
M=−j

ρ
n1n1n2n2
MM (0), (59)

in terms of the photon number for the first mode n1 and for three different values of the initial mean
photon number n1. In Eq. (59), the superscript S stands for the bosonic system S and TrS is the partial
trace over the degrees of freedom of the ensemble ofN two-level atoms. Since the photon distribution
is not a dynamical quantity, the calculations can be performed in the strong coupling limit, without
altering the spirit of the perturbative treatment of the model. In the present case, we take κ1 = 47
and κ2 = 12. The computations were performed by averaging over n2, the photon quantum number
for the second mode. It is observed that the Poisson distributions peak at the integer value closest
to n1. As expected, the amplitudes decrease with the increase of n1 and a consequent increase in the
half-width of the distribution, thus preserving the normalization of the state.

We next examine the spin and field squeezing. The uncertainty principle limits the precise
knowledge of all physical quantities in a quantum system. One tool often used to overcome the
restrictions imposed by the uncertainty principle in practical quantum applications is the squeezed
states. These nonclassical states are characterized when the variance for a given quadrature operator,
calculated using them, is amplifiedwhile the variance in the other quadrature operator is deamplified,
keeping their product bounded by the uncertainty principle. The Bloch states form minimum
uncertainty packets. The uncertainty relation can be defined in terms of the set of rotated operatorsJχ

Jξ
Jζ


= Rθ,φ

Jx
Jy
Jz


R−1
θ,φ . (60)

These three observables obey a commutation relation of the type [A, B] = iC with A = Jχ , B = Jξ ,
C = Jζ , whence they have the uncertainty property

1Jχ1Jξ ≥
1
2
|⟨Jζ ⟩|, (61)

for any states. It is easy to show that the equality sign holds for the Bloch state |θ, φ⟩, which is therefore
a minimum-uncertainty state.
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Fig. 1. Photon distribution of the Dicke model for three different values of the mean photon number ⟨n1⟩ ≡ n1 in the
initial state. The initial mean photon number for the second mode is n2 = 12. The system is initially prepared in coherent
superposition states of angular momentum |JM⟩with J = 20 interacting dispersively with the coherent field given by a Poisson
distribution. ω = 83 cm−1; ν1 = 37 cm−1; ν2 = 74 cm−1; G1 = 467 cm−1; G2 = 800 cm−1; θ = π/4; φ = π/3.

Fig. 2. Time evolution of the variance squeezing factor Var(J) based on the Heisenberg uncertainty relation. The system is
initially prepared in coherent superposition states of angular momenta |JM⟩ with J = 3 interacting dispersively with the
coherent field given by a Poisson distribution. ω = 5000 cm−1; ν1 = 1367 cm−1; ν2 = 743 cm−1; G1 = 4.67 cm−1;
G2 = 8 cm−1; θ = π ; φ = π/4. The initial mean photon numbers are n1 = 20 and n2 = 10.

Fluctuations in the component Jα (α = χ, ξ or x, y) of the atomic dipole are said to be squeezed if
Jα satisfies the condition

Var(Jα) = 1Jα −


|⟨Jζ ⟩|
2

1/2

< 0, (62)

where1Jα = [⟨J2α⟩ − ⟨Jα⟩2]1/2. General expressions valid to all orders that are necessary to compute
second-order statistical moments for the different angular momentum components are derived in
Appendix B. Fig. 2 displays the time evolution of the fluctuations in the components Jα (α = χ, ξ ) in
the limit of a rather weak coupling for both modes κ1 = 0.20 × 10−2, κ2 = 0.23 × 10−2. The atomic
system is initially in superposition states |JM⟩ and the field is in a coherent state. It can be observed that
the second-order variance Var(Jα) predicts no squeezing in the Jχ component at times smaller than 0.5
ps, and after that it oscillateswith amplitudes that get smaller with the passage of time. The squeezing
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only appears during short periods of time, keeping themagnitude of the fluctuations above and below
of zerowith a nearly constant period above 2 ps. The Jξ component, on the other hand, predicts a small
amount of continuous squeezing only at transient times less than 0.1 ps. In the neighborhood of zero
and at times longer than 2 ps, both components are alternatively squeezed and unsqueezed, thus
preserving the uncertainty relation given by Eq. (61). These CSS have an isotropic quasiprobability
distribution in a spherical phase space [41] and in these systems squeezing occurs on this phase
sphere. Unlike boson squeezing, this quasiprobability distribution cannot be homogeneously or
globally squeezed in one direction over the whole phase space. If an angular momentum or spin
component is shrunk around a certain point on the sphere, it must be stretched around another point,
what then imposes a fundamental restriction on the reduction in quantum noise.

