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Condensation of two-dimensional harmonically confined bosons with Bessel-type interactions

A. I. Mese,1 P. Capuzzi,2,3,* S. Aktas,1 Z. Akdeniz,4 and S. E. Okan1

1Department of Physics, Trakya University, 22030 Edirne, Turkey
2Instituto de Fı́sica de Buenos Aires, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Argentina

3Departamento de Fı́sica, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
4Piri Reis University, 34940 Tuzla, Istanbul, Turkey
(Received 9 June 2011; published 5 October 2011)

We study the ground-state configurations of few interacting bosons confined in two dimensions by anisotropic
harmonic potentials. By means of variational calculations, including correlation effects, we show that the
arrangement of bosons strongly depends on the strength of the repulsive interaction and the anisotropy of
the confinement. We compute the condensate fraction of the system and found that by increasing the anisotropy
of the potential a weaker interaction suffices to destroy the condensate and favors the emergence of a crystal-like
structure.
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I. INTRODUCTION

The interest in two-dimensional (2D) ensembles of a few
bosons has increased in recent years due to the experimental
achievements in the field of cold atoms (for a general review
on cold atoms, see, e.g., Ref. [1]). In particular, the 2D
distribution of line vortices has been extensively studied
by a variety of experimental techniques [2,3] in atomic
Bose-Einstein condensates (BEC) confined inside harmonic
traps. A vortex created at the center of a stationary trap
corresponds to a maximum of the energy functional and
will tend to spiral out of the trap in a finite time [4], but
the vortex state can be stabilized by setting the trap into
rotation. On stirring the condensate at increasing frequency,
first, one vortex and then several vortices are observed to
enter the condensate, and such vortex assemblies ultimately
form an ordered pattern. These arrangements of vortex lines
closely resemble a triangular crystallite almost up to the
condensate boundary, even though the gas is subject to the
external trapping potential and is, therefore, inhomogeneous.
Long-range interactions have appeared more recently when
dealing with polar ultracold molecules [5]. In this case the
interparticle interaction is of the dipole-dipole type, which in
addition to being long-range is anisotropic and, thus, can be
repulsive or attractive depending on the relative orientation
of the molecules. It is even possible to tune the shape of
the interaction potential by dressing rotational excitations
[6].

However, the interest in 2D fluids of bosons is not
new. Indeed, it was greatly stimulated by the seminal
work of Nelson and Seung [7], who showed that a fluid
of flux lines in strongly type II superconducting mate-
rials can be mapped onto this model system in statisti-
cal mechanics. The interaction potential law is given by
V (r) = V0K0(r/r0), with V0 a coupling-strength parameter
and K0(x) a modified Bessel function behaving as − ln(x)
at short distances. Following an early variational Monte
Carlo study [8], the transition between an Abrikosov lattice
and a homogeneous liquid of vortices was studied within

*capuzzi@df.uba.ar

this mapping by means of the dislocation mechanism of
melting [9] and of the density functional theory of freezing
[10]. A first-order transition from an Abrikosov lattice to
a bosonic superfluid of entangled vortices has also been
demonstrated by the path-integral Monte Carlo method
[11].

In the present work we report theoretical calculations of
the structures taken by arrangements of a low number of
bosons. It has been demonstrated, by work both on strongly
interacting electrons in 2D semiconductor quantum dots [12]
and on strongly coupled bosons interacting by either a contact
potential or the e2/r Coulomb law inside 2D harmonic
traps [13], that information on the structure of few-particle
crystallites can be obtained directly from the one-body density
by means of calculations based on the unrestricted Hartree-
Fock (HF) method, which breaks the rotational symmetry
imposed by the circular confinement. More generally, an
approximate treatment of a strongly correlated many-body
system can, in principle, lead to states with spontaneously
broken rotational symmetry, as discussed for instance by Ring
and Schuck [14] and by Reimann and Manninen [15].

