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Neutron star crusts are studied using a classical molecular dynamics model developed for heavy-ion reactions.
After the model is shown to produce a plethora of the so-called pasta shapes, a series of techniques borrowed
from nuclear physics, condensed matter physics, and topology is used to craft a method that can be used to
characterize the shape of the pasta structures in an unequivocal way.
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I. INTRODUCTION

Neutron stars created in the death of a massive star are
composed of a dense core containing an excess of neutrons
over protons, thus justifying the name. With a mass between
1 and 3 solar masses and a radius of about 10 km, the stars
are topped with a crust of about a kilometer thick where the
β-decay-produced neutrons form neutron-rich nuclear matter
immersed in a sea of electrons. The crust density ranges from
normal nuclear density (∼3 × 1014 g/cm3) at a depth of about
1 km, to the neutron drip density (∼4 × 1011 g/cm3) at about
1/2 km, to a light mix of neutron-rich nuclei with densities
decreasing practically to zero in the neutron star envelope.
Likewise the proton-to-nucleon ratio also varies from ∼0.25
to ∼0.5 through the crust [1], and the temperature from cold
nuclear matter to about 1 MeV. The study of the structure of
such crust is the purpose of the present work.

Studies of low-density nuclear matter have revealed that
the attractive-repulsive interplay of nuclear and Coulomb
forces drives low-density nuclear matter to form nonuniform
structures which are collectively known as “nuclear pasta.”
Such arrangements go from condensed phases with voids filled
with nuclear gas, to “lasagna-like” layers of nuclei surrounded
by gas, to “spaghetti-like” rods embedded in a nuclear gas,
to ever-decreasing “meatball-like” clumps which practically
dissolve into a gaseous phase [2].

Early investigations have used static models which rely
mostly on energy considerations to determine the structures
that are most energetically favorable. Among the various
theories proposed, the ones used most recurrently are the
compressible liquid drop model [3–5], the extended Thomas-
Fermi model [2,6–8], and the Hartree-Fock method [5,9–13].

On the other hand, there are dynamical models that go
beyond mean fields to predict the formation of the pasta
phases as an asymptotic equilibrium state resulting from an
evolution of a dynamical system. The most used methods
are semiclassical molecular dynamics [14–16] and quantum
molecular dynamics [17–22].

On the general composition of the pasta, most models
agree on the formation of varying structures at subnormal
densities but not on how the sequence of phases arises. Since
the physical mechanism responsible for the phase transition

pattern is a subtle interplay between Coulomb and nuclear
energies, which vary only by a few keV/fm3 between phases,
the precise transition pattern is easily altered by the ingredients
of the theoretical models. The fact that the Coulomb interaction
between the electron sea and the nucleons—whose screening
effect stabilizes the overall system, modifying its structure—
must be treated under different approximations in different
models [22] complicates any cross-model comparison even
more.

An additional problem which makes comparisons among
models difficult, or impossible in some cases, is the lack
of a quantifiable characterization of different pasta phases.
The identification of phases has been done mainly through
visual inspections of snapshots of spatial nucleon distributions
obtained from calculations [23]. The quantum molecular
dynamics approach of Ref. [17], for example, produces nuclear
holes, slabs, cylinders, and spheres similar to those predicted
by the Thomas-Fermi model [2,6,7], but at different densities
and temperatures.

In spite of this, the pasta phases have been characterized
globally. For instance, static models have been used to
calculate average densities [8] and volume fractions of the
different phases [24]. Pasta bulk properties, such as the
shear viscosity [25] and diffusion coefficients [26], have also
been obtained using molecular dynamics simulations. Refined
studies have used radial correlation functions to characterize
the nucleon distributions [19] and the pasta structure factor to
study charge density fluctuations [27].

More recently, shape characterizations were attempted both
in dynamical simulations and with static models; the former
use topological measures such as the Minkowski functionals
and the Euler characteristics [23], while the latter modified
the liquid drop model with a curvature correction to detect
structure shape changes [28].

