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Exact scaling laws for helical three-dimensional two-fluid turbulent plasmas
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We derive exact scaling laws for a three-dimensional incompressible helical two-fluid plasma, without the
assumption of isotropy. For each ideal invariant of the two-fluid model, i.e., the total energy, the electron helicity,
and the proton helicity, we derive simple scaling laws in terms of two-point increment correlation functions
expressed in terms of the velocity field of each species and the magnetic field. These variables are appropriate
for comparison with direct numerical simulation data and with in situ measurements in the near-Earth space over
a broad range of spatial scales. Finally, using the exact scaling laws and dimensional analysis we predict the
magnetic energy and electron helicity spectra for different ranges of scales.

DOI: 10.1103/PhysRevE.94.063206

I. INTRODUCTION

The first exact law for incompressible hydrodynamic
turbulence is the so-called von Kármán–Howarth equation,
which relates the time evolution of the second-order correlation
velocity tensor to the divergence of the third-order correlation
velocity tensor [1]. Under the assumption of isotropy and
homogeneity, von Kármán and Howarth [1] found this exact
result, which is considered as one of the cornerstones of
turbulence theories (e.g., Ref. [2]). The most important
consequence of the von Kármán–Howarth equation is the
“four-fifth” law, which predicts a linear scaling for the
longitudinal two-point third-order velocity structure function
with the distance between the two points. As a consequence,
this exact scaling law puts strong constraints on the nonlinear
dynamics of turbulent flows.

Following a similar formalism of von Kármán and
Howarth [1], other exact laws have been derived under the as-
sumptions of homogeneity and isotropy of the turbulent fluctu-
ations for helical hydrodynamic [3,4], magnetohydrodynamic
(MHD) [5–7], helical MHD [8], Hall-MHD (HMHD) [9],
electron-MHD approximation (EMHD) [10], and Lagrangian
averaged models [11,12]. Recently, Andrés et al. [13] derived
the von Kármán–Howarth equation for a three-dimensional
(3D) incompressible two-fluid plasma and the equivalent
of the hydrodynamic four-fifth law. However, in all those
derivations the assumption of isotropy limits the applicability
of the laws, in particular, in magnetized (space or laboratory)
plasmas. Indeed, in those plasmas, e.g., the solar wind, the
presence of a nonzero mean magnetic field influences the
statistical properties of the turbulence such as the spatial
correlation function (e.g., [14]). This results in having different
scaling properties along and perpendicular to the local mean
field [15,16]. Therefore, general exact laws that go beyond
the assumption of spatial isotropy are needed to study the
nonlinear dynamics in turbulent space plasmas, in particular,
when comparing to in situ spacecraft observations.

Galtier and Banerjee [17] have derived an exact law for
the two-point correlation function associated with the total
energy in 3D compressible isothermal hydrodynamic (HD)
turbulence, without the assumption of isotropy. The authors
found the presence of types of terms in the inertial range
(other than the Yaglom-like flux terms), which play the role of

sources or sinks for the mean energy transfer rate. In the same
line of research, they derived an exact law for compressible
isothermal MHD turbulence using the two-point correlation
function associated with the total energy [18]. Recent works
have studied scaling laws for correlation functions associated
with the total energy [19] and the magnetic (and generalized)
helicity [20] for the HMHD model. It is worth mentioning
that these exact scaling laws give accurate estimates of the
mean transfer rate (of the particular ideal invariant), which
is an essential quantity to characterize a turbulent system. In
the present paper, we derive exact scaling laws for the two-
point correlation functions associated with each ideal invariant
of a 3D incompressible and homogeneous two-fluid plasma,
without the assumption of isotropy.

