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Abstract:  

Among 20 p450s of Mycobacterium tuberculosis (Mt), CYP121 has received an outstanding 

interest, not only due to its essentiality for bacterial viability, but also because it catalyzes an 

unusual carbon-carbon coupling reaction. Based on the structure of the substrate bound enzyme, 

several reaction mechanisms were proposed involving first Tyr radical formation, second Tyr 

radical formation and C-C coupling. Key and unknown features, being the nature of the species that 

generate the first and second radicals, and the role played by the protein scaffold each step. 

In the present work we have used classical and quantum based computer simulation methods to 

study in detail its reaction mechanism. Our results show that substrate binding promotes formation 

of the initial oxy complex, Compound I is the responsible for first Tyr radical formation, and that 

the second Tyr radical is formed subsequently, through a PCET reaction, promoted by the presence 

of key residue Arg386. The final C-C coupling reaction possibly occurs in bulk solution, thus 

yielding the product in one oxygen reduction cycle. Our results thus contribute to a better 

comprehension of MtCYP121 reaction mechanism, with direct implications for inhibitor design, 

and also contribute to our general understanding of these type of enzymes. 

 

Keywords: CYP121, Cytochrome p450, Mycobacterium tuberculosis, QM/MM, Cyclo-di-Tyrosine, 

Reaction Mechanism, Molecular Dynamics, Electron Transfer. 
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Introduction 

Tuberculosis has been a long standing major health problem specially in the developing world, 

causing over two millions deaths annually (WHO reports). The major causes for this impact are 

related to the need for long, several times incomplete, treatment with current first line drugs 

(isoniazid and rifampicin), the emergence of drug resistance strains, and the negative drug-drug 

interactions with HIV positive patients. This scenario has thus created and urgent need for novel 

anti tubercular drugs [1]. A great progress in our understanding of Mycobacterium tuberculosis (Mt) 

is derived from its complete genome sequence, which among other unexpected findings, revealed 

the presence of 20 different CYP genes, encoding Cytochromes of the p450 type of enzymes (or 

simply CYPs) [2,3]. 

The CYPs are ubiquitously distributed heme based enzymes, typically acting as monooxygenases 

that  transfer a single oxygen atom to the substrate, among other oxidative reactions. To perform the 

catalysis, CYPs must bind their substrates into the active site pocket, which is located on top of the 

distal side of the heme, where oxygen binds. Comparison of many available CYP structures, shows 

that the shape and size of the substrate binding pockets are diverse and are the key for defining the 

substrate and reaction specificity [4]. The CYPs are involved in a variety of metabolic processes, and 

while eukaryotic ones are membrane bound, those from bacteria are cytosolic enzymes that interact 

with a soluble redox partner. In the last decades, microbial CYPs have emerged as potential drug 

targets, in particular since the early discovery that some of them, like the CYP51 (sterol 14 alfa 

demethylase) in yeast [5], were been shown to be essential. Also, the success of azole based 

inhibitors [6], currently used to treat fungal infections has reinforced the search for inhibitors to other 

members of this very important protein family [1,7]. 
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Among the 20 Mt CYPs, CYP121 has received an outstanding interest, not only due to its 

essentiality for bacterial viability [8], but also because it has been recently shown to catalyze an 

unusual (for a CYP enzyme), carbon-carbon coupling reaction. MtCYP121 converts its substrate, 

cyclo-di-tyrosine (cYY), to a product called mycocyclosine (mcyc) (Scheme 1A), where the two 

Tyr aromatic rings are covalently joined through a C-C bond in the ortho position with respect to 

each Tyr OH group [9]. The structure of MtCYP121 was solved in the absence [10] and, in the 

presence of its substrate [9], as well as in complex with different azole compounds [10–12], and several 

single point mutant structures were obtained [8]. The enzyme was also extensively characterized in 

terms of its biochemistry by spectroscopic methods and kinetic measurements [13]. The X-ray 

structure of the ferric cYY bound enzyme (Figure 1), shows that one of the substrate Tyr lies closer 

to the heme (we will call this the close-Tyr), with its OH group interacting with two structural water 

molecules (W1 and W2 in Figure 1), one of which is also coordinated to the ferric iron, while the 

other Tyr (which we will call the far-Tyr) is pointing towards the protein surface, i.e the substrate 

