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Abstract We present a rigorous derivation of the moment hierarchy of the density
and pair density matrices of a two species fermion superfluid in coordinate represen-
tation. We discuss the tools to truncate at any desired level and present the derivation
of the Extended Superfluid Thomas-Fermi (ESTF) fluiddynamical scheme. In order
to establish the equation of state in equilibrium to be incorporated in the trunca-
tion, we extend the method of Papenbrock and Bertsch. We examine the dynamics
of fluctuations in homogeneous fermion matter and show that it is consistent with
the ordinary Random-Phase-approximation. We discuss some numerical results for
equilibrium profiles and collective fluctuations of trapped cold gases.
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1 Introduction

Cold atom physics is a fertile source for studies of tunable fermion superfluidity [1–
3]. The origin of theoretical studies of superfluidity of fermion matter is the Bardeen-
Cooper-Schrieffer (BCS) theory, originally developed for the electron gas [4] and
widely applied later to superfluid nuclei, a paradigm of finite systems [5, 6]. The
latter indicate that in spite of being a mean field description, the BCS method is
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essentially microscopic, and demands lengthy calculations in a single-fermion basis,
both for the equilibrium properties and for the low energy excitations.

The analysis of the collective spectrum of homogeneous superfluids has been put
forward by Anderson [7] and Bogoliubov [8]. The Random-Phase-Approximation
(RPA) formalism for the superconducting electron gas [7] is based on the lineariza-
tion of the mean field equations of motion (EOM’s) for the quasiparticles and permits
to identify, in the case of a neutral system, two well separated modes: a low en-
ergy oscillation involving potential flow of the condensate [9], corresponding to the
collisionless sound of a normal fluid, and a gapped fluctuation of the pair density,
acknowledged as the pairing vibration. For trapped gases, the simplest local density
approximation (LDA) that resorts to a Thomas-Fermi (TF) description of the fermion
cloud plus a local BCS prescription for the superfluid gap, has been extensively ap-
plied to study the structure and the collective modes of these systems. Although the
results could be regarded as relatively satisfactory as compared with i.e., Quantum
Monte Carlo calculations [10–15], the impossibility of reaching the pairing vibration
might be viewed as a limitation of the approach. Oscillations of the magnitude of
the pairing gap at the so–called unitary limit have been recently examined in Ref.
[16], employing a local energy–density functional theory and solving the mean field
EOM’s with an appropriate renormalization procedure, to remove the ultraviolet di-
vergences in the integrated quantities (see i.e., Ref. [17] for details). The analysis
indicates that the small amplitude dynamics of these modes is very similar to the
earlier results in Ref. [18].

In contrast with microscopic approaches of many body systems, in various fields
of physics a description in terms of macroscopic fields—typically particle, momen-
tum and energy densities—has proven useful for insights of equilibrium profiles and
collective spectrum [19]. Fermion fluiddynamics (FD) that explicitly incorporates
distorsions of the Fermi surface can overcome this difficulty. Several versions of FD
have been presented in the literature; similarly to classical hydrodynamics, the phi-
losophy is to derive EOM’s for the moments of the particle density operator and close
the hierarchy by a convenient truncation. For instance, in Ref. [20] and a series of pa-
pers with applications to nuclear physics, the closed system of EOM’s involves the
particle and momentum density of a normal fluid with a local equation of state (EOS)
corresponding to a TF approximation.

Recently, we derived a scheme for FD of fermion superfluids with two spin
species, starting from the EOM’s of the particle field operators with a Hamiltonian
containing a zero range interaction between the different spins and decoupling prod-
ucts of field operators in a mean field approach. The truncation of the momentum
hierarchy up to the momentum density complemented by various choices of the local
EOS, named the Superfluid-Thomas-Fermi (STF) frame, was employed in prelim-
inary calculations of equilibrium profiles of the particle density and superfluid gap
[21], and particle current density [22], as well as of low energy collective modes
[23]. The latter are restricted to sound-like modes, and the impossibility of reproduc-
ing high energy, gapped modes resembling the pairing vibrations of superfluids can
be regarded as a weakness of the lowest level of truncation of the moment hierarchy.
In a brief communication [24] we outlined a scheme that resembles classical hydro-
dynamics more closely by including the kinetic energy and its fluctuation; a somehow
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crude estimate indicates that the latter is the responsible of the gapped branch of the
collective spectrum.