Thus we have the motivation of the present study: How
do we achieve a precise enough characterization of the pasta
phases? What property can be used to signal a change
of pasta phase? The purpose of the present work is to
construct the instruments needed to properly quantify the pasta
structures.

By taking advantage of the microscopic details produced
by a classical molecular dynamics model, this investigation
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combines the power of cluster-detection algorithms used in
nuclear collisions with indicators borrowed from condensed
matter physics and topology to detect the transitions between
pasta phase structures in a quantitative way.

After an introduction of the model, we will introduce a
series of techniques used to classify the pasta structures that
will help us reach our goal. Starting from global measures to
understand the cluster composition (fragment size distribution,
nucleon mobility and persistence, fragment isotopic compo-
sition, and radial distribution function), we will progress into
topological tools (Minkowski functionals) that will allow us
to characterize the shape of the pasta structures as well as to
detect changes between them. A final discussion of the results
will then help us reach a series of conclusions and to draw an
outlook for future tasks.

II. NUCLEON DYNAMICS

To study the structure of stellar crusts it is necessary
understand the behavior of nucleons at the proper densities,
temperatures, and proton-to-neutron ratios; such knowledge
comes from the study of heavy-ion fragmentations. The initial
statistical studies of nuclear collisions of the 1980s [29,30]
rapidly gave way to dynamical theories based on classical,
semiclassical, and quantum approaches.

The semiclassical models use the Boltzmann-Uehling-
Uhlenbeck equations [31] to track the time evolution in phase
space of the probability of finding a particle moving in a mean
field. On the other hand, the quantum molecular dynamics
models (QMD) solve the equations of motion of nucleon
wave packets moving within mean fields. Unfortunately, these
theories either do not lead to cluster formation or yield a poor
description of cluster properties and both must resort to the use
of all sorts of extraneous techniques such as adding fragments
by hand, coupling to “afterburners” to produce secondary
decays [32], and introducing hidden adjustable parameters
(e.g., width of wave packets, number of test particles, and
modifications of mean fields, effective masses, and cross
sections, etc.) to satisfy the operator’s taste.

These problems are either nonexistent or much reduced
in classical models. Classical dynamical models generally
solve Newton’s equations of motion to track individual nu-
cleons moving under two-body potentials; coupled to cluster-
recognition algorithms these calculations yield microscopic
views of nuclear reactions as well as of nuclear structures.
The only apparent disadvantage of the classical models would
be the lack of quantum effects, such as Pauli blocking;
fortunately, in stellar environments the very small nucleon
energies lead to frozen-like structures where the blocking of
momentum-transferring collisions ceases to be relevant. [See
Ref. [33] for a calculation of the mean thermal wavelength of
a nucleus in stellar conditions to justify the use of a classical
approach.]

Let this rather long preamble serve to justify extending the
use of a classical model designed for nuclear reactions to the
study neutron star crusts. In this work we use a classical model
to obtain a detailed microscopic picture of the pasta structures
and be able to detect transitions between phases.

A. Classical molecular dynamics

We use a molecular dynamics code combined with al-
gorithms for cluster recognition. Our classical molecular
dynamics model, CMD [34], is based on the pioneering work
of Pandharipande [35] and has been very fruitful in nuclear
studies of, among other phenomena, neck fragmentation [36],
phase transitions [37,38], critical phenomena [39,40], the
caloric curve [41,42], and isoscaling [43,44] all without any
adjustable parameters. Readers are directed to these references
for further details on the model; here only a brief synopsis will
be presented along with its extension to infinite systems.

In a nutshell, CMD treats nucleons as classical particles
interacting through a two-body potential and solves the
coupled equations of motion of the many-body system to
obtain the time evolution of all particles. Since the (r, p)
information is known for all particles at all times, it is
possible to know the structure of the nuclear medium from
a microscopic point of view.

