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Localization of an inhomogeneous Bose-Einstein condensate in a moving random potential
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We study the dynamics of a harmonically trapped quasi-one-dimensional Bose-Einstein condensate subjected
to a moving disorder potential of finite extent. We show that, due to the inhomogeneity of the sample, only a
percentage of the atoms is localized at supersonic velocities of a random potential. We find that this percentage
can be sensitively increased by introducing suitable correlations in the disorder potential such as those provided
by random dimers.
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I. INTRODUCTION

Suppression of wave transport in nondissipative linear
systems can be induced by the presence of disorder: the
scattered waves from the modulation of the random disorder
potential destructively interfere in the forward direction, with
a resulting vanishing wave transmission. This phenomenon is
called Anderson localization (AL) [1,2]. In three dimensions
(3D), AL takes place for states with energy less than a threshold
(mobility edge). In two (2D) and one dimensions (1D) and in
the absence of interactions, all single-particle quantum states
are expected to be localized [3]. However, in the presence of
correlations, the situation differs and a subset of delocalized
states can appear in the spectrum [4], or an effective [5–9] or
even a true [10,11] mobility edge can be observed even at low
dimensions.

Anderson localization of noninteracting atomic matter
waves was observed in momentum and real space; in mo-
mentum space, using kicked-rotor setups in 1D [12] and
3D [13], while in real space in 1D [14,15], and very recently in
3D [16,17]. On the other hand, in 2D only anomalous diffusion
has been observed [18]. In the last few years it has been
experimentally demonstrated that disorder strongly affects the
transport properties and dynamics of a BEC, as for instance
illustrated in Ref. [19].

One of the outstanding challenges of physics is to under-
stand the interplay between disorder and interactions. In the
case of an interacting condensate, wave scattering from the
random potential does not occur if the wave group velocity
is lower than a critical velocity vc that coincides with the
(local) sound velocity c in the limit of small random potential
amplitude and decreases down to vanishing values in the strong
disorder limit [20–22]. Thus, to observe AL in an interacting
BEC it is necessary that the speed of the relative motion
between the superfluid and the disorder potential is larger
than vc. This setup was proposed and theoretically studied
in Refs. [23–25]. These authors studied the flow of a ho-
mogeneous quasi-one-dimensional Bose-Einstein condensate
through a disorder potential of finite extent. That disorder po-
tential moves with a velocity v with respect to the condensate.
In the subsonic regime, the flow is superfluid and the density
profile is stationary. In the opposite supersonic regime, a region
of stationary flow also exists, but in this case energy dissipation
occurs. In this domain, depending on the extent of the disorder

potential, the system is either in an Ohmic or in an AL regime,
respectively characterized by a transmission decreasing lin-
early or exponentially with the size of the system L.

At variance with Refs. [23–25], in this paper we study the
effects of the inhomogeneity of a cigar-shaped trapped BEC
in the presence of a moving disorder potential. We investigate
the possibility of observing BEC localization by looking at the
position of the center of mass of the condensate. If the center of
mass moves along with the moving potential, then the system
shall be in the AL regime or in another kind of localized phase.
Because of the inhomogeneity, we observe the localization of
only a percentage of the atoms in the BEC. This percentage of
localized atoms can be increased or suppressed by introducing
ad hoc short-range correlations on the random potential.

The paper is organized as follows. In Sec. II we introduce
the time-dependent nonpolynomial nonlinear Schrödinger
equation (NPSE) that describes the condensate dynamics in the
elongated geometry and in the presence of a moving disorder
potential that we characterize by its autocorrelation function.
As discussed and shown in Sec. III, the disorder potential drags
the atoms with an efficiency that depends on both the scattering
properties of each impurity and on the impurity density. The
case of two types of impurities, single and dimerized, at
different densities, have been studied, highlighting the role
of correlations in the localization dynamics. Because of the
inhomogeneity of the BEC, we observe that the drag force is
more efficient in the BEC tails where the local sound velocity
is lower and superfluidity breaks down at small drift velocities
v. Our concluding remarks are given in Sec. IV.