In this paper we present a rigorous derivation of the moment hierarchy together
with the tools to truncate at any desired level. For this sake, in Sect. 2 we present the
derivation of the Extended Superfluid Thomas-Fermi (ESTF) scheme for the particle
and pair density together with their first and second moment. In Sect. 3 we review
the method originally proposed by Papenbrock and Bertsch [25] (hereafter referred
to as PB) for the EOS of a homogeneous superfluid, with the necessary modifications
and extensions for the case of interest. In Sect. 4, we examine the dynamics of fluc-
tuations in homogeneous fermion matter and compare our results with the RPA ones
in Ref. [7]. Some numerical results are presented and discussed in Sects. 5, and 6
contains the summary and perspectives.

2 General Formalism for ESTF

The starting point for our formulation is a zero-temperature grand potential operator
for fermions interacting with a zero range force if their spin projections σ = ± differ.
The populations Nσ are subject to external potentials Vσ (r)

Ω̂ = H − μ+N+ − μ−N−

=
∫

dr
∑
σ

[
− �

2

2m
Ψ †

σ (r)∇2Ψσ (r) + [Vσ (r) − μσ ]Ψ †
σ (r)Ψσ (r)

]

+ g

∫
drΨ †

+(r)Ψ †
−(r)Ψ−(r)Ψ+(r) (1)

The intensity of the δ-interaction among the species is commonly expressed in terms
of the s-wave scattering length a as g = 4π�

2a/m. This formalism allows broken
symmetries like different external potentials and unequal populations or propaga-
tion velocities Uσ = �qσ /m of the field operators, that for superfluids are gener-
ally expressed in terms of quasiparticle operators b†

ασ , bασ through the Bogoliubov–
de Gennes (BdG) transformation [26]

Ψσ =
∑
α

(
uασ b†

ασ − v∗
ασ bα−σ

)
(2)

with the symmetries uα−σ = uασ ≡ uα , vα−σ = −vασ ≡ −vα . The one-body density,
current and kinetic energy operators for each fermion species are

ρ̂σ (r, r′) = Ψ †
σ (r′)Ψσ (r) (3)

ĵσ (r, r′) = �

2mı
(∇ − ∇′)ρ̂σ (r, r′) (4)

τ̂σ (r, r′) = �
2

2m
∇ · ∇′ρ̂σ (r, r′) (5)
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The pair operator representing the anomalous density is

κ̂(r, r′) = Ψ+(r)Ψ−(r′) (6)

and the pair current and pair kinetic energy operators ĵκ and τ̂κ are defined as above
with gradients operating upon κ̂(r, r′).

The dynamics is contained in the equation of motion (EOM)

ı�
∂Ψσ (r)

∂t
=

[
− �

2

2m
∇2 + [Vσ (r) − μσ ] + gΨ

†
−σ (r)Ψ−σ (r)

]
Ψσ (r) (7)

and its Hermitian conjugate. These equations lead to the coupled EOM’s for the spa-
tial matrix elements of the above operators, that we omit here for the sake of briefness.

Is it convenient to introduce center-of-mass coordinates (R, s) with r = R + s/2
and r′ = R − s/2. The leading differential operators read

ĵ = �

mı
∇s (8)

τ̂ = �
2

2m

(
1

4
∇2

R − ∇2
s

)
(9)

The diagonal terms of the coupled matrix EOM’S are then obtained taking the limit
for s approaching zero. We need to keep in mind that the pairing tensor diverges in
this limit. As proposed by previous authors [27], we introduce the gap matrix and the
regular part κreg of the pair density

�(R, s) = −gκreg(R, s) (10)

κ(R, s) = m

4π�2
Gμ(s)�(R) + κreg(R, s) (11)

with Gμ the one-body Green’s function satisfying the equation

(∇2
s + k2

μ)Gμ(s) = −4πδ(s) (12)

for k2
μ = m(μT − gρT )/�

2, the subscript T indicating summation of the contribu-
tions from both species. In this way, we obtain the FD scheme in terms of the parti-
cle, momentum and kinetic energy densities of the fermion species, and of the order
parameter and its first two moments (hereafter, κ stands for κreg)