The two-fluid model used in this work is derived from the
general two-fluid equations when the nonrelativistic and the
quasineutrality approximation are used. These two assump-
tions correspond to neglecting the displacement current in the
Maxwell-Ampère equation [21], which filters out the three
high-frequency (optic) eigenmodes of the general two-fluid
equations. The resulting (reduced) two-fluid model still retains
small-scale effects that are the Hall term and electron inertia.
The incompressibility assumption is further used; thus the
resulting model does not include either compressible modes
or finite Larmor radius effects. In the linear limit, the system
supports two propagating modes at high frequency, generally
referred to as whistler (right-handed) and Alfvén mode (left-
handed), which become degenerate in the MHD limit. The
retained (Hall and electron inertia) terms introduce new spatial
and temporal scales into the theoretical plasma description
(e.g., [22]), which are respectively the ion and electron
gyrofrequencies and inertial lengths. It is worth mentioning
that the two-fluid description includes MHD, HMHD, and
EMHD models, which can be regarded as particular cases in
the proper asymptotic limits. For instance, at length scales
larger than the ion inertial length, the Hall effect and electron
inertia can be neglected. At those largest scales, the MHD
description is appropriate. At spatial scales comparable or
smaller than the ion-skin depth, the ions are no longer frozen-in
to the magnetic field lines because of the Hall term. At those
intermediate scales, the HMHD description becomes valid and
has been extensively studied both numerically [23–27] and
analytically [20,21,28–31]. In the very high-frequency limit
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of the two-fluid model, ions can be considered as motionless
(because of their large mass with respect to electrons) and
provide a neutralizing background, while the electrons carry
the full electric current. This approximation corresponds to
the EMHD model, and is asymptotically valid at spatial scales
comparable to or smaller than electron inertial length. The two-
fluid description used in this work retains the whole dynamics
of both the ion and electron flows from the MHD down to
the electron inertial length scales, within the nonrelativistic,
quasineutrality, and incompressibility approximations.

Using a recent alternative formulation [32], we derive
exact scaling laws for the three ideal invariants of a 3D
incompressible and homogeneous two-fluid plasma. The rest
of the paper is organized as follows: In Sec. II we introduce
the 3D incompressible two-fluid model and in Sec. III its ideal
invariants. In Sec. IV we present our main theoretical results
for each ideal invariant, namely, the total energy, the electron
helicity, and the proton helicity. In Sec. V we discuss the
implications of the derived exact scaling laws, and finally, in
Sec. VI we provide a summary of the results.

II. TWO-FLUID EQUATIONS

The equations of motion for a quasineutral incompressible
plasma of ions and electrons with masses mi,e, charges ±e,
constant densities np = ne = n, pressures pe,p, and respective
velocities ue and up are [33]

men
due

dt
= −en

(
E + 1

c
ue × B

)
− ∇pe + fe + de, (1)

min
dup

dt
= en

(
E + 1

c
up × B

)
− ∇pp + fp + dp, (2)

J = c

4π
∇ × B = en(up − ue). (3)

Here d/dt = ∂/∂t + u · ∇ is the total derivative, B and E are
the magnetic and electric fields, J is the electric current density,
c is the speed of light, and fe,p and de,p are the forcing and
dissipative terms, respectively. Note that these fluid equations
do not include any kinetic plasma dissipation mechanisms
(e.g., wave-particle interactions) due to either electrons or ions.

The incompressibility assumption implies

∇ · ue = 0, (4)

∇ · up = 0. (5)

Equations (1) and (2) can be written in dimensionless form in
terms of a typical length L0, the particle density n, a typical
velocity vA = B0/(4πnM)1/2 (the Alfvén velocity, where B0 is
a typical value of B, and M ≡ mi + me), and with the electric
field in units of E0 = vAB0/c,

μ
due

dt
= −1

λ
(E + ue × B) − ∇pe + fe + de, (6)

(1 − μ)
dup

dt
= 1

λ
(E + up × B) − ∇pp + fe + de, (7)

J = 1

λ
(up − ue), (8)

where we have introduced the dimensionless parameters
μ ≡ me/M and λ ≡ c/(ωML0), where ωM = (4πe2n/M)1/2

has the form of a plasma frequency for a particle of
mass M . Dimensionless ion and electron skin depth can be
defined in terms of their corresponding plasma frequencies
ωi,e = (4πe2n/mi,e)1/2 simply as λi,e ≡ c/(ωi,eL0), and their
expressions in terms of μ and λ are λi = (1 − μ)1/2λ and
λe = μ1/2λ. Note that in the limit of electron inertia equal to
zero, we obtain λ = λi = c/(ωiL0), which correspond to the
usual Hall parameter [28]. Finally, to obtain a hydrodynamic
description of the two-fluid plasma, we can write ue and up

in terms of two vector fields (see [34]): the hydrodynamic
velocity U = (1 − μ)up + μue, and J as given by Eq. (8).
From these two fields, it is trivial to obtain ue and up as

ue = U − (1 − μ)λJ, (9)

up = U + μλJ. (10)