We now focus on the important quantum phenomenon of field squeezing. The initially coherent
cavity field can be squeezedwhen it interacts with a single atom [36,42], and squeezing in the revival-
time regime can be very strong for large intensities of the field [43,44]. Fig. 3 shows the normal
squeezing factor of the field in the quadrature modes

X (i)1 (t) =
1
2
(aiei2νit + aĎi e

−i2νit), (63)

X (i)2 (t) = −
i
2
(aiei2νit − aĎi e

−i2νit). (64)

These operators satisfy the canonical commutation relations

[X (i)1 (t), X
(j)
2 (t)] =

i
2
δij, (65)

which implies the uncertainty relations

⟨(1X (i)1 )
2
⟩⟨(1X (i)2 )

2
⟩ ≥

1
16
. (66)

Squeezing is said to exist whenever the uncertainty of one of the quadratures is below the vacuum
level (standard quantum limit), i.e., ⟨(1X (i)j )

2
⟩ < 1

4 . In order to characterize the influence of intrinsic
decoherence on the squeezing, it was found convenient to characterize the squeezing through the use
of the parameter (Qij ≡ Qij(t))

Qij = 1 − 4⟨(1X (i)j )
2
⟩, (67)

where 0 < Qij ≤ 1 for squeezing. The computations were conducted in the coupling limits κ1 =

0.25 × 10−2 and κ2 = 1.2. It was claimed [45] that in the Dicke model collective atomic effects can
improve squeezing obtained for short interaction times, compared to the single-atom case. It is found
that the present model only gives a certain amount of squeezing (less than 20%) for times longer than
0.1 ps approximately, which is due to the two-mode two-photon process we are considering. In fact,
squeezing depends on two-photon transitions, when a pair of photons is simultaneously absorbed
or emitted by the atomic system. The oscillations of Q21(t) decay with time but their regular pattern
is conserved on the long-time scale. This decay is correlated with the regularity in the behavior of
the atomic inversion, caused by very large overlaps of neighboring revivals. Fig. 4 shows the atomic
inversion as given by the third part of Eq. (B.22). A rapid decay of the atomic inversionwith the passage
of time is observed. In the many-atom case there exist anharmonic collective corrections (not taken
into account in the present study) which modify the shape of the atomic inversion related to the
photon-distribution mechanism [46].

It is well known that the revivals of the atomic inversion as well as the oscillations in the photon
number distribution in Jaynes–Cummings models arise as a consequence of quantum interference in
phase space. These nonclassical effects have their origin in quantum coherences established during
the interaction between the atom and the cavity field [47]. From the structure of the time-dependent
density operator matrix elements, it is evident that its high degree of entanglement contributes to
the destruction of quantum coherences. This leads to the appearance of ‘‘decay’’ factors in the term
⟨Jz⟩ which is responsible for the destruction of revivals of the atomic inversion. In other words, with a
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Fig. 3. Time evolution of the normal second-order squeezing factor Q21(t). The system is initially prepared in coherent
superposition states of angular momenta |JM⟩ with J = 5 interacting dispersively with the coherent field given by a Poisson
distribution. ω = 833 cm−1; ν1 = 1367 cm−1; ν2 = 743 cm−1; G1 = 4.67 cm−1; G2 = 800 cm−1; θ = π/4; φ = π/3. The
initial mean photon numbers are n1 = 20 and n2 = 10.

Fig. 4. Time evolution of the atomic inversion ⟨Jζ ⟩(t). The system is initially prepared in coherent superposition states of
angular momenta |JM⟩ with J = 3 interacting dispersively with the coherent field given by a Poisson distribution. The value of
the different parameters is the same as those given in Fig. 2.

rapid suppression of quantum coherences,we can observe rapid deterioration of revivals of the atomic
inversion. Fig. 4 illustrates the decay of quantum coherences due to the very specific time evolution
described by the density matrix elements involved in ⟨Jz⟩, i.e., due to the intrinsic decoherence.
Of course, the system remains conservative, so there is no dissipation of energy and the inversion
‘‘relaxes’’ to the asymptotic |J| value.

We now study the dynamics of the field statistics of this generalized Dicke model, with particular
attention to the production of states of the field exhibiting nonclassical properties. Nonclassical effects
were previously detected in the investigation of the dynamics of the Raman coupledmodel interacting
with two quantized cavity fields [48]. To characterize the statistical properties of the light beams, we
introduce the function

γ
(2)
ij =

⟨aĎi (t)a
Ď
j (t)aj(t)ai(t)⟩

⟨aĎi (t)ai(t)⟩⟨a
Ď
j (t)aj(t)⟩

, i, j = 1, 2. (68)
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Fig. 5. Time evolution of the normally ordered photon number variance. The system is initially prepared in coherent
superposition states of angular momenta |JM⟩ with J = 3 interacting dispersively with the coherent field given by a Poisson
distribution. The value of the different parameters is the same as those given in Fig. 2.