CMD uses the phenomenological potentials developed by
Pandharipande [35]:

Vnp(r) = Vr [exp (−μrr)/r − exp (−μrrc)/rc]

−Va[exp (−μar)/r − exp (−μara)/ra]

VNN (r) = V0[exp (−μ0r)/r − exp (−μ0rc)/rc],

where Vnp is the potential between a neutron and a proton and
it is attractive at large distances and repulsive at small ones,
and VNN is the interaction between identical nucleons and it
is purely repulsive. Notice that no bound state of identical
nucleons can exist; also notice that, in contrast to potentials
used by other models [15], these potentials have a hard core.

The cutoff radius is rc = 5.4 fm, after which the potentials
are set to zero. Two sets of values for the Yukawa parameters
μr , μa , and μ0 were fixed by Pandariphande to correspond to
infinite-nuclear-matter systems with an equilibrium density of
ρ0 = 0.16 fm−3, a binding energy E(ρ0) = 16 MeV/nucleon,
and compressibility of about 250 MeV (‘medium”) or
535 MeV (‘stiff”) [35]. In the past, a combination of Monte
Carlo and molecular dynamics techniques was applied
within a statistical formalism to obtain neutron star crust
properties [15].

B. Simulating the neutron star crust

To study the neutron star crust we use CMD to simulate an
infinite medium. Systems with 2000 or 3000 nucleons were
constructed and replicated with periodic boundary conditions
in 26 surrounding cells. In particular, the proton ratios used
were x = Z/A = 0.5 (1000 neutrons and 1000 protons) or 0.3
(2000 neutrons and 1000 protons). The cubical box size used
was adjusted as to achieve densities between ρ = 0.01 fm−3

(about ρ0/15) and ρ0.
As the crust is expected to be embedded in a degenerate

electron gas produced by weak decays during the supernova
explosion, it is necessary to take into account its Coulomb
interaction. Although the nucleon-electron system is overall
neutral and β-equilibrated, the infinite Coulomb range requires
the use of some approximation; two common approaches are
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the Thomas-Fermi screened Coulomb potential (used in QMD
in [17]) or the Ewald summation procedure [45]. Although
CMD is able to operate under either approximation, in this
work the former is adopted (and see [46] for a comparison of
methods under CMD).

By approximating the electron gas as a uniform ideal Fermi
gas at the same number density as the protons, its effect can
be included in the nucleon’s equations of motion by means
of the screened Coulomb potential obtained from the Poisson
equation:

V
(Scr)
C (r) = e2

r
exp(−r/λ),

where the relativistic Thomas-Fermi screening length is
λ = (π2/2e)[k2

F (k2
F + m2

e)]−
1
4 , me is the electron mass, kF =

(3π2ρe)1/3 is the electron Fermi momentum, and ρe is the
electron gas number density equal to that of the protons.
The size of the simulation cell, L = (A/ρ)1/3, should be
significantly larger than λ; in our case we satisfy such a
requirement by using the prescription of [15] and setting
λ = 10 fm.

The trajectories of individual nucleons, now governed by
the Pandharipande and the screened Coulomb potentials, are
then tracked using a Verlet algorithm with energy conservation
of O(0.01%). The system is force-heated or cooled using
isothermal molecular dynamics with the Andersen thermostat
procedure [47], which gradually cools in small temperature
steps while reaching thermal equilibrium at every step. We
focus on the range of T = 0.1 to 1.0 MeV; although this last
temperature is large for stellar crusts, in terms of the nucleon
dynamics it practically corresponds to a frozen state.

III. CHARACTERIZING THE CRUST

In contrast to most QMD simulations, which tend to track
individual evolutions, here we obtain reliable statistics by
sampling 200 times each configuration with specific x, ρ,
and T conditions. Figure 1 shows a smörgåsboard of Italian
delicacies produced by CMD with x = 0.5, T = 0.1 MeV and
twenty different densities; notice that for clarity the figures do
not show single nucleons, i.e., the gaseous phase. In spite
of their beauty, one cannot use those figures to properly
characterize the pasta shapes; for that one must resort to other,
less visually attractive, techniques.