III. IDEAL INVARIANTS

In general, a multifluid plasma made of N species has N + 1
ideal invariants. For a 3D incompressible two-fluid plasma,
using E = −∂tA − ∇φ, we can readily show that the total
energy ET is one of these ideal invariants, where

ET = 1

2

∫
d3r

(
μu2

e + (1 − μ)u2
p + B2). (11)

The other two invariants are the electron helicity and the proton
helicity,

He = 1

2

∫
d3r(A − λμue) · (B − λμωe), (12)

Hp = 1

2

∫
d3r(A + λ(1 − μ)up) · (B + λ(1 − μ)ωp), (13)

where ωe,p = ∇ × ue,p. If we define the electron and proton
vector potentials

he = A − λμue, (14)

hp = A + λ(1 − μ)up, (15)

Eqs. (12) and (13) can be casted in compact expressions as

He =
∫

dr3he · He, (16)

Hp =
∫

dr3hp · Hp, (17)

where

He = ∇ × he = B − λμωe, (18)

Hp = ∇ × hp = B + λ(1 − μ)ωp. (19)

It is worth mentioning that in the HMHD limit, i.e., μ →
0 and λ → λi , the conservation of the electron helicity and
proton helicity corresponds to the conservation of the magnetic
helicity and generalized helicity, respectively [28,35].

IV. EXACT SCALING LAWS

A. The total energy ET

Following recent works [17,20], we define the symmetric
two-point correlation functions associated with the energy of
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each species as

REe
= R′

Ee
= 1

2 〈ue · u′
e〉, (20)

REp
= R′

Ep
= 1

2 〈up · u′
p〉, (21)

where the prime denotes field evaluation at x′ = x + r (being
r the displacement vector) and the angular bracket denotes
an ensemble average. The property of spatial homogeneity
implies that all regions of space are similar as far as the

statistical properties are concerned, which suggests that the
results of averaging over a large number of realizations at
different positions in space could be obtained equally well by
averaging over a large region of space for one realization [36].

Using Eqs. (6) and (7), with the corresponding large-scale
forcing terms fe,p and small-scale dissipation terms de,p in
each equation (since we expect a direct cascade for the total
energy [37]), we obtain a time evolution for the symmetric
two-point correlation function associated with the total kinetic
energy REk

≡ REe
+ REp

as

∂

∂t

〈
REk

+ R′
Ek

〉 = μ

〈
u′

e · ∂ue

∂t
+ ue · ∂u′

e

∂t

〉
+ (1 − μ)

〈
u′

p · ∂up

∂t
+ up · ∂u′

p

∂t

〉

=
〈
u′

e ·
[

ue ×
(

μωe − 1

λ
B

)]〉
+

〈
ue ·

[
u′

e ×
(

μωe
′ − 1

λ
B′

)]〉
+

〈
u′

p ·
{

up ×
[

(1 − μ)ωp + 1

λ
B

]}〉

+
〈
up ·

{
u′

p ×
[

(1 − μ)ω′
p + 1

λ
B′

]}〉
+ 〈J′ · E + J · E′〉 − 〈u′

e · ∇Pe − ue · ∇′P ′
e − u′

p · ∇Pp − up · ∇′P ′
p〉

+D + F , (22)

where we have used Eqs. (9) and (10), i.e., the expressions for
the velocity field of electrons and protons, and we have defined
Pe,p ≡ λpe,p + se,pλu2

e,p/2, with se = μ and sp = 1 − μ, and
D and F are given by

D = 〈de · u′
e + d′

e · ue + dp · u′
p + d′

p · up〉,
F = 〈fe · u′

e + f′
e · ue + fp · u′

p + f′
p · up〉. (23)

Using the vectorial property ∇ · (a × b) = (∇ × a) · b −
(∇ × b) · a and the homogeneity assumption, we can readily
obtain an expression for the symmetric two-point correlation
function associated with the magnetic energy

REB
= 1

2 〈B · B′〉, (24)

since

〈J′ · E + J · E′〉 = 〈(∇ × B′) · E + ∇ × B · E′〉
= 〈∇′ · (B′ × E) + ∇ · (B × E′)〉
= −〈∇ · (B′ × E) − ∇′ · (B × E′)〉
= 〈(∇ × E) · B′ + (∇′ × E′) · B〉

= −
〈
B′ · ∂B

∂t
+ B · ∂B′

∂t

〉

= − ∂

∂t

〈
REB

+ R′
EB

〉
.