∂ρσ

∂t
= −∇ · jσ (13)

∂jσ
∂t

= −ρσ

m
∇μσ + g

κj∗κ − κ∗jκ
i�

(14)

∂τσ

∂t
= −∇ · jτ − ∇(VT + gρT ) · jσ + g

κτ ∗
κ − κ∗τκ

ı�

− g(j∗κ · ∇κ + jκ · ∇κ∗) − �
2

4m
∇2(Vσ + gρ−σ − V−σ − gρσ )
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− g
�

2

4m

κ∗∇2κ − κ∇2κ∗

ı�
(15)

ı�
∂κ

∂t
=

(
− �

2

4m
∇2 + VT − μT

)
κ + lim

s→0

(
−�

2

m
∇2

s κ

)
(16)

ı�
∂jκ
∂t

=
(

− �
2

4m
∇2 + VT + gρT − μT

)
jκ + lim

s→0

(
−�

2

m
∇2

s jκ

)
(17)

+ �

2mı
∇(V+ + gρ− − V− − gρ+) − gjT κ

− g
�

2mı
(ρ− − ρ+)∇κ (18)

ı�
∂τκ

∂t
=

(
− �

2

4m
∇2 + VT + gρT − μT

)
τκ + lim

s→0

(
−�

2

m
∇2

s τκ

)

− ı�∇(V+ + gρ− − V− − gρ+) · jκ + ı�g∇κ · (j− − j+)

− gτT κ − �
2

4m
[∇2(VT + gρT )κ − gρT ∇2κ] (19)

In (15), we have introduced the energy flow vector jτ = (�/mı) lims−→0 ∇τ . In
fact, an infinite hierarchy of higher gradients of both the particle and the pair den-
sities is created by the limiting process lims−→0, starting with (4). This hierarchy is
equivalent to an expansion of the matrix EOM’s around r = r′; by doing so, we are
respecting to a larger extent the matrix structure of quantum mechanics, somehow
disregarded in the standard LDA. One can also consider that a gradient/momentum
expansion can be viewed as an expansion in powers of �, which certainly carries one
beyond the classical limit; it is worthwhile to note that quantum hydrodynamics (see
i.e., Refs. [3, 16]) incorporates just the particle density and the superfluid velocity
into the theoretical frame. The set (13) to (19) can be closed by a truncation, replac-
ing the given limits by some local functions in terms of a selected equation of state.
This procedure is hereafter referred to as ESTF.

3 The Papenbrock-Bertsch Method

In this Section we present the various integrals for the homogeneous system, with
pair interactions, employing the dimensional regularization method developed in Ref.
[25], here denoted as PB. In the PB method, one writes the particle and pair densities,
and related quantities like currents, kinetic energies and successive gradients as sum-
mations over single-particle orbitals |kσ 〉 employing the stationary amplitudes of the
quasiparticle transformation (2), with uk(r) = ukeık·r and v∗

k(r) = vkeık·r giving the
particle velocity Uk(r) = �k/m.

The BCS theory for asymmetric matter is well known in nuclear physics [28–
30]; the occupation probability is |vk|2 = 1 − |uk|2 = 1/2[1 − (ε + gρ − μ)/Ek],
being ε = �

2k2/2m the fermion kinetic energy, ρ = ρT /2, μ = μT /2, and Ek =
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√
(ε + gρ − μ)2 + �2, with � = −gκ . The quasiparticle energies take the form

Ekσ = Ek + σδμ, with δμ = (μ+ − μ−)/2 the excess chemical potential.
Accordingly, one has the matrices

ρσ (r, r′) =
∑

k

[uk(r)u∗
k(r′)fkσ + vk(r′)v∗

k(r)(1 − fk−σ )] (20)

jσ (r, r′) =
∑

k

[uk(r)u∗
k(r′)fkσ + vk(r′)v∗

k(r)(1 − fk−σ )]Uk (21)

τσ (r, r′) = �
2

2m

∑
k

k2[uk(r)u∗
k(r′)fkσ + vk(r′)v∗

k(r)(1 − fk−σ )] (22)

κ(r, r′) =
∑

k

[uk(r)v∗
k(r′)(1 − fkσ ) − uk(r′)v∗

k(r)fk−σ ] (23)

and similarly for the pair current and kinetic energy, where fkσ = 1/(1 + eEkσ /T ) is
the occupation number, at temperature T , of a quasiparticle with energy Ekσ .