On each of the configurations achieved, the nucleon (r, p)
information is recorded and used later to identify clusters and
to characterize the structure by means of the liquid structure
function and the Minkowski functionals.

A. Cluster composition

The nucleon positions are used to identify clusters by means
of the minimum spanning tree (MST) algorithm refined for
nucleon dynamics in [48,49]. In summary, MST looks for
correlations in configuration space: a particle i belongs to
a cluster C if there is another particle j that belongs to C

and |ri − rj | � rcl , where rcl is a clusterization radius, which
is set to 3.0 fm. In spite of using only r-space correlations,

FIG. 1. (Color online) Smörgåsboard of pasta shapes correspond-
ing to the densities shown and to x = 0.5 and T = 0.1 MeV.

MST yields accurate results in the case of stellar crusts due to
the low temperatures and small momentum transfer, and thus
here it is preferred over other more robust cluster-detection
algorithms (such as the early cluster recognition algorithm,
ECRA [50], which take into account relative momenta and
binding energies). In our case of periodic boundary conditions,
the MST method was modified to recognize fragments that
extend into adjacent cells.

Figure 2 shows examples of the fragment population ob-
tained with CMD-MST at x = 0.3, ρ = 0.015 fm−3, and four
different temperatures; of particular interest is the evolution of
the clustering as a function of the temperature as it shows a
trend opposite to that observed in nuclear collisions. The figure
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FIG. 2. Temperature evolution of the fragment size distribution
obtained from 200 configurations with x = 0.3 and ρ ≈ ρ0/10.

055805-3
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FIG. 3. Relative abundance of large clusters as a function of
density for x = 0.3 and 0.5 at T = 0.1 MeV.

shows a typical evolution for the range 0.1 < T < 0.1 MeV
and, as can be clearly observed, the large fragment multiplicity
increases with T . This is ithe opposite to what happens in
heavy-ion reactions at high energies where heavier fragments
shrink in size by particle evaporation during the final expansion
stage of the reaction. In the case of infinite systems, however,
the lack of expansion (and lack of a reduced pressure) makes
evaporation less probable and, combined with the possibility
of connecting fragments to neighboring cells, it favors the
growth of cluster sizes as soon as the nucleons reach enough
mobility with increasing T .

The growth of large-fragment multiplicity can also be seen
as a function of the density. Figure 3 shows a typical behavior
of the relative multiplicity of large clusters, A > 100 and A >

10, obtained at different densities for both x = 0.3 and 0.5 at
T = 0.1 MeV. As the density increases, the number of clusters
of A > 100 increases practically linearly with ρ up until a
single large fragment is formed; smaller clusters of A > 10
are abundant at low densities but decrease for larger densities.
The density at which the number of large clusters condense
into a single one can be thought of as a “percolation” density;
this value, of course, depends on the simulation parameters
such as number of particles, cell size, temperature, etc.; for the
cases shown, the percolation densities are ρ ≈ 0.03 fm−3 for
x = 0.3 and ρ ≈ 0.024 fm−3 for x = 0.5 at T = 0.1 MeV.

The dynamics of the nucleons within systems in equilibrium
can be gauged through their average displacement as a function
of time, i.e., through the time steps of the simulation. Figure 4
shows the root-mean-square displacement of the nucleons
from their original position in 200 time steps; as a metric
one must remember that the range of the potential is 5.4 fm
and (as we will see in Sec. III B) the interparticle distance at
these densities is of the order of 1.7 fm. The increment in
mobility as a function of the temperature is obvious.