We use in this work this most simple theoretical method to
evaluate the structure of small clusters of bosons by means
of self-consistent variational calculations on harmonically
trapped bosons using a permanental wave function approx-
imation and a Gaussian function basis set. We shall focus
in K0 interacting bosons confined by anisotropic harmonic
potentials in 2D and analyze the disappearance of Bose-
Einstein condensation as a result of interactions and the
anisotropy.

The contents of the paper are briefly described as
follows. In Sec. II we introduce the model Hamiltonian
and the essential formalism for its solution within a self-
consistent variational approximation, leading to numerical
calculations of the bosons arrangements that are presented
and discussed in Sec. III. Finally, in Sec. IV we sum-
marize our main conclusions. We refer at this point to
recent calculations on the structure and the spectrum of
classical 2D clusters with a logarithmic interaction potential
[16] and on ordered structures formed in rotating ultracold
Bose gases [17], as introductory to a broader view of the
field.
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II. FORMALISM

We consider a 2D system of N identical bosons described
by the Hamiltonian

Ĥ =
∫

dr ψ†(r)Ĥ0ψ(r)

+1

2

∫
drdr′ ψ†(r)ψ†(r′)V (|r − r′|)ψ(r′)ψ(r), (1)

where ψ(r) and ψ†(r) are the field operators, Ĥ0 = p2/(2m) +
m(ω2

xx
2 + ω2

yy
2)/2 is the single-particle Hamiltonian with m

the bosons mass, ωx and ωy are the angular trap frequencies,
and V (r) is the interparticle repulsive potential taken as V (r) =
V0K0(r/r0) involving a coupling strength parameter V0 and a
length scale r0. In our variational formulation we consider the
N -body wave function ψ that is taken as the totally symmetric
product of single-particles orbitals, i.e., the permanent

ψ(r1, . . . ,rN ) = 1

N !

N!∑
p=1

φp(1)(r1)φp(2)(r2) . . . φp(N)(rN ), (2)

where φi(r) are the single-particle orbitals and the sum runs
over all permutations p of indices 1 to N . The energy can be
thus written as

E = 〈ψ |Ĥ |ψ〉/〈ψ |ψ〉

= 1

N !

N!∑
p1,p2=1

[(
N

1

)
H0,p1(1)p2(1)

N∏
i=2

Sp1(i)p2(i)

+
(

N

2

)
Vp1(1)p1(2)p2(1)p2(2)

N∏
i=3

Sp1(i)p2(i)

]

×
⎡
⎣ N!∑

p1=1

N∏
i=1

Sp1(i)i

⎤
⎦

−1

, (3)

where the matrix elements are given by

⎧⎪⎨
⎪⎩

H0,ij =
∫

dr φ∗
i (r)Ĥ0 φj (r)

Vijkl =
∫

drdr′ φ∗
i (r)φ∗

j (r′)V (|r − r′|)φk(r′)φl(r)
(4)

and the overlap matrix reads

Sij =
∫

dr φi(r)∗φj (r) . (5)

The use of nonorthogonal orbitals in the context of the
unrestricted Bose-HF theory was initiated by Romanovsky
et al. [13] for a system of two-dimensional confined bosons
interacting with a Coulomb potential and using a Gaussian
function basis set. More recently, it was extended to 1D using
an optimized basis set [18]. Application of nonorthogonal
functions have also appeared in studies of the build up of the
relative phase between two Bose-Einstein condensates [19]
and of Efimov states in trapped many-boson systems [20].

In the case of orthonormal orbitals, i.e., when Sij is the
Kronecker δ, the energy takes the more familiar expression

E =
N∑

i=1

niH0, ii + 1

2

∑
i,j

ninj (Vijij + Vijji)

−1

2

∑
i

ni(ni + 1)Viiii , (6)

where ni � 1 (0) for an occupied (unoccupied) orbital.
The energy E in Eq. (3) will be given below in units of

h̄ωy . Scaling of distances by the harmonic-oscillator length
�0 = √

h̄/(mωy) will also be used. As basis functions we use
N anisotropic Gaussian wave functions