Then, using definitions (14) and (15) and defining the sym-
metric two-point correlation function associated with the total
energy as RET

≡ REk
+ REB

, Eq. (22) can be written as

∂

∂t

〈
RET

+ R′
ET

〉 = − 1

λ
〈u′

e · (ue × He) + ue · (u′
e × H′

e)〉

+ 1

λ
〈u′

p · (up × Hp) + up · (u′
p × H′

p)〉
+ D + F , (25)

where the terms involving a gradient vanish by incom-
pressibility and homogeneity. Equation (25) is an exact law
for a incompressible two-fluid plasma, even in anisotropic
turbulence [38,39]. Assuming the existence of an inertial
energy range, in the limit of infinite Reynolds numbers (D →
0) and considering a statistical stationary regime (∂t ≈ 0), we
obtain

2εET
=1

λ
[〈u′

e · (ue × He) + ue · (u′
e × H′

e)〉
− 〈u′

p · (up × Hp) + up · (u′
p × H′

p)〉], (26)

where F = 2εET
, with εET

the mean energy dissipation rate
per unit mass. Finally, for a given field a, we introduce
the two-point increment correlation function as δa ≡ a′ − a.
Therefore, Eq. (26) can be written as

2εET
= 1

λ
[〈δ(up × Hp) · δup〉 − 〈δ(ue × He) · δue〉], (27)

where we have used the property that ue,p is perpendicular
to ue,p × He,p. The exact scaling law (27) is our first main
result. It is worth mentioning that this law is valid only
in the inertial range and, therefore, is independent of the
dissipation mechanisms present in the plasma (assuming that
the dissipation terms act only at the largest wave numbers).
Furthermore, Eq. (27) is written only in terms of the two-point
increment correlation functions, which are rather easy to
obtain from in situ measurements and data from numerical
simulations. In particular, these two-point increments are
written as a function of the velocity of each species and
the magnetic field, variables which now can be measured
down to the electron scales in the near-Earth space by the
recently launched NASA/MMS (Magnetospheric Multiscale)
mission [40]. Equation (27) is made of two terms, one per each
species. The main contribution to this scaling law is the proton
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term, which is mainly responsible for the dynamics at the large
scales and to a lesser extent at intermediate and small scales.
On the other hand, the electron term mainly contributes to the
smallest scales through the terms proportional to μ. Finally,
it is worth mentioning that in the HMHD (μ → 0, λ → λp)
and MHD limits (μ → 0 and λ → 0) we recover the result
reported in Banerjee and Galtier [19].

B. Electron helicity He and proton helicity Hp

The equation of motion for electrons and protons (6)
and (7), using E = −∂tA − ∇φ, and assuming the existence
of small-scale forcing f̄e,p (since we expect an inverse cascade
for each helicity [41,42]), can be casted into

∂

∂t
(A − λμue) = ue × (B − λμωe) − ∇P̄e + d̄e + f̄e, (28)

∂

∂t
[A + λ(1 − μ)up] = up × [B + λ(1 − μ)ωp]

− ∇P̄p + d̄p + f̄p, (29)

where we have defined P̄e,p = Pe,p + φ and d̄e,p is the large-
scale dissipation. This last term is introduced to prevent the
formation of a condensate state [43]. Similar models have
been studied in the literature using this technique [44]. Using

definitions (14) and (15), Eqs. (28) and (29) can be written
as

∂he

∂t
= ue × He − ∇Pe + f̄e + d̄e, (30)

∂hp

∂t
= up × Hp − ∇Pp + f̄p + d̄p. (31)

For the computation of the exact scaling for each helicity, we
use the curl of Eqs. (30) and (31),

∂He

∂t
= ∇ × (ue × He) + F̄e + D̄e, (32)

∂Hp

∂t
= ∇ × (up × Hp) + F̄p + D̄p, (33)

where F̄e,p = ∇ × f̄e,p and D̄e,p = ∇ × d̄e,p. As in Sec. IV A,
we define the symmetric two-point correlation function asso-
ciated with the helicity of each species as

REHe
= R′

EHe
= 1

2 〈He · h′
e + he · H′

e〉, (34)

REHp
= R′

EHe
= 1

2 〈Hp · h′
p + hp · H′

p〉. (35)