These summations are cast into integrals over the energy continuum with a density
of states ν(ε) = (2m3)1/2ε1/2/(2π2) after the limit r −→ r′. In terms of the Fermi
momentum kμ = √

2m(μ − gρ)/�2, the number of states per energy interval s

ν(z)dz = k3
μ

4π2
z1/2dz (24)

with z = ε/(μ − gρ), so that all single-particle and pair quantities can be expressed
in terms of dimensionless energy integrals of the form

∫ ∞

0

zα√
(z − 1)2 + x2

= − π

sinαπ
(1 + x2)α/2Pα

(
− 1√

1 + x2

)
(25)

Here Pα(u) is an associated Legendre function, and x = �/(μ − gρ). The PB regu-
larization then turns all diverging integrals into analytical expressions by taking the
appropriate limit of the parameter α.

These mathematical tricks are applied to every integral representing particle or
pair properties in the BCS regime of an homogeneous, symmetric (i.e., ρ± = ρT /2)
superfluid at zero temperature, where the quasiparticle occupation numbers vanish.
In particular, we are interested in the particle and kinetic energy densities

ρ = −1

2

∫ ∞

0
ν(z)dz

z − 1√
(z − 1)2 + x2

(26)

= −1

2

k3
μ

4π
(1 + x2)1/4

[√
1 + x2P3/2

(
− 1√

1 + x2

)
+ P1/2

(
− 1√

1 + x2

)]

τ = −1

2
(μ − gρ)

∫ ∞

0
ν(z)dz

z(z − 1)√
(z − 1)2 + x2

= 1

2

k3
μ

4π
(μ − gρ)(1 + x2)3/4

[√
1 + x2P5/2

(
− 1√

1 + x2

)
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+ P3/2

(
− 1√

1 + x2

)]
(27)

In addition, the PB method computes the regular part of the pair density as

κ = �

2(μ − gρ)

∫ ∞

0

ν(z)dz√
(z − 1)2 + x2

(28)

For any nonvanishing value of �, this gives the gap equation

1

kμa
= (1 + x2)1/4P1/2

(
− 1√

1 + x2

)
(29)

with a the s-wave scattering length. We then get for the pair kinetic energy density

τκ = �

2

∫ ∞

0

zν(z)dz√
(z − 1)2 + x2

≡ μκ (30)

All currents vanish in the homogeneous system, like any odd power of gradient op-
erators acting on the densities. The procedure can be applied to integrals containing
any power of εn, either for particles or for pairs, giving rise to the expression

τ (n)
σ = (−)n

k3
μ

4π
(μ − gρ)n(1 + x2)n/2+1/4

[√
1 + x2Pn+3/2

(
− 1√

1 + x2

)

+ Pn+1/2

(
− 1√

1 + x2

)]
(31)

for particles, and for pairs the recurrence formula

τ (n)
κ = −�

2
τ

(n−1)
T + μτ(n−1)

κ . (32)

4 Homogeneous Superfluid

In this section we test the ESTF scheme for an homogeneous system of paired
fermions, in the absence of external forces, and derive relations among the various
magnitudes, denoted by superscripts (h). Assuming equilibrium (∂/∂t = ∇ = 0) with
all currents vanishing, (13) to (19) show the following. First, (15) indicates that κ(h)

and τ
(h)
κ should be real in equilibrium. Equation (16) then gives

lim
s→0

(
−�

2

m
∇2

s κ

)
= μT κ(h) (33)

consistently with (30), since in view of the relation (9), in an homogeneous system
the limiting operator is twice the kinetic energy. In turn, (24) gives

lim
s→0

(
−�

2

m
∇2

s τκ

)
= (μT − gρT )τ (h)

κ + gτ
(h)
T κ(h) (34)
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as stems from (32) for n = 2, noting that the limiting operator is just 2 τ
(2)
κ .