φi(r) = 1√
πσxiσyi

e

−
⎡
⎣ (x − xi)2

2σ 2
xi

+ (y − yi)2

2σ 2
yi

⎤
⎦
, (7)

where the set {xi,yi,σyi,σxi} with i = 1 to N are determined
variationally from the minimization of the energy. The choice
of this basis allows us to analytically calculate the one-
body energy terms H0,ij and overlap matrices Sij , whereas
the interaction terms must be calculated numerically due
to the form of the interaction potential. This choice will
heavily impact on the numerical cost of the calculation as
the matrix elements of interaction does not have a known
analytic expression as function of the variational parameters.
In practice, this will limit the number of atoms that can be
treated in a reasonable time.

Within this approach we have access to an approximation
of the full many-body wave function which in turn can be
used to extract information on the emergence of a condensate.
In particular, one can calculate the one-particle reduced
density matrix (1-RDM) which defines the condensate fraction
according to the Penrose-Onsager criterion [21]. The 1-RDM
is defined as

ρ1(r,r′) = N

∫
ψ∗(r,r2, . . . ,rN ) ψ(r′,r2, . . . ,rN )

×dr2 . . . drN (8)

and, being Hermitian, it can be diagonalized as

ρ1(r,r′) =
∑

l

Nl ϕ
∗
l (r)ϕl(r′). (9)

The wave functions ϕl(r) are determined from the eigenvalue
problem ∫

ρ1(r,r′) ϕl(r′)dr′ = Nl ϕl(r) (10)

where Nl are the populations guaranteed to be positive due
to the positivity of ρ1. Since the density is normalized to the
number of particles N , it must be that

∑
l Nl = N . However,

note that Nl need not be an integer number. Indeed, the fact
that Nl is a noninteger indicates that the optimized state cannot
be described by a single permanent of orthogonal orbitals and
thus it must contain some correlation. A single value Nl of the
order of the number of particles indicates the formation of BEC
since it corresponds to a many-body state where most particles,
namely Nl , share the same single-particle wave function. The
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condensate fraction is thus defined as N0/N , where N0 is the
largest Nl .

Furthermore, it is straightforward to compute the correla-
tion factor g(r) and the dynamic structure factor S(k). Here, we
focus on the ground-state configurations and the emergence of
the condensate only.

III. RESULTS AND DISCUSSION

In our numerical calculations we consider a trap with
ωx = (1 − α)1/2ω0, ωy = ω0, and take ω0 = 2π × 100 s−1

and several values of α. Following our previous investigations
we focus on values of r0 in the range from 10 to 50 μm
which is much larger than the size of the noninteracting
condensate of about 3 μm. Therefore, the K0 potential provides
an approximate logarithmic repulsion among the particles.

A. Ground-state configurations

The minimization of the energy was carried out using the
simplex method [22] starting from random initial positions of
the Gaussian wave functions and small random deviations of
their widths from the noninteracting case for a circular trap
σi = 1. The procedure was performed until a convergence of
the energy on 10−5 was achieved. The interaction terms were
integrated on a mesh of 300 × 150 points in the (r,θ ) space of
the relative coordinates.

In Fig. 1 we show the energies of the ground-state
configurations with N = 3 to 9 particles as functions of the
strength of the interaction potential. The case with the larger
r0 illustrates the importance of the repulsive core of the
potential. In particular, the larger core gives rise to extended
regions of repulsions which thereby increases the fraction of
interaction energy in the ground state. For comparison we
have added the energies obtained with a contact interparticle
interaction V (r) = gδ(r) with strength g = V0 r2

0 , where we
observe that the interaction energy remains well below
the kinetic one. This behavior depends on the number of par-
ticles since, for macroscopic condensates with large number
of particles, the interaction energy largely exceeds the kinetic
energy.