Using Eqs. (30)–(33), which are the equations of motion (and
its curl) for electrons and protons written in terms of he,p

and He,p, we can obtain a time evolution for the symmetric
two-point correlation functions as

∂

∂t

〈
REHe

+ R′
EHe

〉 =
〈
H′

e · ∂he

∂t
+ He · ∂h′

e

∂t
+ h′

e · ∂He

∂t
+ he · ∂H′

e

∂t

〉

= 〈H′
e · (ue × He)〉 + 〈He · (u′

e × H′
e)〉 + 〈he · ∇′ × (u′

e × H′
e)〉 + 〈h′

e · ∇ × (ue × He)〉 + D̄e + F̄e, (36)

∂

∂t

〈
REHp

+ R′
EHp

〉 =
〈
H′

p · ∂hp

∂t
+ Hp · ∂h′

p

∂t
+ h′

p · ∂Hp

∂t
+ hp · ∂H′

p

∂t

〉

= 〈H′
p · (up × Hp)〉 + 〈Hp · (u′

p × H′
p)〉 + 〈hp · ∇′ × (u′

p × H′
p)〉 + 〈h′

p · ∇ × (up × Hp)〉 + D̄p + F̄p,

(37)

where again the gradient terms vanish by the incompressibility and homogeneity of the plasma. Using these conditions, we can
show that

〈he,p · ∇′ × (u′
e,p × H′

e,p)〉 = ∇′ · [(u′
e,p × H′

e,p) × he,p] = −∇ · [(u′
e,p × H′

e,p) × he,p] = (u′
e,p × H′

e,p) · He,p, (38)

〈h′
e,p · ∇ × (ue,p × He,p)〉 = ∇ · [(ue,p × He,p) × h′

e,p] = −∇′ · [(ue,p × He,p) × h′
e,p] = (ue,p × He,p) · H′

e,p. (39)

Therefore, introducing the two-point increments, we obtain the dynamical equations for each helicity as
1

2

∂

∂t

〈
REHe

+ R′
EHe

〉 = 〈H′
e · (ue × He)〉 + 〈He · (u′

e × H′
e)〉 + D̄e

2
+ F̄e

2
= −〈δ(ue × He) · δHe〉 + D̄e

2
+ F̄e

2
, (40)

1

2

∂

∂t

〈
REHp

+ R′
EHp

〉 = 〈H′
p · (up × Hp)〉 + 〈Hp · (u′

p × H′
p)〉 + D̄p

2
+ F̄p

2
= −〈δ(up × Hp) · δHp〉 + D̄p

2
+ F̄p

2
. (41)

Equations (40) and (41) are exact expressions for helical
incompressible two-fluid plasmas. Assuming the existence of
an inertial range far away from the forcing scales (F̄e,p ≈ 0),
under quasistationary statistical conditions (∂t ≈ 0) we obtain

2εHe
= 〈δ(ue × He) · δHe〉, (42)

2εHp
= 〈δ(up × Hp) · δHp〉, (43)

where we have used D̄e,p = 4εHe,Hp
, and εHe,Hp

are the
electron and proton helicity dissipation rates per unit mass.
Equations (42) and (43) are the second main result of the
paper. These expressions are valid in the inertial range, without
the assumption of isotropy. In particular, these results could
be useful in astrophysical contexts where the condition of
isotropy is usually not fulfilled [45,46]. Finally, as Eq. (27),
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expressions (42) and (43) are written as scalar products of
fields increment correlation functions.

V. DISCUSSION

Equations (27), (42), and (43) are the main results of
the present paper. These equations give exact relations
for the two-point increments of anisotropic turbulence in
an incompressible and homogeneous two-fluid plasma. In
particular, these expressions give exact scaling relations for
the three ideal invariants, i.e., the total energy, the electron
helicity, and the proton helicity. In contrast to previous
results in the literature [7,8,20,47], our results are written
as a function of the velocity field of each species of the
plasma and of the magnetic field. These quantities are directly
measurable in situ in the near-Earth space, which should
make straightforward the estimation of the transfer rate of
each invariant from spacecraft data (e.g., [39,48]) as well as
from numerical simulation (e.g., [49,50]). Moreover, since we
retain the electron inertia, we are able to study the turbulence
cascade from the MHD scales down to the electron inertial
scale length. It is worth recalling that this broad range of scales
cannot be captured by the HMHD or the massless EMHD
models. Finally, our exact scaling laws are independent of
the dissipation mechanism present in the plasma, since it
only requires that the dissipation term gets off all the power
injected by the forcing term at the very large scale.