Here γ (2)ii defines the degrees of second-order coherence in the modes and γ (2)12 describes the degree
of intermode correlation.

We first consider the second-order coherence of the modes. The function γ (2)ii can be written in
terms of the normally ordered photon number variance ⟨: (1Ni)

2
:⟩ as

γ
(2)
ii = 1 +

⟨: (1Ni)
2

:⟩

⟨Ni⟩
2

, (69)

where Ni = aĎi ai and

⟨: (1Ni)
2

:⟩ = ⟨aĎi (t)a
Ď
i (t)ai(t)ai(t)⟩ − ⟨Ni⟩

2. (70)

The light is nonclassical, exhibiting the sub-Poisson statistics whenever γ (2)ii < 1 or equivalently
whenever ⟨: (1Ni)

2
:⟩ < 0. Time evolution of the normally ordered variances of the photon number

operators is presented in Fig. 5. In this figure the coupling parameters, the average quantum numbers
of the field, the total angular momentum, as well as the angles θ , φ are the same as those used in
Fig. 2. It appears, from Fig. 5, that for the particular set of parameters used, sub-Poisson statistics will
always be present in the first mode for times longer than 2 ps. In the neighborhood of t = 0.5 ps it
is observed a rather pronounced sub-Poissonian statistics. We notice that the second mode shows no
antibunching over the whole time scale considered. In other words, no antibunching is observed in
this mode but dominates slightly the first mode. We observe that the antibunching in the first mode
occurs in regions where the atomic inversion ⟨Jζ ⟩ evolves to values very close to |Jζ | = J .

Also of interest is the degree of interbeam second-order coherence.We actually calculate the cross-
correlation function (or the covariance of the product of the photon number operators) between the
two modes as defined by

C(t) = ⟨aĎ1(t)a
Ď
2(t)a2(t)a1(t)⟩ −

2∏
i=1

⟨aĎi (t)ai(t)⟩, (71)

which is proportional to the excess coincidence counting rate for a Hanbury–Brown–Twiss-type
experiment with two beams. For C(t) = 0 the beams are uncorrelated (γ (2)12 = 0), for C(t) > 0
they are correlated (γ (2)12 > 0), and for C(t) < 0 they are anticorrelated (γ (2)12 < 0). Because of the
nature of the interaction in the presentmodel, where one photon is associatedwith each singlemode,
we expect the two modes to be predominantly anticorrelated. This is evident in Fig. 6, where we plot
the time evolution of C(t) vs. t .
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Fig. 6. Time evolution of the cross-correlation function. The system is initially prepared in coherent superposition states of
angular momenta |JM⟩ with J = 3/2 (solid line) and J = 5/2 (dashed line) interacting dispersively with the coherent field
given by a Poisson distribution. The value of the different parameters is the same as those given in Fig. 2.

Decoherence, leading to the quantum superpositions turning into a statistical mixture is an
important factor that helps to understand the behavior of the interaction in the long time regime.
The characteristic time of decoherence is less than the decay time by a factor characterizing the
‘‘separation’’ between different parts of the quantum superposition. These features can be clearly
observed in Figs. 4–6. First, there is a fast decay of nondiagonal elements of the field density
matrix in the coherent states basis in the course of free evolution of the quantized field. Second,
there is a rapid loss of mutual coherence between semiclassical states in the model. Because of the
interference between two adjacent semiclassical states that leads to the appearance of the collapse-
revival structure, the decoherence observed in Figs. 4–6 is reflected in a strong suppression of revival
amplitudes. In other words, any intrinsic decoherence will not only reduce the superposition to a
statistical mixture, but also eliminate the revival consequent upon the survival of the superposition.
This intrinsic decoherence also modifies the time evolution of the atomic inversion, as Fig. 4 shows.

We now consider the Cauchy–Schwartz inequality

(γ
(2)
12 )

2
≤ γ

(2)
11 γ

(2)
22 , (72)

which is violated by nonclassical states, indicating a nonclassical correlation between the beams. We
actually calculate the quantity

V (t) = ⟨aĎ1(t)a
Ď
2(t)a2(t)a1(t)⟩

2
−

2∏
i=1

⟨aĎi (t)a
Ď
i (t)ai(t)ai(t)⟩. (73)

Whenever V (t) is positive, the inequality in Eq. (72) is violated. In Fig. 7, it can be observed that,
effectively, this inequality is slightly violated in the long time regime and this violation is more
pronounced for J = 5/2 than for J = 3/2 above t ∼ 0.5 ps. In the very short time regime it appears
not to be violated at all.