With this in mind, our truncation criterion, aiming at applications to nonhomo-
geneous superfluids such as trapped gases, consists of (i) substituting the limiting
operator in (16) by 2 τκ ; (ii) setting the limiting operator acting on the current in (18)
equal to zero and (iii) replacing the limiting term in (19) locally by its expression (34)
for an homogeneous system. In this way, the limiting term becomes a unique function
of the local density.

Our next test for the validity of these criterion is the examination of fluctuations
in an homogeneous system, in order to compare with the RPA predictions [7]. As-
suming that all quantities f (r, t) depart from equilibrium by amounts δf (r, t) =
δf +eı(k·r−ωt) + δf −e−ı(k·r−ωt), the spatial amplitudes satisfy

±�ωδρ± = ±�k · δj± (35)

±�ωδj± = ±�k
ρ

m

∂μ

∂ρ
δρ± + 2�(δj±κ − δj∗∓

κ ) (36)

±�ωδτ± = ±k · δj±τ + 2�(δτ+
κ − δτ−∗

κ ) + 2gτ̃κ(δκ± − δκ∗∓) (37)

±�ωδκ± =
(

�
2k2

4m
− μ

)
δκ± + 2δτ±

κ (38)

±�ωδj±κ =
(

�
2k2

4m
+ gρ − μ

)
δj±κ + �δj± (39)

±�ωδτ±
κ =

(
�

2k2

4m
+ gρ − μ

)
δτ±

κ − gτ̃ δκ± − gκδτ±

+
[
gτ̃κ + ∂

∂ρ

[
(μ − gρ)τ (h)

κ + gτ (h)κ(h)
]]

δρ± (40)

with τ̃ = τ + ρ�
2k2/2m and τ̃κ = τκ + κ�

2k2/4m. The equations stand for the total
quantities of a symmetric mixture; for the sake of simplicity we remove subscripts
T everywhere. Also implicit is the fact that the linearization procedure sets all non-
fluctuating quantities at their real equilibrium values. Since the dynamics couples
complex fluctuations to their conjugates, one has to consider also the EOM’s for the
latter, noting that δf + and δf − are different in the general case.

We note that (35), (36) and (39) are decoupled from the rest. This permits us to
examine this particular system, together with the respective equations for the ampli-
tudes corresponding to the same phase factor. It is useful to switch variables to even
(δf + + δf −∗) and odd (δf + − δf −∗) amplitudes and write

�ωδρodd = �k · δjodd (41)

�ωδjodd = c2
s �kδρodd (42)

�ωδρeven = �k · δjeven (43)

�ωδjeven = c2
s �k · δρeven + 4�δjκ,odd (44)
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�ωδjκ,even =
(

�
2k2

4m
+ gρ − μ

)
δjκ,odd + �δjodd (45)

�ωδjκ,odd =
(

�
2k2

4m
+ gρ − μ

)
δjκ,even + �δjeven (46)

The first two members of this array represent a real mode, the sound-like one with
ω1 = csk, being c2

s = ρ/m(∂μ/∂ρ) the usual sound velocity squared. The remaining
four fluctuations are then enslaved by the particle and current density oscillation.
Furthermore, if the sound mode is not excited, one gets the solutions

(�ω)2 = 1

2

[(
�

2k2

4m
+ gρ − μ

)2

+ 4�2 + (�ω1)
2
]

± 1

2

√[(
�2k2

4m
+ gρ − μ

)2

+ 4�2 + (�ω1)2

]2

− (�ω1)4 (47)

At zero momentum, the positive root yields 2 Ek=0 as predicted by the RPA [7].
The perturbations of the pair density and the kinetic energies are enslaved by these
fluctuations according to (37), (39) and (40) and their complex conjugates.