II. THE MODEL

A. Equation of motion for the BEC wave function

Our starting point is the equation of motion for a 3D BEC
trapped in a cigar-shaped potential. Such an equation is known
as the Gross-Pitaevskii equation (GPE)

ih̄
∂

∂t
ψ(r,t) =

[
− h̄2

2m
∇2 + U (r) + gN |ψ(r,t)|2

]
ψ(r,t).

(1)

The wave function ψ(r,t) describes the condensate, which is
constituted of N atoms of mass m. g = 4πh̄2as/m stands for
the interaction coupling constant with as being the s-wave
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scattering length between atoms; in our system, interatomic
interactions are repulsive and, as a result, as > 0. The trapping
potential U (r) is given by the sum of a static cigar-shaped
harmonic trap and a time-dependent random potential:

U (r,t) = 1
2mω2

⊥(x2 + y2) + 1
2mω2

zz
2 + V (z,t) (2)

with ω⊥ and ωz the trapping frequencies in the perpendicular
and longitudinal directions, respectively, and ωz � ω⊥. The
last time-dependent term in Eq. (2) corresponds to a random
potential that is fixed in the moving frame z′ = z − vt , v = vêz

being the drift velocity.
Under this trap geometry and a further assumption dis-

cussed below, the 3D GPE can be reduced to an effective 1D
time-dependent NPSE [26]. The advantage of the 1D NPSE
is that it is easier to deal with when making computations. In
order to obtain such a dynamical equation, we begin with a
variational ansatz

ψ(r,t) = f (z,t)φ(r,t) = f (z,t)
e−(x2+y2)/2σ 2(z,t)

√
πσ (z,t)

, (3)

where the transverse part φ(r,t) is modeled by a Gaussian
function with variance σ (z,t). The validity of this description
is based on the assumption that σ (z,t) slowly varies as a
function of z and t such that the kinetic energy term ∂2/∂z2

associated with φ(r,t) can be neglected. Both the longitudinal
wave function f (z,t) and the variance σ (z,t) are determined
by the energy variational principle. For f (z,t) one gets the
NPSE

ih̄
∂

∂t
f =

[
− h̄2

2m

∂2

∂z2
+ 1

2
mω2

zz
2 + V (z,t)

+ h̄ω⊥
1 + 3asN |f |2√
1 + 2asN |f |2

]
f. (4)

The variance is given by

σ 2(z,t) = a2
⊥
√

1 + 2asN |f (z,t)|2, (5)

where a⊥ = √
h̄/(mω⊥) is the oscillator length in the trans-

verse direction. The 3D density profile ρ(r) and velocity field
u(r) are then

ρ(r) = ρ̃(z)
e−r2/σ 2

πσ 2
, (6)

u(r) = u(r)ẑ = h̄

2mi

f ′∗(z)f (z) − f ′(z)f ∗(z)

ρ̃
ẑ, (7)

with ρ̃(z) = |f |2 the integrated 1D density.
The NPSE is numerically solved using a split-step method

and spatial fast Fourier transforms. First we compute the
equilibrium density profile in the presence of a static disorder
potential. Then, we switch on the drift velocity v and compute
the time evolution of the condensate wave function f (z,t). In
this work, we focus on a system of 105 87Rb atoms subject
to a transverse confinement of ω⊥ = 2π × 500 Hz and a
longitudinal confinement of ωz = 2π × 7 Hz. The s-wave
scattering length has been fixed at as = 80 Bohr radii. The
chemical potential for this setup in the absence of disorder is
4.4h̄ω⊥. Furthermore, we have compared the kinetic energy
neglected in obtaining Eqs. (4) and (5) from the variational

v

v(a)

(b)

FIG. 1. Schematic representation of the disorder potential.
(a) The Gaussian peaks are randomly distributed (AM). (b) The peaks
are distributed in a random dimer sequence (RDM).

ansatz in the presence of disorder and find that it amounts to a
maximum of 1% of the value of the chemical potential.