The geometric distribution of the particles can be seen
in Fig. 2 for N = 6 particles and the two values of r0. For
low repulsions, the bosons form a condensate sharing the
same wave function whose width depends slightly on the
number of particles. As the interaction exceeds a critical value
it is energetically favorable to increase the trapping energy
by moving apart the particles while reducing the interaction
energy. As previously found on cluster with other type of
interaction potential [13,23], we observe that on increasing
the number of particles, the geometric distribution changes
strongly by filling successive rings with particles. For the K0

potential we have found that a transition to a second ring
depends on the value of r0, for low values r0 the transition
occurs for N = 5 instead of N = 6 as it occurs with the purely
logarithmic interaction or the K0 with large r0. This is to be
contrasted with the case of the long-range Coulomb potential
of Ref. [13] where the transition is seen to occur at N = 6.

The density profiles depicted in Fig. 2 break the cir-
cular symmetry of the underlying Hamiltonian. In general,
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FIG. 1. Ground-state energies E (in units of h̄ω0) for config-
urations with N = 3–9 particles in a circular trap as functions of
the interaction V0 (in units of h̄ω0). The solid lines correspond to
r0 = 10 μm while the dashed ones to r0 = 20 μm. (Top) Total
energies, E; (bottom) ratio of the interaction (Eint) to the kinetic
(Ekin) energy, where the lines with symbols correspond the the results
obtained with the contact potentials of amplitude V0 r2

0 .

approximate treatments of correlated many-body problems
can lead to states with spontaneously broken symmetries
as studied, e.g., in the context of quantum dots in the
self-consistent spin-and-space unrestricted HF treatment of
the one-body density [15]. However, as any rotation of the
broken symmetry state is a degenerate state, one can restore
the circular symmetry by doing an appropriate superposition
of rotated states. This symmetry restoration technique is
widely known in nuclear physics [14] and has also been
successfully demonstrated in applications to Wigner molecules
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FIG. 2. (Color online) Ground-state density plots for N = 6
particles and several values of the interaction V0 as indicated in the
plot. The top and bottom rows correspond to r0 = 10 μm and 50 μm,
respectively.
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of electrons in quantum dots [24] and in two-dimensional
trapped bosons with 1/r interactions [13]. The technique
provides a multipermanental (or determinantal in the case
of electrons) state with the circular symmetry yielding a
lower ground-state energy. Nevertheless, even in this case the
underlying crystal-like structure can be revealed in the corre-
lation factor g(r,r′) containing information on the conditional
probability of finding a particle at a given distance of another
one [24,25].

While in macroscopic systems the emergence of spon-
taneously broken symmetry states is well known as, for
instance, is the case of ferromagnetism. The case of finite
systems is more subtle since quantum fluctuations cannot
be usually neglected and one should apply more accurate
techniques to have a definite answer on the nature of the ground
state (for a review, see Ref. [26]). For electrons in 2D and
for rotating condensates exact, diagonalization methods have
confirmed that the ground state may possess a spontaneously
broken symmetry depending on the strength of the interaction.
However, here we are mainly interested in the effects of the
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FIG. 3. (Color online) Density plots of configurations with N = 7
and N = 8 particles, and r0 = 10 μm for several V0 and α as indicated
in the plot.

noncircular trapping on the ground-state configurations where
one only has discrete symmetries and hence we do not apply the
restoration technique and defer the use of exact diagonalization
techniques for future studies.

Next, we focus on the dependence of the geometric
configurations on the anisotropy of the trap. The effects of
the anisotropy can be summarized as follows: (i) for low V0

the density profile follows the shape of the confinement as in a
pure BEC, i.e., an anisotropic harmonic trap; (ii) for large V0

the repulsive interaction breaks the condensate into a crystal-
like structure and the anisotropy induces changes in the
ordering of the atoms. For instance, for large V0 and anisotropy
we found that the distributions of atoms changes from a ring
with an atom in its center [configuration (1,5)] to a distorted
ring empty in its center [configuration (0,6)]. This change can
be interpreted in terms of available space to accommodate the
atoms in the trap as a function of the size of the repulsive core
given by r0. This effect is also observed for N = 6 and N = 9.
The results for N = 7 and 8 are depicted in Figs. 3 and 4 for
r0 = 10 and 20 μm.
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FIG. 4. (Color online) Density plots of configurations with N = 7
and N = 8 particles, and r0 = 20 μm for several V0 and α as indicated
in the plot.
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FIG. 5. Condensate fraction (N0/N ) as a function of V0 (in units
of h̄ω0) for a circular trap with several values of N . The solid and
dashed lines correspond to r0 = 10 and 20 μm, respectively.