In addition to these particle density modes, the equations for the pair density
and kinetic energies exhibit additional solutions corresponding to vanishing δρ. Tak-
ing into account that in transport theory, one has for the heat flux the relation
jτ = −K∇τ , with K a thermal conductivity, the particle kinetic energy undergoes
a diffusive behavior, leading to a vanishing δτ at equilibrium. We then see that if
δρ = δτ = 0, a real gapped mode due to pairing fluctuations exists, determined by
(38) and (40). One is left with a simple eigenvalue equation for ω at k = 0

�ω = gρ − μ ±
√

(gρ)2 − 2gτ (48)

Taking into account the relation τ = 3/5[ρ(μ − gρ) − |�|2/g] that can be extracted
from (26) and (27), the above gapped eigenvalues read

�ω = gρ − μ ±
√

17

5
(gρ)2 − 6

5
gρμ + 6

5
|�|2 (49)

We now observe that the traditional formulation of the RPA for the superconduct-
ing electron gas as presented by Anderson [7] follows form the derivation and analy-
sis of EOM’s for fluctuation operators ρ

q
kσ

= c
†
k+q,σ

ckσ and κ
q
kσ

= ck+c−k−q,−, with

c†, c particle creation and annihilation operators in momentum–spin representation.
The procedure establishes EOM’s for these fluctuations, driven by a standard BCS
Hamiltonian; the case q = 0 corresponding to the particle and pair densities naturally
decouples from the system, and the stable solutions coincide with the BCS ones.
These EOM’s for the above fluctuations and their Hermitian conjugates possess two
kind of equilibrium solutions. If terms containing fluctuations of the Hamiltonian are
disregarded, the excitation spectrum is particle-like and reproduces the BCS quasi-
particle spectrum. If the fluctuations in the Hamiltonian are kept, under assumptions
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valid in the weak coupling limit it is shown that there appear two formal solutions rep-
resenting collective excitations: one branch is the well known Anderson-Bogoliubov
longitudinal mode that coincides with collisionless sound in a neutral Fermi gas, the
other branch lies in the quasiparticle continuum, near or above the superfluid gap.

In the ESTF frame, one has to keep in mind that the existence of the Fourier com-
ponents fk of the six quantities involved make room to the existence of off-diagonal
fields f (r, r′) ≡ f (s). It is possible to verify explicitly that the off-diagonal EOM’s
(9) and (11) for ρσ (s) and δκ(s) give rise to the BCS equilibrium solutions. Distur-
bances of the equilibrium configuration that involve spatial perturbations contain the
sound-like oscillation and the BCS quasiparticle excitations. The ESTF formalism
show that these modes are compatible with a static pair density, since the pair con-
densate only participates with the pair current, which is driven by potential flow, as
seen in (46).

The appearance of the gapped modes, namely the pairing vibrations, is due to
the incorporation of the particle kinetic energy. Equation (48) shows that the gap
dependence of the latter in equilibrium is in charge of these high energy excitations,
and explains the failure of the standard TF + BCS approach in accounting for these
massive modes. The current ESTF description overcomes the limitation in earlier
approaches [21–23] where the hierarchy was truncated at a lower level.

5 The Confined Superfluid

In most cold atoms experiments the superfluid is confined by an approximately
parabolic trap. In this case the coupled equations (13)–(19) cannot be solved ana-
lytically but are amenable to a numerical treatment. The inhomogeneous equilibrium
states are found by imposing the vanishing of the time derivatives. The resulting sys-
tem of equations for vanishing stationary currents can be split into a coupled system
for κ and τκ

0 =
(

− �
2

2m
∇2 + VT − μ

)
κ + 2τκ (50)

0 =
(

− �
2

4m
∇2 + VT + gρ − μ

)
τκ − gτκ − �

2

4m
[∇2(VT + gρ)κ − gρ∇2κ]

−[
(μ(h)[ρ] − gρ)τ

(h)
K [ρ] + gτ (h)[ρ]κ(h)[ρ]] (51)

where τ has been approximated in a LDA fashion as τ (h)[ρ] with τ (h) given by (27).
The density profile and chemical potential are obtained from the EOS μ(h)[ρ] =
μ − VT (r) by requiring the density to be normalized to N .

In Fig. 1 we show the results for the inhomogeneous gaps and τκ at different lev-
els of approximations. In particular we compare a pure LDA approximation for the
homogeneous gap in the PB approach, with the STF and ESTF approximations. As
seen in the gap profiles, the oscillations around the trap center are strongly reduced in
the ESTF as compared to the STF, while the largest differences are found around the
point of maximum gradient in the gap. Consistently with the approximation scheme
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Fig. 1 Comparison of the gap profile � (left column) and τκ (in arbitrary units, right column) as calculated
in the LDA, STF and ESTF (this article) approximations. The top and bottom rows correspond to a = −114
and −50 nm respectively

the corrections are smaller for the lower interaction strength. Most interesting to note
is the validity of our previous approximation for τκ , since even for the highest inter-
action strength the plain LDA compares very well to the ESTF values.