In the limit of large and intermediate scales, i.e., the
MHD and HMHD ranges, we recover the exact laws recently
reported by Banerjee and Galtier [19] for the total energy.
Assuming isotropy and equipartition between magnetic and
kinetic energy, expression (27) can be used to provide
theoretical predictions for the magnetic energy spectrum in
a turbulent plasma. In fact, in a stationary and isotropic
turbulent regime, the energy cascade corresponds to a constant
energy flux in Fourier space Fk which is therefore equal to
the energy dissipation rate ε. For instance, in the case of
incompressible hydrodynamic turbulence, the modulus of the
energy flux in Fourier space goes like Fk ≈ ku3

k = ε, which
leads to the well-known Kolmogorov’s energy power spectrum
Ek ≈ ε2/3k−5/3, using Ek ≈ u2

k/τk and τk ≈ (kuk)−1 (τk is the
nonlinear transfer time). At MHD scales (k 	 λ−1

i ) we recover
the Kolmogorov spectrum, EB(k) ≈ B2

k /k ≈ k−5/3 [37,51],
using the transfer nonlinear time τk ≈ (kBk)−1. At HMHD
scales (k ∼ λ−1

i and k 	 λ−1
e ), using τk ≈ (λik

2Bk)−1, we
obtain a magnetic spectrum EB(k) ≈ k−7/3, which is roughly
compatible with solar wind observations [52–57] and numer-
ical simulation results [9,13,58] at these intermediate scales.
Finally, at the smallest scales (k ≈ λ−1

e ), where we can assume
than the proton motion is negligible with respect to the electron
motion, the transfer nonlinear time τk ≈ (μλ3k4Bk)−1 leads to
EB(k) ≈ k−11/3. This scaling has been observed recently in
numerical simulations [59] and is compatible with previous
theoretical calculation in the EMHD approximation [10,60].

Figure 1 shows a summary of our theoretical predictions
for the magnetic energy spectrum, which emerges from the
exact law (27). This spectrum is roughly consistent with solar
wind observations [54]. However, it is worth mentioning that:
(i) theoretical predictions for the magnetic energy spectrum
are strongly dependent on the ratio between magnetic and

FIG. 1. Schematic magnetic energy spectrum through different
scales, from the energy containing wave number λ−1

F up to the
dissipation wave number λ−1

D .

kinetic energy [27,61]; (ii) the actual scaling of the magnetic
energy spectra in the solar wind, particularly near and below
the electron scale, is still an open question that cannot be
resolved unambiguously with the current spacecraft data due
to instrumental limitations (e.g., [57,62]). The fate of the
turbulent cascade and the resulting dissipation at those small
scales is a crucial subject, which is deeply related to the
problems of particle heating and acceleration in solar wind
and in many other astrophysical plasmas [63]. Our exact
results provide a way to estimate the transfer rate of the
total energy (and other invariants) over a broad ranges of
scales. Application of the exact laws to spacecraft data should
therefore inform us about the amount of energy transferred
separately into ions and electrons.

Regarding the electron helicity and proton helicity, using
definitions (14) and (15), Eqs. (42) and (43) can be written as

2εHe
= 〈δ(ue×B) · δB〉−λμ〈δ(ue×ωe) · δB

+ δ(ue×B) · δωe)〉+ λ2μ2〈δ(ue×ωe) · δωe〉, (44)

2εHp
= 〈δ(up×B) · δB〉 − λ(1 − μ)〈δ(up×ωp) · δB + δ(up

× B) · δωp)〉+λ2(1 − μ)2〈δ(up×ωp) · δωp〉. (45)

When μ → 0 and λ → 0, from both expressions we recover
the MHD results for the magnetic helicity [20]. Assuming
isotropy and a maximum helicity state, the corresponding
magnetic helicity spectrum is EHB

(k) ≈ AkBk/k ≈ k−2 [64].
At HMHD scales, exact scaling laws (44) and (45) corre-
spond to the exact laws for the magnetic and generalized
helicity, respectively. In particular, this feature is consistent
with the polarization associated with each helicity found
recently by Banerjee and Galtier [20]. Besides, assuming a
transfer time τ