B. Condensate fraction

The calculation of the full wave function allowed us to
estimate the condensate fraction. At large repulsions each atom
occupies a single wave function forming a crystal-like structure
and the condensate fraction is 1/N ; on the other hand, for
vanishing interaction all atoms are Bose condensed into the
same wave function and the condensate fraction equals 1. For
increasing values of V0, N0 decreases and we observe that
the transition toward the crystalline structure remains at about
the same value V0 � 4h̄ω0 irrespective of N . The results for the
isotropic confinement are summarized in Fig. 5 for N = 2 to
9, while Fig. 6 shows the condensate wave function ϕ0 for
N = 6, r0 = 50 μm and several values of V0. The comparison
with the total density in the bottom row of Fig. 2 illustrates
how, for low V0, the density profile is composed by an almost
pure condensate, while for strong interactions each occupied
orbital is located around a given density peak. We found that for
V0/h̄ω0 = 2 there is still half the number of particles occupying
the BEC phase while, at the same time, the appearance of a
crystalline structure is clear.

The values of the condensate fraction in terms of V0

and α enable us to construct a phase diagram with the
Bose-condensed and non-Bose-condensed crystalline config-
urations. Even though the number of particles is very low
and, therefore, the transition from the BEC phase to the
noncondensed one is very broad, we can define the phase
boundary as the critical interaction V c

0 where the function
N0(V0) changes the concavity sign for each value of α.
In this manner, we obtain V c

0 (α), locating a rough border
between the two phases. As a general trend we notice that
for stronger anisotropy, larger α, and larger core sizes r0, the
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FIG. 6. (Color online) Density plots of ϕ0 for N = 6 particles,
r0 = 50 μm and several V0 as indicated in the plots.
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FIG. 7. (Color online) Critical interaction (in units of h̄ω0) as a
function of the anisotropy parameter α for several number of particles
and core sizes. The open black and blue symbols correspond to
r0 = 10, 20, and 50 μm, respectively. The colored regions mark the
two phases studied in the system.

phase boundary is shifted to lower interactions strengths. These
results are summarized in Fig. 7.

IV. SUMMARY AND FINAL REMARKS

We studied the ground-state configurations of few bosons
confined by a two-dimensional anisotropic harmonic potential
and K0 interaction potential relying on a minimal variational
approach based in Gaussian wave functions. The approach
incorporates the overlap among the basis wave functions
and thus allow us to treat configurations spanning from
Bose-Einstein condensates to crystal-like structures on the
same footing. Additionally, this approach incorporates some
correlation as the optimized many-body wave function cannot
be written in term of a single permanent of orthogonal
orbitals.

For isotropic confining potentials we found that, for the
number of particles considered, the condensate fraction is
seen to vanish at about the same magnitude of the interaction
potential irrespective of the number of particles. In the case of
the anisotropic trap, we found that by increasing the anisotropy
parameter a smaller interaction drives the system out of the
Bose-condensed phase.

Several improvements on the approach can be envisioned,
for instance, the most straightforward would be to relax the
Gaussian approximation of the wave functions, increase the
number of basis functions above the number of particles,
and/or, e.g., fully optimize the shape of the orbitals along the
lines of what have been previously done for two bosons trapped
in a symmetric double well [27]. These changes, however,
would notably increase the computational demand. Another
possible route to improve our treatment is to apply methods
originally developed for quantum chemistry calculations as,
for instance, the configuration interaction approximation.
Some of these methods have been already extended to bosons
in addition to atomic fermions [28,29].
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