B. The random potential

The random potential V (z,t) is modeled by the sum of
Ndis Gaussian functions of height Vdis and width w, randomly
distributed at positions zi = jid, where ji is a random integer
number and d fixes the minimal distance between the peaks.
Such a disorder potential, known as the Edwards model [27],
could be realized by deeply trapping some impurities (heavy
atoms of another species) in an optical lattice strongly detuned
from the condensate atomic frequencies [28–31]. When the
disorder pattern is pulled with a constant speed v through the
system, if v is lower than the sound speed c = √

μ/(2m) [32],
we expect the disorder not to affect the system because of the
superfluid nature of the gas itself [23]. In contrast, the effect of
the disorder potential should appear at v � c where the kinetic
energy starts to compete with the interaction energy and the
limit of a noninteracting gas is reached for v � c.

We will consider two sorts of potential patterns: (i) an
Anderson-like distribution, that we will call the Anderson
model (AM), where the ji’s are randomly distributed; and (ii) a
random dimer model (RDM) distribution [33], where impuri-
ties are dimerized and the dimers are randomly distributed (see
Fig. 1). The dimers are marked by the peak-to-peak distance
	. Hereafter we consider a disorder potential characterized
by an amplitude Vdis = 0.02Er (0.15h̄ω⊥), where the recoil
energy Er = h2/(2mλ2) for each atom of mass m is defined
with respect to the wavelength λ = 780 nm, characterizing
the D2 hyperfine rubidium transition. The dimer peak-to-peak
distance 	 was set equal to λ and the width of a single impurity
w is fixed at 140 nm, roughly λ/5, ensuring no sizable overlap
between Gaussian functions. The disorder potentials can be
characterized in terms of their autocorrelation functions

C(|z1 − z2|) = 〈[(V z1,t) − 〈V (z1,t)〉][V (z2,t) − 〈V (z2,t)〉]〉,
(8)

which strongly influence the nature of the energy states
for low amplitude disorder near equilibrium. Indeed, the
localization length in the Born approximation is proportional
to the inverse of the Fourier transform of Eq. (8) [5,34]. In
the case of the AM and RDM potentials in Fig. 2 we plot
the autocorrelation function for the case d = λ and for two
different impurity densities: ndis = 0.12λ−1 (top panel) and
ndis = 0.5λ−1 (bottom panel). It is worthwhile noting that
the impurity density corresponds to the average number of

063637-2



LOCALIZATION OF AN INHOMOGENEOUS BOSE- . . . PHYSICAL REVIEW A 86, 063637 (2012)

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
(|z

1
−

z 2
|)/

C
(0

)

(z1 − z2)/λ

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
(|z

1
−

z 2
|)/

C
(0

)

(z1 − z2)/λ

FIG. 2. (Color online) Rescaled autocorrelation function C(|z1 −
z2|)/C(0) as a function of (z1 − z2)/λ for the AM (red continuous
line) and RDM (green dashed line) for the case d = λ. The top panel
corresponds to ndis = 0.12λ−1, and the bottom panel to ndis = 0.5λ−1.

Gaussian peaks both in the AM and RDM potential and thus,
on average, the number of dimers in RDM is half the number
of impurities in the AM. The modulation with spatial period
λ for both the AM and the RDM shows that single impurities
and dimers are both randomly distributed over discretized
positions of step d = λ. The main difference between the AM
and the RDM is that the RDM has a larger peak at z1 − z2 = λ

because of the dimer structure with 	 = λ. This is well visible
at low density (top panel), while by increasing the density the
probability of finding dimerized structures in the AM potential
increases as well. This is seen in the heights of the peaks at
z1 − z2 = jλ for the two models becoming closer even for
j = 1 (bottom panel).

In Fig. 3 we show C(|z1 − z2|) for the case d = λ/2 and
ndis = 0.5λ−1 (keeping fixed 	 = λ). In this case the RDM
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FIG. 3. (Color online) Same as in Fig. 2 but for the case d = λ/2
and ndis = 0.5λ−1.

peak at z1 − z2 = λ is lower by more than a factor 2 with
respect to the case with d = λ at the same disorder density
(bottom panel of Fig. 2): we thus expect the dimer structure to
play a minor role for the case d = λ/2.