Likewise, the microscopic stability of the clusters can be
quantified through the “persistency” [51,52], which measures
the tendency of members of a given cluster to remain in
the same cluster. Figure 5 shows the time evolution of the
persistency for systems with ρ = 0.015 fm−3 and x = 0.3
at the listed temperatures; notice that a persistency of ∼1
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FIG. 4. Root-mean-square displacement of the nucleons from
their original position as a function of the simulation time steps for
systems with ρ = 0.015 fm−3 and x = 0.3 at the listed temperatures.

indicates that most of the particles remain in the same cluster,
while smaller values indicate a larger exchange rate. The
anticorrelation between this and the previous figure is clear:
more mobility implies less persistency, and vice versa.

Another interesting descriptor is the isospin content of the
clusters produced. By keeping track of the number of protons
and neutrons on each fragment it is possible to determine the
x value for each cluster. An example of this is shown in Fig. 6,
where the x content of the fragments is plotted as a function of
the mass of the clusters obtained at a density of ρ = 0.015 fm−3

and with x = 0.5 (top two plots) and x = 0.3 (bottom four).
Several effects are noticeable: small clusters (A � 10) tend to
have fewer protons than the average, resulting in smaller x

values; for the case of x = 0.3 there is a prominent binding
of one proton to two neutrons, which results in clusters of all
sizes with values of x ≈ 1/3; the previous effect is not present
in the case of x = 0.5, in which all the clusters maintain their
x values around 1/2.
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two plots) and x = 0.3 (bottom four plots) at the temperatures listed.

We close this section noticing that, in spite of being a good
indicator of the percolating density, the cluster multiplicity is a
poor descriptor of the pasta shapes. Stepping up in complexity,
we now turn to the radial correlation function to probe the pasta
al dente.

B. Pair correlation function

Another global characterization of the structure of nuclear
matter is obtained from the pair correlation function, g(r),
which is the ratio of the average local density to the global
density, g(r) = ρ(r)/ρ0; it gives information about the spatial
ordering of the nuclear medium.

For computing purposes, the pair correlation function g(r)
is taken as the conditional probability density of finding a
particle at ri + r given that there is one particle at ri . Formally,

g(r) = V

4πr2N2

〈∑
i �=j

δ(r − rij )

〉
,

where rij is |ri − rj |. For our case, this was calculated by
constructing histograms of the distances between particles for
several configurations obtained with the same x, ρ, and T and
then averaging them; to include all particles and their images
the range was extended to rij � 1.5L.

Figure 7 shows examples of g(r) obtained for cases with
2000 nucleons, x = 0.5, T = 0.1 MeV, and densities 0.01 <

ρ < 0.039 fm−3. The inset shows the case ρ = 0.048 fm−3

when the nearest neighbors are just as probable as second
nearest neighbors, signaling the onset of a lasagna-type
structure (cf. Fig. 1).
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FIG. 7. Examples of the radial correlation function for x = 0.5,
T = 0.1 MeV, and various densities. Also shown is the case when
nearest neighbors are as probable as second nearest neighbors
indicating a lasagna-type structure; r is in femtometers.

It is worth noticing that, in the case shown, the location
of the nearest neighbors remains constant at r ∼ 1.7 fm at all
densities. This is because the position of the peak of g(r) is
an average between the location of neighbors in the gas-liquid
mixture (since at subcritical densities the medium is metastable
or unstable, it breaks into a gaseous and a condensed phase);
the condensed matter at normal density has nearest neighbors
at r ≈ 1.4 fm [35].

Once again, in spite of the rich information derived from
g(r), it is still insufficient to tag the phases unequivocally; for
this, other more complex constructs must be borrowed from
cosmology and, ultimately, from topology.

C. Topological constructs

The most obvious properties of closed surfaces that can
be used to characterize their shapes are the volume V , the
surface area A, and the curvature. The latter is less trivial
than the other two as it does not hold a unique value for a
given shape but varies from point to point; however, mean
curvatures of a closed body can be obtained by averaging
procedures such as the “integral mean curvature,” defined
as H = ∫

df (R1 + R2)/2R1R2, where R1 and R2 are the
principal radii of curvature of the surface and df is a
differential of area.