The collective fluctuations in the confined superfluid can be also split as for the ho-
mogeneous fluid; in this case, the fluctuations of scalar quantities such as particle, gap
and energy density profiles can be written as δg(r) = g(r)Ylm(r̂) with Ylm a spheri-
cal harmonic function, while currents are expanded in terms of the vector spherical
harmonic functions [32] YL

lm as δj = f1(r)Y
l+1
lm (r̂) + f0(r)Yl

lm(r̂) + f−1(r)Y
l−1
lm (r̂).

The 3D coupled eigenvalue equations can then be cast into a system of 1D coupled
equations for the radial amplitudes of a given multipolarity l analogous to (41)–(46),
with the wavevector k replaced by the −i∇ operator and the chemical potential μ

and sound velocity cs replaced by their local values μ − VT (r) and cs(r).
The collective modes can be separated as before in density modes (with induced

pairing) and pure pairing fluctuations. Here we anticipate results for the density
modes of our extended approach in a spherical trap. A more thorough analysis in-
cluding the pairing fluctuations will be given elsewhere [31]. The frequency spec-
trum of density modes can be separated in two decoupled blocks: one correspond-
ing to the usual collisionless sound spectrum for the odd components and the other
frequency block containing the pair currents. For vanishingly small gap, i.e., in the
weak-coupling BCS limit, both energy blocks are degenerate and the pair current is
negligible. In the general case, even the density fluctuations in the usual sound de-
viate from the standard hydrodynamic result due to the coupling to the pairing gap.
In Fig. 2 we compare the low-energy density fluctuations δρ with l equal to 0 and
2 for two values of the scattering length, a = −114 and −50 nm. We note that the
real part of the density fluctuation, i.e. the physical one, is proportional to the even
density fluctuation only, so that δρ = δρeven. In addition to the shorter spatial extent
of the fluctuation for the strongest interaction, the figure shows that the differences
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Fig. 2 Low-energy density fluctuations (in arbitrary units) with l = 0 (left column) and 2 (right column)
as functions of r (in units of aho). The solid and dashed lines correspond to mixtures with a = −114 nm
and a = −50 nm, respectively. The insets show the difference between the STF and ESTF results for the
fluctuation

between the STF and ESTF are noticeable for the largest coupling and near the trap
center.

For the parameters considered the ESTF produces qualitatively the same density
fluctuations as the standard TF or STF approaches; the newest feature is that it gives
us access to the spatial profile of the pair current fluctuation. In Fig. 3 we show the
radial amplitude of the pair current for l = 0.

As shown by (14) the particle dynamics is directly coupled to the imaginary part
of the pair current and thus to the odd fluctuation δjκ,odd, while the even fluctuation
δjκ,even enters at a second order in � through its coupling with the odd part. We find
that the amplitude of the odd component may be an order of magnitude larger than the
even component, as a result of the direct coupling. Equations (44)–(46) indicate that
the equilibrium gap provides the intensity of the current-current coupling; indeed, the
short wavelength oscillations in both panels of Fig. 3 resemble those at the center of
the trap in Fig. 1 and stem from the Laplacian terms in (45)–(46). These rapid spatial
oscillations become damped as the gap decreases.

To the best of our knowledge, the meaning of the pair current has not been put
forward in the literature. A microscopic analysis based on the action of the current
operator on the pair density (cf. (31)) can relate this current to a local internal angu-
lar momentum of the paired fermions, with averages taken with respect to the pair
density [19]. Such a quantity vanishes in local equilibrium, thus its fluctuation—in
the present case, induced by a sound-like density perturbation—might be traced to a
local microscopic vorticity capable of coupling to a macroscopic rotational velocity
field. In other words the coupled pairs could behave as scattering centers for vor-
tex lines. This possibility opens interesting perspectives from the experimental side,
since the nucleation and stability of vortices in trapped superfluids could perhaps ex-
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Fig. 3 Pair current fluctuations (in arbitrary units) for the monopolar density fluctuations depicted in
Fig. 2. The left and right columns correspond to δjκ,even and δjκ,odd respectively

hibit some traces of such a coupling. We intend to explore these questions further in
a nextcoming investigation.