We now turn to investigate the dynamics of entanglement. To study dynamics of entanglement,
onemust choose an entanglementmeasure. In the present case, the entanglement can be described by
the linear entropy or the von Neumann entropy. A similar behavior of the twomeasures is found. Thus
we only present the results of the linear entropy. In fact, the evaluation of the entanglement dynamics
in terms of the linear entropy results to be much less demanding from the computational point of
view, not requiring the diagonalization of the density matrix. This aspect appears to be relevant since
the complexity of many systems of physical interest practically prevents the diagonalization of the
corresponding density matrix [49].

The linear entropy is a measure of mixedness in quantum states. It is a scalar defined as [50]

SL(t) = 1 − TrSρS(t)2, (74)
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Fig. 7. Behavior of the Cauchy–Schwartz inequality V (T ) vs. t . The system is initially prepared in coherent superposition states
of angular momenta |JM⟩ with J = 3/2 (solid line) and J = 5/2 (dashed line) interacting dispersively with the coherent field
given by a Poisson distribution. The value of the different parameters is the same as those given in Fig. 3, except G2 = 8 cm−1 .

Fig. 8. Time evolution of the linear entropy. The system is initially prepared in coherent superposition states of angular
momenta |JM⟩ with J = 5 (solid line) and J = 5/2 (dashed line) interacting dispersively with the coherent field given by a
Poisson distribution. The value of the different parameters is the same as those given in Fig. 3, except G2 = 8 cm−1 , θ = π/2,
φ = π .

where ρS(t) is the reduced density matrix ρS(t) = Tr f |ψI(t)⟩⟨ψI(t)|, with |ψI(t)⟩ the quantum state
of the full system [Eq. (40)], which evolves in time under the action of the evolution operator UI(t) of
Eq. (38).Wenote that the expression of SL(t) is representation-independent since the trace is invariant
under unitary transformations of the model. In the language of entanglement SL(t) ranges from 0
(i.e., Trρ(t)2 = 1) for disentangled and/or pure states to 1 (i.e., Trρ(t)2 = 0) for maximally entangled
bipartite. Thus, Trρ(t)2 can be taken as the Bloch sphere radius introduced in Section 2.

The entanglement entropy was recently studied in the context of the Bose–Einstein conden-
sate [32]. Our aim here is to investigate the time evolution of the atomic and field initially coher-
ent states along with the occurrence of entanglement between both systems. Thus, we let the model
evolve by means of the evolution operator in Eq. (40) and explore the entanglement dynamics by
tracing out the field and atomic density operators over the corresponding degrees of freedom.

Fig. 8 displays the numerical results of the linear entropy for two different values of the total
angular momentum J. The computations were conducted in the weak coupling limit for both modes,
i.e., κ1 = 0.25 × 10−3 and κ2 = 0.12 × 10−1.



2862 H. Grinberg / Annals of Physics 326 (2011) 2845–2867

It can be observed that entanglement has a rapid rise after a very short initial time for both J = 5
and J = 5/2. When J = 5, i.e., N = 10, the entropy saturates to a relatively stable value with
continuous oscillations of small amplitudes. With a decrease in the number of atoms to N = 5, which
corresponds to a total angular momentum J = 5/2, strong oscillations of entanglement with the
magnitude of the entropy keeping below the J = 5 case for the whole time scale considered are
observed. The maximal entanglement SL max here can be considered as entangling powers of unitary
operations, describing the capability of entropy production. The maximal entanglement increases
with J , i.e., with the number of atoms, passing from 0.9955 for J = 5/2 to 0.9967 for J = 5. In both
cases, it is noted that the linear entropy monotonically approaches a plateau as it should be for an
irreversible process. In fact, at the end of the standard relaxation process the linear entropy reaches a
sort of thermodynamic equilibrium and all the revivals are suppressed. It is clear that the collapse is
now irreversible due to the subsequent incoherence of possible chaotic trajectories.

It is well known that statistical mixtures correspond to points inside the Bloch sphere on the z-axis.
Statistical mixtures therefore have r < 1, in contrast to superposition states, which are always on the
surface of the sphere with r = 1. The pattern in Fig. 8 is reminiscent of damping processes which
destroy coherence and reduce superposition states to statistical mixtures. Since statistical mixtures
have r < 1, Fig. 8 shows that the Dicke model does not preserve the modulus of the Bloch vector. This
entanglement is a sort of accessible entanglement, i.e., the maximum value of the entanglement that
could be extracted from the system and placed in quantum registers, from which it could be used to
perform quantum information processing.