FIG. 8. (Color online) Sample transformation of a nuclear struc-
ture to a corresponding polyhedron. The structure corresponds to a
case with x = 0.5, ρ = 0.33 fm−3, and T = 0.1 MeV.

055805-5
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FIG. 9. (Color online) Spatial configurations formed under T =
0.4 MeV and ρ = 0.045 fm−3 (left) and T = 1.0 MeV and ρ =
0.072 fm−3 (right), both for x = 0.3.

In general, V, A, H, plus an interesting construct known
as the Euler characteristic are collectively known as the
“Minkowski functionals”; according to integral geometry the
morphological properties of three-dimensional objects can be
completely described in terms of them.

The XVIII-century work of Euler-L’Huilier showed that,
independent of the shape of any polyhedra, deducting the
number of edges from the number of vertices and adding
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FIG. 11. Euler and curvature of the structures shown in Fig. 9;
the difference between the two cases is easy to spot.

the number of faces always yields 2 plus twice the number
of cavities, a quantity now known as the Euler characteristic,
χ . Although this previous property is for solids bounded by
plane surfaces, it also applies in any three-dimensional surface
with χ related to the total curvature of the surface through the
Gauss-Bonnet theorem.

In topological terms, two orientable closed surfaces are
homeomorphic to each other if their Euler characteristics are
the same. Conversely, two homomeorphic closed surfaces
will always have the same value of χ . Therefore, since
our pasta niblets are all orientable, their Euler characteristic
completely classifies them up to an homeomorphism; adding
the rest of the Minkowski functionals eliminates such redun-
dancy and guarantees a complete classification of the pasta
shapes.

An immediate problem is the fact that the nuclear clusters
are not polyhedra and do not even form closed surfaces.
This obstacle, however, can be circumvented by replacing the
nuclear structure with a scaffold-like armature composed of
cells, each of which encloses one nucleon. In our case this is
done through the algorithm of Michielsen and De Raedt [53],
which has already been used in the study of stellar crusts, albeit
in a different methodology [21].
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FIG. 12. Typical artificial “pastas” used to test the classification
powers of the Euler-curvature combination. Respectively, they are the
“jungle gym” (top left), “lasagnas” (top right), “straight spaghettis”
(bottom left), and a “curled spaghetti.”

Synoptically, the simulation volume is subdivided into a
mall of cubic cells. Those cells which contain the coordinates
of a nucleon are kept while the rest are deleted. The sizes of
the cells are made smaller than the nearest neighbor distance
found in g(r) to enforce a one-particle-per-cell occupation, but
not too small as to avoid creating spurious cavities between
neighboring nucleons. It is on this imaginary platform that the
Minkowski functionals of the nuclear structure are computed.

In general, χ equals the number of regions of connected
grid cells minus the number of completely enclosed regions
of empty grid cells. Two grid cells are connected if they
are immediate neighbors, are next-nearest neighbors, or are
connected by a chain of occupied grid cells. By characterizing
the connected structure by its number of occupied cubes,
nc, edges, ne, faces, nf , and vertices, nv , including possible
contributions from the interior of the structure, the Minkowski
functionals can be calculated through [53]

V = nc, A = −6nc + 2nf ,

2B = 3nc − 2nf + nc, χ = −nc + nf − ne + nv,

where V stands for the volume, A for the area, B for the
mean breadth, and χ for the Euler number; the mean breadth
measures the average “size” of a body and it is related to the
integral mean curvature H mentioned before. Figure 8 shows
a typical nuclear structure along with the grid constructed
around it; the values of the Minkowski functionals obtained
from such grid are curvature = 215 and Euler = −17; as we
will see next such a shape can be classified as a “jungle gym.”
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D. Topological classification of the pasta

To illustrate the use of topology to classify the pasta shapes
let us use two seemingly similar structures obtained with
x = 0.3 but at different densities and temperatures, namely,
ρ = 0.045 fm−3 and T = 0.4 MeV and ρ = 0.072 fm−3 and
T = 1.0 MeV. The spatial configurations of these two cases,
practically identical to the eye, are presented in Fig. 9. Al-
though there are minor differences (see insets), Fig. 10 shows
that both configurations have very similar mass multiplicities.