It is important to mention that the fluiddynamical description is not related in
an obvious manner to either standard quantum hydrodynamics—where the leading
quantities are the particle density and the gradient of the phase of the condensate wave
function—or to the Gross-Pitaevskii EOM (see i.e., Refs. [3] and [16]). In particular,
the pair current jκ is not the superfluid current; while the latter derives from the
gradient of the superfluid order parameter—say κ—, one can easily realize (see e.g.,
(20) to 23) that the former is constructed with the gradients of the particle wave
functions entering the microscopic structure of the pair density.

Finally, we would like to comment on the lowest dipolar mode, given than a branch
of the spectrum is determined solely by the equations for the confined superfluid anal-
ogous to (41) and (42), there is a mode at ω = ω0 as in the LDA and STF approaches
corresponding to a generalized Kohn mode [33]. However, at variance of the LDA
and STF approximations due to the coupling to the pair current fluctuation the den-
sity fluctuation is not exactly proportional to a rigid translation of the particle density
and deviates from the derivative of the equilibrium density. Nonetheless for moderate
values of the gap profile as considered here these deviations can be safely neglected
as shown in the inset of Fig. 4.

6 Summary

In this paper we have derived in detail the FD formulation for a fermionic superfluid,
complementing the mass, momentum and energy conservation laws of standard hy-
drodynamics with EOM’s for the pair density, pair current density and pair kinetic
energy of the system with two species. The present treatment overcomes the most se-
rious limitation of the simpler STF approach where the moment hierarchy of the gen-
eralized density matrix of superfluids was truncated at a lower level [21], namely, the
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Fig. 4 Comparison of the dipolar density mode at ω = ω0 for a = −114 (solid lines) and −50 (dashed
lines) nm. The inset shows the difference between the ESTF and STF approximations for each value of a

nonappearance of a gapped density fluctuation originating in the internal oscillations
of pairs. We have shown that in a homogeneous fermion superfluid, the particle ki-
netic energy—disregarded in our previous calculations [21–23]—estimated through
a local EOS according to the proposal of Ref. [25] is the agent of the incorporation
of the gap in the structure of the mode frequency at zero momentum. The spectrum
of a homogeneous superfluid so derived is then in a one-to-one correspondence with
the original RPA one [7–9].

The advantage of our so-called ESTF treatment is the formulation in terms of
macroscopic fields for all conserved quantities and their fluctuations, rather than
on single particle wave functions. In addition to facilitating numerical estimates, a
macroscopic view can be helpful for comprehension of many observable features of
trapped cold gases. This has been tested for the case of a sample of Li atoms in a
parabolic trap. The equilibrium configurations for density and gap profiles calculated
in the ESTF frame are very similar to those in the previous STF one, assessing the
validity of the latter, much simpler on computational grounds. More important dif-
ferences arise in the deviations from equilibrium in the trap. The classification of
spectral branches is the same as for a homogeneous superfluid, so that collisionless
sound is a leading density fluctuation, capable of inducing perturbations in the parti-
cle and pair current densities—apart from kinetic energies and pair fluctuations, not
contemplated in the present study.

To summarize, we believe that our approach is preferable to previous one com-
mented here, like standard LDA, since it permits, for example, to identify the particle
kinetic energy as an agent in the emergence of the pairing vibration, to associate the
first moment of the anomalous density with the internal motion of the pair, and to
treat small amplitude density and pairing vibrations on an equal footing. We note
that the pair current density is a quantity not yet investigated, whose fluctuations may
show up in relation to nucleation and stabilization of macroscopic vorticity in trapped
superfluids. The concept of an intrinsic pair angular momentum, and its coupling to
the vorticity field is well-known in the hydrodynamic theory of superfluid 3He [19],



256 J Low Temp Phys (2012) 166:242–256

however in such a context this quantity is related to the textures of an anisotropic
superfluid. We believe that this topic is worth being pursued, since it may help to de-
velop important details of the structure and dynamics of paired fermions in quantum
liquids and trapped gases.
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