He

k ≈ (λik
2Bk)−1 for intermediate scales, we

obtain EHe
(k) ≈ AkBk/k ≈ k−8/3 in the maximum helicity

state.
At the smallest scales where one can assume up ≈ 0,

Eq. (45) does not provide new useful information about the
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proton helicity. On the other hand, the behavior of electron
helicity depends strongly on the ratio between magnetic and
kinetic energies. For instance, at scales proportional to λe

one can assume that the electron kinetic energy is dominant.
Since the transfer time is τ

He

k ≈ (μ2λ2k3uek)−1, the electron
helicity spectrum corresponds to EHe

(k) ≈ uekωek/k ≈ k−8/3,
which is the same theoretical prediction for the massless
EMHD limit [20]. In particular, in this scenario where the
electron kinetic energy is dominant (and the magnetic energy
is negligible), and the equation of motion of electrons is
similar to the classical 3D hydrodynamic Euler equation
(where kinetic energy and kinetic helicity are the two ideal
invariants). In this hydrodynamic case, if the large scales
of the flow are helical, there should be a joint cascade of
both energy and helicity to small scales [65]. In particular,
numerical results strongly support that the magnetic and
helicity spectra have the same slope, i.e., EU (k) ≈ EH (k) ≈
k−5/3 [66,67]. However, we do not obtain the same slope for
both invariants. This result is related to the transfer time of
electron helicity at length scales proportional to λe = μ1/2λ

due to the presence of two different species in the plasma.
Numerical simulation of 3D incompressible and homogeneous
two-fluid plasmas could shed light onto some aspects of the
nonlinear dynamics of the electron helicity at these smallest
scales.

Finally, as we discussed it in the Introduction, in
many cases symmetries with preferred directions have di-
rect impact on the structure of exact scaling laws. There-
fore, if we consider the presence of a mean magnetic
field B0, exact laws (27), (42), and (43) are modified as

2εET
= 1

λ
{〈u′

e · [ue × (He + B0)] + ue · [u′
e × (H′

e + B0)]〉
− 〈u′

p · [up × (Hp + B0)] + up · [u′
p × (H′

p + B0)}〉

= 1

λ
[〈δ(up × Hp) · δup〉 − 〈δ(ue × He) · δue〉], (46)

2εHe
=〈δ(ue × He) · δHe〉 − [〈He · (u′

e × B0)〉
+ 〈H′

e · (ue × B0)〉], (47)

2εHp
=〈δ(up × Hp) · δHp〉 − [〈Hp · (u′

p × B0)〉
+ 〈H′

p · (up × B0)〉]. (48)

As expected, the presence of a local magnetic field does not
modify the exact scaling law for the total energy. However,
the exact scaling laws associated with the electron helicity and
proton helicity are modified by the presence of local magnetic
field. This result is compatible with the fact that the presence
of a strong magnetic field has a direct impact on the nonlinear
dynamics and the turbulent cascade (e.g., [46]). Therefore,
Eqs. (46)–(48) may have a wide application for space plasmas,
for instance, for the solar wind, which is usually embedded in
a moderate uniform magnetic field.

VI. CONCLUSIONS

We derived exact scaling laws associated with each ideal
invariant in a 3D incompressible and homogeneous two-fluid
plasma. Without assuming isotropy, we have found exact
scaling laws valid in different inertial ranges and independent
of the dissipation mechanism present in the plasma. Our main
results, i.e., Eqs. (27), (42), and (43), are given in term of
two-point increments correlation functions only, which are
expressed in terms on the velocity field of each species
and the magnetic field. The data from the recently launched
MMS mission have unprecedented high time resolution of the
plasma measurements (∼30 ms for electrons and ∼150 ms
for ions) and should allow us to use the exact laws derived
here to analyze the nonlinear cascade in the turbulent plasmas
of the magnetosheath and the solar wind, although the
incompressibility assumption may not be valid at subion scales
in those media. Furthermore, large statistical samples, i.e.,
long time series, will be needed at high cadence to ensure
the statistical convergence of the estimation of the transfer
rate of each particular ideal invariant. This would give strong
constraints on the theoretical models of turbulence [46,68,69]
and could help to study the evolution of spatial anisotropy
of the turbulence over a broad range of scales, covering the
largest MHD scales to the smallest electron ones.
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