4. Conclusions

In this paper, a previously univestigated novel procedure, based on the perturbative solution of the
time-dependent (interaction picture representation) Schrödinger equation was introduced to study
the possible existence of nonclassical effects emerging from the dispersive interaction of N two-level
atomswith a bimodal cavity field. One of the novel features of themodel is the incorporation of inten-
sity dependent photon operators in the interactive part of the Dicke Hamiltonian. The resulting highly
nonlinear generalized Dicke model involves two-photon transitions in a scenario where the RWA is
assumed. The homogeneity of the model allowed us to represent the Dicke Hamiltonian entirely in
terms of the total angular momentum J . The computations were conducted via second-order Dyson
perturbative expansion of the time evolution operator matrix elements for the totality of angular mo-
mentum states of the atomic system. It was assumed that, initially, the atomic system and the field are
in a disentangled state, with the boson field in the Glauber coherent state and the atomic system in an
ensemble of Dicke states JM > (−J ≤ M ≤ J). At t > 0 the resulting time-dependent density operator
matrix becomes strongly entangled. This is reflected in a number of nonclassical properties such as
spin and field squeezing, photon antibunching as well as violation of the Cauchy–Schwartz inequality
in the long time regime. The disentanglement, resulting from the irreversible coupling of the atomic
systemwith the degrees of freedom of the cavity field, produces the phenomenon of decoherence that
leads to the quantum superpositions turning into a statistical mixture. This phenomenon is reflected
in the time evolution of the linear entropy, where it is clearly observed that the present model does
not preserve the modulus of the Bloch vector. Thus, the results obtained lead to the conclusion that
the linear entropy can be an efficient and still valid entanglement measure for Dicke models, as for
other physical phenomena of interest in quantum-information processing.

Finally, it should be stressed that it is of great interest to explore approximate solutions of more
complex Hamiltonians that contain the counter-rotating terms [51] for a wide range of the system
parameters, and compare themwith the RWA results. Work along these lines is underway andwill be
reported elsewhere.
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Appendix A. Radiation field operators matrix elements in the fock space

The radiation field operators’ matrix elements in the Fock space are computed from Eqs. (49)–(50).
They are given in terms of the parameters Qnj of Eq. (52) as

⟨mjmk|R2
j |njnk⟩ = Qnjδmjnj−2δmknk ,

⟨mjmk|R
Ď2
j |njnk⟩ = Qnj+2δmjnj+2δmknk ,

⟨mjmk|R2
j R

2
k |njnk⟩ = QnjQnkδmjnj−2δmknk−2,

⟨mjmk|R2
j R

Ď2
k |njnk⟩ = QnjQnk+2δmjnj−2δmknk+2,

⟨mjmk|R
Ď2
j R2

k |njnk⟩ = Qnj+2Qnkδmjnj+2δmknk−2,

⟨mjmk|R
Ď2
j RĎ2k |njnk⟩ = Qnj+2Qnk+2δmjnj+2δmknk+2,

⟨mjmk|R4
j |njnk⟩ = QnjQnj−2δmjnj−4δmknk ,

⟨mjmk|R2
j R

Ď2
j |njnk⟩ = Q 2

nj+2δmjnjδmknk ,

⟨mjmk|R
Ď2
j R2

j |njnk⟩ = Q 2
njδmjnjδmknk ,

⟨mjmk|R
Ď4
j |njnk⟩ = Qnj+2Qnj+4δmjnj+4δmknk .

To derive explicit expressions for the second-order coherence given in Eq. (68) we proceed as
follows. The average photon numbers ni(t) (i = 1, 2) are obtained as

ni(t) =

∞−
n1=0

∞−
n2=0

J−
M=−J

niρ
n1n1n2n2
MM (t), (A.1)

and where ni(0) ≡ ni. The expectation values ⟨Ni⟩ ≡ ni(t) appearing in Eq. (69) are just those given
by Eq. (A.1) while the first term on the right of Eq. (70) is given by

⟨aĎi (t)a
Ď
i (t)ai(t)ai(t)⟩ =

∞−
n1=0

∞−
n2=0

J−
M=−J

ni(ni − 1)ρn1n1n2n2
MM (t). (A.2)

Finally, the first term on the right in Eq. (71) is straightforwardly computed as

⟨aĎ1(t)a
Ď
2(t)a2(t)a1(t)⟩ =

∞−
n1=0

∞−
n2=0

J−
M=−J

n1n2ρ
n1n1n2n2
MM (t). (A.3)

Appendix B. Important relations concerning rotated operators

Investigation of the variances containing second-order statistical moments in the angular
momentum components (Jx, Jy, Jz) and their rotated counterparts (Jχ , Jξ , Jζ ) requires the computation
of a number of matrix elements of these operators in the basis given by the interaction picture Dicke
wavefunction given in Eq. (40).