The difference between the configurations, however, arises
when we calculate the corresponding curvature and Euler
numbers. Figure 11 shows the evolution of the curvature
and of the Euler number as the simulation advances after
equilibration. Clearly shown are the inverted values of Euler
and the curvature for the two cases; while the curvature is
positive (with fewer cavities than bellies) and large in the
low-T , low-ρ case, it becomes negative (with more internal
cavities than tummies) and smaller in the opposite case.

To investigate this point further, we created artificial struc-
tures in the form of gnocchi, spaghetti, lasagna, and crossed-
lasagnas, which we call “jungle gym,” and their inverse
structures (with voids replacing particles and vice versa) and
calculated the values of the two topological variables; some of
the structures used are shown in Fig. 12 and their locations in
the curvature-Euler plane are shown in Fig. 13. The magnitudes
shown are determined by the size of the structure as well as
the digitization cell size. In general one can conclude that
lasagnas tend to lie near the origin, spaghettis have near-zero
Euler numbers and positive curvatures, gnocchis have positive
curvatures and Euler numbers, and jungle gyms have positive
Euler number and negative curvature; all antistructures reverse
the curvature but maintain the Euler characteristic. All cases
calculated at all x values, densities, and temperatures were
observed to satisfy this classification.

For instance, the structure in Fig. 8 with curvature 215
and Euler number −17 is clearly a jungle gym. Likewise, the
structure in the left panel of Fig. 9, with both negative curvature
and Euler number, can be classified as an “anti–jungle gym,”
whereas the accompanying structure with positive curvature
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DORSO, GIMÉNEZ MOLINELLI, AND LÓPEZ PHYSICAL REVIEW C 86, 055805 (2012)

TABLE I. Classification of structures.

Density x = 0.5 x = 0.3

(fm−3) Curvature Euler Topology Curvature Euler Topology

0.01 (a) 100 100 G (A) 96 27 G
0.015 73 50 G 92 7 G-S
0.018 58 17 G-S 79 −9 S
0.021 36 −25 S-J
0.024 22 −28 S-J 58 −18 J-S
0.026 51 −39 J
0.027 9 −42 J-L 47 −37 J
0.03 10 −39 J-L 48 −7 S
0.033 9 −47 J 18 −75 J
0.036 8 −42 J
0.039 −11 −6 L-AJ
0.042 −15 −8 L-AJ
0.045 1 −33 L-J −54 −100 AJ
0.048 −5 −11 L
0.051 −7 −17 AS-AJ −94 −41 AJ
0.054 −1 −11 L-AJ
0.057 −9 −30 AJ
0.06 −9 −17 AJ −100 66 AG
0.063 −10 −30 AJ
0.072 −12 −8 AS-AJ (L) −60 90 AG
0.084 (t) −19 −8 AJ

and negative Euler number would have to be classified as a
jungle gym.