III. THE LOCALIZATION FRACTION
AND THE DRAG FORCE

If the condensate or a part of it is localized, we expect it
to follow the pulled disorder potential. The localized portion
of the condensate sticks to the disorder “bandwagon” and
therefore travels the same distance as the disorder potential.
This dynamics depends on the forces experienced by the
atoms. The force acting on the BEC center of mass has two
terms, F = Fh + Fdis, one due to the harmonic confinement
Fh = −mω2

zzc.m. and the other due to the disorder potential

Fdis = −
∫ +∞

−∞
dz|f (z,t)|2 ∂V

∂z
. (9)

For small center-of-mass displacements �zc.m. � 0, the lead-
ing term is the drag force Fdis due to the disorder potential. In
this regime the localization fraction Nloc/N can be deduced
by the ratio between the �zc.m. and the distance �zdis traveled
by the disorder potential in the same time interval, namely, in
this regime we can identify

Nloc

N
= �zc.m.

�zdis
. (10)

Indeed if the center of mass travels the same distance as the
disorder potential, this would mean that 100% of the atoms
are localized. The localized condensate will stop following the
moving potential and it will change direction at a time tf at
the position zf verifying∫ tf

0
Fdis(t)vc.m.(t)dt = 1

2
mω2

zz
2
f . (11)

Thus, the turning point zf will provide a direct measure of the
average value of the drag force during the condensate forward
motion via the relation

zf = 2F̄dis/
(
mω2

z

)
, (12)

where we have defined

F̄dis =
∫ tf

0
Fdis(t)vc.m.(t)dt/zf =

∫ zf

0
Fdis(t)dzc.m./zf . (13)

The dependence of the drag force with the drift velocity gives
us a direct measure of the loss of superfluidity in the system.
According to the Landau criterion [35] a single impurity is
expected to flow without friction below a certain velocity,
corresponding to the sound velocity for a weakly interacting
BEC.

A. The single impurities

The localization efficiency of a disorder pattern depends
on the impurity density and on the reflectivity of each
impurity. In this work we are comparing single impurities
randomly distributed with dimerized structures. With the aim
of understanding the difference in behavior of the localization
efficiency of a dimer with respect to a single impurity, we first
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FIG. 4. (Color online) Localized BEC fraction (in logarithmic
scale) as a function of the disorder potential drift velocity v, in units
of the sound speed c evaluated at the center of the trap. The red crosses
correspond to a single impurity and the green stars to a dimer.

look at the condensate dynamics in the presence of a moving
single impurity (red crosses in Fig. 4) and of a moving dimer
(green stars in Fig. 4).

In Fig. 4 we plot the fraction of atoms that follows the
moving defect over a distance of 133 μm. We observe that the
localization fraction of the dimer is a strongly nonmonotonic
function of v. The single dimer localizes the atoms less
efficiently than a single impurity for v � 1.2c, while it is more
efficient by a factor of 3 over a velocity range of 1.4–1.8 v/c.
The suppression and the enhancement of the localization are
both a signature of some interference effect due to the internal
structure of the single dimer. This behavior can be qualitatively
reproduced by considering the analogous optical system of
our model, schematically shown in Fig. 5. It consists of two
dielectric slabs of refraction index n′, width w, at distance
a = 	 − w, merged in a medium of refractive index n, with
n = 1, and n′ � 1 + Vdis/mv2 in the limit mv2 � Vdis (and
v > c). This model associates to an incident wave of energy

ww a

n′n n′n n

1 2 3 4 5

FIG. 5. (Color online) Analogous optical system of the dimer
structure present in our model.

E = mv2/2 and wave vector κ = mv/h̄, a transmitted wave
of wave vector κ ′ = κ

√
1 − Vdis/E � κ(1 − Vdis/2E) in the

regions where the disorder potential is present. The reflection
coefficient for an incident wave of wave vector κ through the
two-slab system (from region 1 to region 5, as shown in Fig. 5)
can be written as

r15 = r12 + r25e
2iα

1 + r12r25e2iα
(14)

with

r25 = r23 + r35e
2iβ

1 + r23r35e2iβ
, r35 = r34 + r45e

2iα

1 + r34r45e2iα
, (15)

where α = n
n′ κw, β = κa, and r34 = r12 = −r23 = −r45 =

(n − n′)/(n + n′). Equation (14) takes the form

r15 = r12

[−1 − 2e2iα + e2iβ + r2
12e

4iα + r2
12e

2i(α+β) − 2e2i(β+2α)
]