It is first observed, with the help of Eq. (51), that matrix elements of J2
+
, J+J−, and their hermitian

conjugates, are easily evaluated as

⟨JM ′
|J2

+
|JM⟩ = λ+

JMλ
+

JM+1δM ′M+2, (B.1)

⟨JM ′
|J2

−
|JM⟩ = λ−

JMλ
−

JM−1δM ′M−2, (B.2)
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⟨JM ′
|J+J−|JM⟩ = λ−

JMλ
+

JM−1δM ′M , (B.3)

⟨JM ′
|J−J+|JM⟩ = λ+

JMλ
−

JM+1δM ′M . (B.4)

From the definitions Jx = 1/2(J+ + J−), Jy = 1/2i(J+ − J−) along with the relation λ+

JM = λ−

JM+1 and
after some algebra one gets

⟨Jx⟩ = Re
∞−

n1=0

∞−
n2=0

J−
M=−J

ρ
n1n1n2n2
MM+1 (t)λ+

JM , (B.5)

⟨Jy⟩ = Im
∞−

n1=0

∞−
n2=0

J−
M=−J

ρ
n1n1n2n2
MM+1 (t)λ+

JM , (B.6)

while the expectation value of the square of these operators emerges as

⟨J2α⟩ =

J−
M=−J

∞−
n1=0

∞−
n2=0

[
ϵαReρ

n1n1n2n2
MM+2 (t)λ+

JMλ
+

JM+1 +
1
4
ρ
n1n1n2n2
MM (t)[(λ−

JM)
2
+ (λ+

JM)
2
]

]
, (B.7)

where α = x, y and ϵx = −ϵy = 1/2.
It is seen that on the two-dimensional Bloch sphere (S2) and from the proper definition of the

rotation operator [Eq. (6)] in angularmomentum space, the arbitrary angularmomentumcomponents
(Jn, Jk) transform as

Jn
Jk


=


sinφ − cosφ
cosφ sinφ


Jx
Jy


. (B.8)

To find the unitary transformation of Jk → Rθ,φ JkR−1
θ,φ , it is observed that

Rθ,φ JkR−1
θ,φ ≡ e−iθ Ĵn Jk, (B.9)

where Ĵn is a superoperator defined by

ĴnJk = [Jn, Jk], (B.10)

satisfying (p ≥ 0)

(Ĵ2pn − 1̂)Jk = 0, (B.11)

and

(Ĵ2p+1
n Jk − i1̂Jz) = 0. (B.12)

Expanding the rhs of Eq. (B.9) and using

Ĵkn Jk =

k stacked commutators  
[Jn, [Jn, [Jn, . . . , [Jn, Jk] . . .]]], (B.13)

the lhs of (B.9) can be written as

Rθ,φ JkR−1
θ,φ = Jk cos θ + Jz sin θ. (B.14)

Analogously, it is found that powers of Jn applied to Jz satisfy the superoperator equations (p ≥ 0)

(Ĵ2pn − 1̂)Jz = 0, (B.15)

and

Ĵ2p+1
n Jz + i1̂Jk = 0, (B.16)
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which upon expansion lead to

Rθ,φ JzR−1
θ,φ = Jz cos θ − Jk sin θ. (B.17)

From the inverse transformation of (B.8), it follows that the J+ and J− operators can be expressed in
terms of Jk and Jn as

J+
J−


=


(Jk − iJn)eiφ

(Jk + iJn)e−iφ


, (B.18)

and after some further algebra the associated rotated counterparts emerge as


Rθ,φ J+R−1

θφ

Rθ,φ J−R−1
θ,φ


=

 eiφ

J+e−iφ cos2

θ

2
− J−eiφ sin2 θ

2
+ Jz sin θ


e−iφ


J−eiφ cos2

θ

2
− J+e−iφ sin2 θ

2
+ Jz sin θ


 . (B.19)

From Eq. (B.17) and expressing Jk in terms of J+ and J− through

Jk =
1
2
(J+e−iφ

+ J−eiφ), (B.20)

obtained from Eq. (B.18), it follows that the transformation equation of Jz becomes

Rθ,φ JzR−1
θ,φ = Jz cos θ − (J+e−iφ

+ J−eiφ) sin
θ

2
cos

θ

2
. (B.21)

From Eq. (59) and expressing Jx and Jy in terms of J+ and J− through (B.18) it follows that the
expectation values of Jχ , Jξ , and Jζ are given by


⟨Jχ ⟩
⟨Jξ ⟩
⟨Jζ ⟩


=



∞−
n1=0

∞−
n2=0

J−
M=−J

Re G−

n1n2M
(θ, φ; t)λ+

JM + cosφ sin θ⟨Jz⟩

∞−
n1=0

∞−
n2=0

J−
M=−J

Im G+

n1n2M
(θ, φ; t)λ+

JM + sinφ sin θ⟨Jz⟩

−

∞−
n1=0

∞−
n2=0

J−
M=−J

Re Gn1n2M(θ, φ; t)λ+

JM + ⟨Jz⟩ cos θ


, (B.22)

where

G±

n1n2M
(θ, φ; t) = F±(θ, φ)ρ

n1n1n2n2
MM+1 (t), (B.23)