Table I shows the classification of several of the structures
obtained in our study at T = 0.1 MeV and at the listed
densities, and Fig. 14 shows their location in the curvature-
Euler plane; the x = 0.5 column of the table and the circular
dots on the figure correspond to the structures presented in
Fig. 1. As the absolute magnitude of the curvature and Euler
number depends on the overall size of the structure, i.e., on the
number of particles used, the data in Table I were normalized
to have maximum absolute values of 100. In the table, the
classifications are abbreviated as G for gnocchi, J for jungle

-100

-50

 0

 50

 100

-100 -50  0  50  100

E
u

le
r

Curvature

x = 0.3

x = 0.5
a

t

A

L
T=0.1 MeV

FIG. 14. Curvature-Euler coordinates of the structures listed in
Table I. Labels “A,” “a,” “L,” and “t” correspond, respectively, to the
initial and final points in the table.

gym, L for lasagna, S for spaghetti, and AG, AJ, AL, and AS
for the reverse structures.

IV. CONCLUDING REMARKS

And thus we have reached our objective. The combination
of curvature and Euler number and a proper recognition of
fragments appears to be robust enough to uniquely classify
the shapes attained by the nucleons at densities, temperatures,
and isospin content of interest in the study of neutron star
crusts. In obtaining this result, classical molecular dynamics
methods and associated tools (cluster-recognition algorithms,
persistence, etc.) proved to be valuable, and we are now
exploiting these in on-going investigations.

Comparing our approach to a previous application of the
Minkowski functionals within a QMD model [21], we see the
obvious methodological differences, such as the interaction po-
tentials used, the treatment of the Coulomb interaction, etc., but
we also identify one main advantage of our approach. While
to calculate the Minkowski functionals QMD has to rely on
proton and neutron density distribution functions constructed
from the trial wave functions and with the use of extraneous
parameters such as cutoff density values, CMD simply uses
the particle positions to directly apply the Michielsen and
De Raedt method [53] and evaluate the curvature and Euler
numbers; the lack of fudging factors undoubtedly makes
the CMD results more robust for topological classification
purposes.

As hinted in [44], the role of the long-range Coulomb
interaction has not been fully explored; current exploratory
runs are indicating that the Coulomb interaction merely shifts
the space scales a bit but is not an “if-and-only-if” requirement
for the formation of clusters. In a parallel investigation [54] we
have applied the CMD model and the topological methodology
developed here to perform an in-depth study of the origin of
clustering.

Along the same lines, given that the existence of the pasta
phases depends exquisitely on the interplay between surface
and Coulomb energy, it is critical to test the results obtained
here using different potentials with varying ranges, strengths,
and nuclear compressibility. In an on-going study [55] we plan
to investigate this using two other potentials with medium and
stiff compressibility and different interaction ranges.

Finally, and as part of our long-term research plan, we
intend to connect our potential-based microscopic model to a
macroscopic equation of state (EoS). Since CMD is applicable
to any type of nuclear dynamics (collisions, hydrodynamic
flow, etc.) while the EoS can only describe systems under
thermal and chemical equilibrium, it is difficult at best to link
the results obtained through CMD to the different terms of an
EoS. Although macroscopic objects such as volume, surface,
curvature, and symmetry energies are intrinsically linked to
the properties of the interacting potentials, in the absence of
a complete many-body theory their connection to the particle-
particle interactions can only be obtained from averaging the
microscopic results to obtain the macroscopic variables. In a
future study this connection will be estimated for a variety
of conditions including the nebulous transition from the cold
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nuclear pasta shapes to the gas-liquid mixtures that occurs at
higher temperatures and subsaturation densities.

Beyond our immediate scope is the possible connection
that the Minkowski functionals can have with physical
properties of the nuclear systems. Studies such as Ref. [56]
have managed to link, e.g., curvature energies, scattering
and diffusion properties (through spectral densities), order
parameters, structure functions, correlation functions, critical
points, and percolation thresholds with the various Minkowski
functionals. Here we invite capable researchers to investigate
these intriguing connections in future studies.
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Rev. C 73, 044601 (2006).

[44] C. O. Dorso, P. A. Giménez Molinelli, and J. A. López, J. Phys.
G 38, 115101 (2011); Rev. Mex. Phys. 57, S 14 (2011).

[45] G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki, Phys. Rev.
C 68, 035806 (2003).
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