1 − 2r2
12e

2iα + r2
12e

4iα + r2
12e

2iβ − 2r2
12e

2i(α+β) + 2r4
12e

2i(2α+β)
. (16)

The behavior of the reflectivity R = |r15|2 of the dimer
structure must be compared with that of a single impurity

|r13|2 =
∣∣∣∣ r12(1 − e2iα)

1 − r2
12e

2iα

∣∣∣∣
2

. (17)

This is shown in Fig. 6. For our choice of the parameters,
the reflectivity of the dimer oscillates with respect to that of
a single impurity that decreases monotonically, in qualitative
agreement with what was observed for the localization fraction
shown in Fig. 4. The shift of the minimum position for the
dimer reflectivity with respect to the localization may be
attributed to, on the one hand, the Gaussian shape of impurities
as compared to the rectangular shape of the dielectric slabs,
and on the other hand, to the inhomogeneity and nonlinearity
of the system. All these factors are not taken into account in
the current optical model. Finally, let us remark that both the
single impurity and the single dimer yield full delocalization

(R = 0) for α = π , namely, when each impurity plays the role
of a cavity [4,30], corresponding to v � c in our system.

-12
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-4

1 2 3 4

ln
(R

)

v/c

FIG. 6. (Color online) Reflectivity (in logarithmic scale) of a
single defect (red continuous line) [Eq. (17)] and of a dimerized
structure (green dashed line) [Eq. (16)] as a function of the disorder
potential velocity.
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B. Random distribution of impurities

As already illustrated in Sec. II B, we consider three sets of
parameters for the AM and RDM potentials: (i) an impurity
density ndis � 0.12λ−1 � 0.16 peaks/μm, and d = λ; (ii) an
impurity density ndis � 0.5λ−1 � 0.65 peaks/μm, and d = λ;
and (iii) with the same impurity density as in (ii) but with
d = λ/2. In the three cases, the size of the disorder potential
is 485 μm and the BEC size is 204 μm.

We run the simulations for up to approximately three
to four cycles of ωz. We generally note that in our range
of drift velocities, longer time durations are not necessary
since the moving disorder potential would try to bring the
condensate too high up along the harmonic potential and thus
the condensate would inevitably fall back at zf .

We run simulations for 37 different drift velocities, in
the range v = [0.65–1.83] c = [1.40–3.98] mm/s (where c =
2.16 mm/s), with between 3 and 24 random potential re-
alizations for each drift velocity. To obtain the percentage
of localized atoms, we compute the distance traveled by the
condensate center of mass corresponding to a fixed value of
the potential drift. We used that unique velocity-independent
distance, in our case �zdis = 96 μm, in order to compare
equivalent final potential configurations. For this value of
�zdis, we measure a small center-of-mass displacement �zc.m.,
generally lower than an oscillator harmonic length in the
axial direction, �zc.m. < az = √

h̄/(mωz). Then we identify
the ratio Nloc/N with the ratio between the center-of-mass
shift and �zdis according to Eq. (10). Figure 7 shows the
localized ratio Nloc/N for the potentials (i), (ii), and (iii).
We first note that irrespective of the kind of disorder already
for v > 0.9c, the effects of localization are noticeable. This
localization regime may be due to the local sound velocity
being inhomogeneous due to the harmonic confinement [36]
or to the nonvanishing amplitude of the disorder potential [22].
Nloc/N is very small for all data sets, except for the parameters
(ii) at v � 1.5c, for both AM and RDM (see the middle plot in
Fig. 7). We claim that this is an effect related to the presence
of dimers both in the RDM by construction, and in the AM
due to the choice d = λ and density ndis = 0.5λ−1, as shown
in the bottom panel of Fig. 2. Indeed, in the low density case
(top panel of Fig. 7) where the AM has just developed a few
dimers with respect to the RDM, the localization enhancement
in the RDM is well visible, even if the localization fraction is
very small. Moreover, its oscillatory behavior as a function of
v reminds one of that of the single dimer shown in Fig. 4, with
minimal localization near v/c � 1.2. Finally, in the bottom
panel of Fig. 7 we show that the choice d = λ/2 suppresses
the Nloc/N peak at v � 1.5c, since it destroys the correlations
introduced by the single dimer itself (cf. Fig. 3).