Gn1n2M(θ;φ; t) = e−iφρ
n1n1n2n2
MM+1 (t) sin θ, (B.24)

with F±(θ, φ) given by

F±(θ, φ) = cos2
θ

2
± e−2iφ sin2 θ

2
. (B.25)

Squaring the expressions of Jχ and Jξ and observing that

⟨J2z ⟩ =

∞−
n1=0

∞−
n2=0

J−
M=−J

M2ρ
n1n1n2n2
MM (t), (B.26)

along with the anticommutator

⟨[J+, Jz]+⟩ =

∞−
n1=0

∞−
n2=0

J−
M=−J

(2M + 1)ρn1n1n2n2
MM+1 (t)λ+

JM , (B.27)
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in conjunction with matrix elements of ⟨J2
+
⟩ and ⟨J2

−
⟩ given by Eqs. (B.1) and (B.2) and after some

further algebra, it follows that the expectation values of J2χ and J2ξ are given by

⟨J2χ ⟩ =

∞−
n1=0

∞−
n2=0

J−
M=−J


1
2
Re[F 2

−
(θ, φ)ρ

n1n1n2n2
MM+2 (t)]λ+

JMλ
+

JM+1

+
1
4
ρ
n1n1n2n2
MM (t)|F−(θ, φ)|

2
[(λ−

JM)
2
+ (λ+

JM)
2
] + M2ρ

n1n1n2n2
MM+1 (t) cos2 φ sin2 θ

+ (2M + 1)Re[F−(θ, φ)ρ
n1n1n2n2
MM+1 (t)]λ+

JM cosφ sin θ

, (B.28)

⟨J2ξ ⟩ =

∞−
n1=0

∞−
n2=0

J−
M=−J


−

1
2
Re[F 2

+
(θ, φ)ρ

n1n1n2n2
MM+2 (t)]λ+

JMλ
+

JM+1

+
1
4
ρ
n1n1n2n2
MM (t)|F+(θ, φ)|

2
[(λ−

JM)
2
+ (λ+

JM)
2
] + M2ρ

n1n1n2n2
MM+1 (t) sin2 φ sin2 θ

+ (2M + 1)Im[F+(θ, φ)ρ
n1n1n2n2
MM+1 (t)]λ+

JM sinφ sin θ

. (B.29)

This completes the derivation of the necessary equations to compute second-order statistical
moments for the different angular momentum components involved in Eq. (62).

References

[1] R.H. Dicke, Phys. Rev. 93 (1954) 99–110.
[2] M.J. Hartmann, F.G.S.L. Brandão, M.B. Plenio, Nat. Phys. 2 (2006) 849–855.
[3] A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nat. Phys. 2 (2006) 856–861.
[4] B.J. Smith, P. Mahou, O. Cohen, J.S. Lundeen, L.A. Walmsley, Opt. Exp. 17 (2009) 23589–23602.
[5] A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Phys. Rev. Lett. 97 (2006) 077001 (4 pages).
[6] M. Scheibner, M. Yakes, A.S. Bracker, I.V. Ponomarev, M.F. Doty, C.S. Hellberg, L.J. Whitman, T.L. Reinecke, D. Gammon, Nat.

Phys. 4 (2008) 291–295.
[7] R.R. Puri, Mathematical Methods of Quantum Optics, Springer, Berlin, 2001, pp. 215– 237.
[8] G. Ramon, C. Brif, A. Mann, Phys. Rev. A 58 (1998) 2506–2517.
[9] C. Emary, T. Brandes, Phys. Rev. A 69 (2004) 053804 (7 pages).