In Fig. 8 we plot the turning point zf for the AM with ndis =
0.5λ−1 and d = λ/2, and the RDM with the same impurity
density but with d = λ. We checked numerically that for
the disorder amplitude and velocities considered, the turning
point zf and the average drag force F̄dis are proportional to
each other and verify Eq. (12). Not surprisingly, the overall
behavior of the average drag force F̄dis is qualitatively similar
to the localization ratio, showing that to a greater drag
force, i.e., less superfluid fraction, it corresponds to a higher
localization efficiency. In agreement with the single defect
analysis (Sec. III A), in both Figs. 7 and 8, we clearly observe
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FIG. 7. (Color online) Localized BEC fraction as a function of
the disorder potential drift velocity v, in units of the sound speed c

evaluated at the center of the trap. The red crosses correspond to the
AM and the green stars to the RDM. The top panel corresponds to
ndis � 0.12λ−1, and d = λ; the middle panel corresponds to ndis �
0.5λ−1, and d = λ; the bottom panel corresponds to ndis � 0.5λ−1,
and d = λ/2.

a partial suppression of the localization at v � 0.9 − 1.3c, and
an enhancement of the localization at larger velocities.
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FIG. 8. (Color online) Turning point zf as a function of the
disorder potential velocity v, in units of the sound speed c evaluated at
the center of the trap. The red crosses correspond to the uncorrelated
disorder with ndis = 0.5λ−1 and d = λ/2, and the green stars to the
correlated one with d = λ and the same impurity density.
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FIG. 9. (Color online) Localized BEC fraction of the leading
moving tail −1% of the total condensate mass- as a function of the
disorder potential velocity v, in units of the sound speed c evaluated
at the center of the trap. The red crosses correspond to the AM (iii)
and the green stars to the RDM (ii).

C. Localization inhomogeneity

In order to prove that we are observing the localization
of a BEC fraction rather than a slower drag of the whole
BEC, we analyze the dynamics of the BEC tails, where the
density is lower and AL should occur more efficiently. In
particular, we focus on the forward moving tail distribution
that experiences the disorder potential for the whole simulation
time. Analogously to Sec. III B, we compute the percentage of
atoms localized in the forward moving tail of the condensate
Nloc,t /Nt by dividing the tail center-of-mass shift with the same
�zdis value. We looked at three different sizes of that tail:
those comprising 1%, 5%, and 10% of the total condensate
mass. In the case of the forward tails that amount to 1%
of the total condensate mass (see Fig. 9), we observe an
almost complete localization in that same supersonic region
of the drift velocities, while for the 5% and 10% mass tails

(not shown), we measure 50% of localization efficiency. The
negative values of localization in the subsonic region of drift
velocities are due to the fluctuations of the condensate density
caused by the presence of the disorder potential. At those
velocities, these fluctuations provoke the forward leading small
portion of mass to buckle back towards the center of the
condensate even though there is not much overall motion of
the whole condensate.

IV. CONCLUSIONS

We have presented an analysis of the drag properties of two
kinds of disorder potentials of finite extent moving through an
inhomogeneous quasi-1D Bose-Einstein condensate. Because
of the presence of the external harmonic confinement, our
system, unlike [24], is never in a stationary state. We treated
both the cases of noncorrelated and correlated disorder with
short-range correlations. Our numerical computation of the
fraction of localized atoms and the drag force shows that for the
case of correlated disorder, in the form of random dimers, there
is a suppression or an enhancement of localization depending
on the drift velocity. This was buttressed by our analytical
optical model in which we determined the reflectivity of a
single dimer and of a lonely defect. The effects of correlations
are masked as we increase the disorder density and the dimers
cannot be distinguished from a high-density collection of
single defects.
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