[10] C.F. Lee, N.F. Johnson, Phys. Rev. Lett. 93 (2004) 083001 (4 pages).
[11] Y. Li, Z.D. Wang, C.P. Sun, Phys. Rev. A 74 (2006) 023815 (5 pages).
[12] D. Tolkunov, D. Solenov, Phys. Rev. B 75 (2007) 024402 (7 pages).
[13] G. Chen, Z. Chen, J. Liang, Phys. Rev. A 76 (2007) 045801 (4 pages).
[14] G. Chen, X. Wang, J.-Q. Liang, Z.D. Wang, Phys. Rev. A 78 (2008) 023634 (5 pages).
[15] D. Nagy, G. Konya, G. Szirmai, P. Domokos, Phys. Rev. Lett. 104 (2010) 130401 (4 pages).
[16] H. Goto, K. Ichimura, Phys. Rev. A 77 (2008) 053811 (5 pages).
[17] O. Tsyplyatyev, D. Loss, Phys. Rev. A 80 (2009) 023803 (6 pages).
[18] M.A. Alcalde, R. Kullock, N.F. Svaiter, J. Math. Phys. 50 (2009) 013511 (17 pages).
[19] J. Larson, M. Lewenstein, New J. Phys. 11 (2009) 063027 (18 pages).
[20] S. Schneider, G.J. Milburn, Phys. Rev. A 65 (2002) 042107 (5 pages).
[21] C. Emary, T. Brandes, Phys. Rev. E 67 (2003) 066203 (22 pages).
[22] X.-W. Hou, B. Hu, Phys. Rev. A 69 (2004) 042110 (6 pages).
[23] V. Bužek, M. Orzag, M. Rosko, Phys. Rev. Lett. 94 (2005) 163601 (4 pages).
[24] N.B. Narozhny, J.J. Sánchez-Mondragón, J.H. Eberly, Phys. Rev. A 23 (1981) 236–247.
[25] M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87 (2001) 017901 (4 pages).
[26] T. Yu, J.H. Eberly, Phys. Rev. Lett. 93 (2004) 140404 (4 pages).
[27] R. Tanaś, Z. Ficek, J. Opt. B: Quantum Semiclass. Opt. 6 (2004) S610–S617.
[28] L. Song, X. Wang, D. Yan, Z.G. Zong, Int. J. Theor. Phys. 47 (2008) 2635–2644.
[29] K. Härkönen, F. Plastina, S. Maniscalco, Phys. Rev. A 80 (2009) 033841 (15 pages).
[30] R. Loudon, P.L. Knight, J. Mod. Opt. 34 (1987) 709–759.
[31] H.J. Kimble, Nature (London) 453 (2008) 1023–1030.
[32] C. Pérez-Campos, J.R. González-Alonso, O. Castaños, Ann. Phys. 325 (2010) 325–344.
[33] S.S. Hassan, N. Nayak, R.N. Deb, Phys. Lett. A 373 (2009) 3697–3700.
[34] R.N. Deb, N. Nayak, B. Dutta-Roy, Eur. Phys. J. D 33 (2005) 149–155.
[35] N. Nagak, R.N. Deb, B. Dutta-Roy, J. Opt. B 7 (2005) S761–S764.
[36] H. Grinberg, J. Phys. Chem. B 112 (2008) 16140–16157.
[37] H. Grinberg, Int. J. Mod. Phys. B 22 (2008) 599–633.
[38] F.T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, Phys. Rev. A 6 (1972) 2211–2236.



H. Grinberg / Annals of Physics 326 (2011) 2845–2867 2867

[39] S.M. Barnett, P.M. Radmore,Methods in Theoretical QuantumOptics, Oxford Science Publications, Clarendon Press, Oxford,
1997, pp. 236–239.

[40] J.-S. Zhang, J.-B. Xu, Can. J. Phys. 87 (2009) 1031–1036.
[41] M. Kitagawa, M. Ueda, Phys. Rev. A 47 (1993) 5138–5143.
[42] H. Grinberg, Int. J. Mod. Phys. B 24 (2010) 1079–1092.
[43] J.R. Kukliński, J.L. Madajczyk, Phys. Rev. A 37 (1988) 3175–3178.
[44] C.W. Woods, J. Gea-Banacloche, J. Mod. Opt. 40 (1993) 2361–2379.
[45] M. Butler, P.D. Drummond, Opt. Acta 33 (1986) 1–5.
[46] S.M. Chumakov, J. Kozierowski, Quantum Semiclassic. Opt. 8 (1996) 775–803.
[47] H. Grinberg, Phys. Lett. A 344 (2005) 170–183.
[48] C.C. Gerry, J.H. Eberly, Phys. Rev. A 42 (1990) 6805–6815.
[49] The linear entropy is obtained by approximating ln ρ in the von Neumann entropy, with the first order term (ρ − 1) in

the Mercator series: −Tr(ρ ln ρ) → −Tr(ρ(ρ − 1)) = Tr(ρ − ρ2) = 1 − Tr(ρ2) = SL , where the unit trace property of
the density matrix has been invoked to get the second to last equality.

[50] C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53 (1996) 2046–2052.
[51] H. Grinberg, Phys. Lett. A 374 (2010) 1481–1487.


	Nonclassical effects in a highly nonlinear generalized homogeneous Dicke model
	Introduction
	Atom--cavity interaction in the generalized Dicke model
	Coherent atomic states and Glauber states: initial state wavefunction
	Interaction picture representation of the generalized Dicke model

	Results and discussion
	Conclusions
	Acknowledgments
	Radiation field operators matrix elements in the fock space
	Important relations concerning rotated operators
	References