binding site entry. Adjacent to the cYY, there are two water-filled pockets suggesting an easy 

solvent access to the active site. Interestingly, comparison with the substrate free structure shows 

that no major conformational changes occur upon cYY binding (C-alfa RMSD between both 

structures is only 0.16 Å) [9]. The iron atom is coordinated to water W1, which also shows hydrogen 

bond interactions with Ser237. This residue possibly replaces the conserved Thr residue found in 

other p450s which has been shown to be involved in oxygen binding and acting as proton donor to 

the iron bound superoxide [14,15]. A unique characteristic of CYP121 is the presence of an arginine 

residue (Arg386) close to the iron, which has been described, to strongly affect the heme redox 

potential [8,10]. Last but not least, a recent work analyzed the reactivity of MtCYP121 towards 

different substrate analogues, showing the importance of both the diketopiperazine ring and the 
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correct positioning of the Tyr hydroxyl for efficient conversion of cYY [16]. It is important to note at 

this point, that although much has been learned, the precise mechanism and the structural reasons 

that allow MtCYP121 to perform this uncommon reaction, remain largely unknown. 

Understanding a CYP reaction mechanism requires detailed knowledge of the nature and electronic 

structure of its key oxidant species, compound I (CpdI), and its associated reaction cycle (Shown 

adapted for MtCYP121 reaction in Scheme 1). In the archetypical CYP reaction cycle, the resting 

state is usually a ferric heme hexacoordinated (6c) state, with the proximal cysteine and a water 

molecule (or hydroxide anion) bound at the distal site. After substrate binding, heme reduction to 

the ferrous state and water release, the enzyme is prepared to bind dioxygen in order to form the 

FeII-O2 complex, which is further reduced to yield the ferrous-superoxo species (FeII-O2
-). Both 

electrons are in prokariotes derived from CYP redox partners (CYP reductases), which usually use 

NADH/FADH as the final electron source. Interestingly, considerable diversity has been observed 

in bacterial CYP redox partners [4]. The ferrous-superoxo species has an intrinsic unstable nature, 

and after taking two protons from its environment, the cleavage of the O-O bond is produced, with 

the concomitant release of a water molecule, yielding the formation of the high valence oxo-ferryl 

species, called compound I (Cpd I). Cpd I electronic structure is usually described as an [P*+-

FeIV=O2-] state, thus an iron(IV) bound to a di-anionic oxygen atom, and a cationic porphyrin. Cpd I 

is a very strong oxidant and is usually able to abstract a single hydrogen atom from aliphatic 

carbons. In the common hydroxylation mechanism, the OH ligand from the resulting Cpd II 

(usually described as either [P*+-FeIIIOH- or P-FeIVOH-]) is rebound to the aliphatic radical leading 

to the corresponding alcohol and the enzyme ferric resting state. However, Cpd II, has also been 

shown experimentally to be able to catalyze hydroxylation and other oxidative reactions [4]. 

SCHEME 1 
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Determining how a given CYP is able to perform C-C coupling reactions in the context of the 

presented scheme is not straight-forward. Interestingly, aromatic C-C coupling reactions have been 

also reported for other CYPs, for example CYP56 (DIT2) of Candida albicans, which catalyzes the 

conversion of N-formyl tyrosine into N,N′-bisformyl dityrosine [17]; CYP245A1 or Stap from 

Streptomyces sp, [18]which catalyzes the intramolecular C-C bond formation in cromopyrrolic acid 

(a key step in the synthesis of staurosporine) and CYP158A2 from Streptomyces coelicor [19] that 

catalyzes the coupling of two or three flaviolin molecules, leading to the corresponding dimers, 

among others [20–22]. Common proposal for these C-C coupling reaction mechanism involves the 

consecutive generation of two aromatic ring radicals, that subsequently recombine establishing the 

new C-C bond. Key in this proposal are the nature of the species that generate the first and second 

radicals, and the role played by the protein scaffold in these and the subsequent recombination step, 

as shown in Scheme 1B.  

FIGURE 1 

As already mentioned in CYP121, cYY is bound with one tyrosine ring close to the heme iron (the 

close-Tyr), while the other is far from it (the far-Tyr) (As shown Figure 1). In the present case, for 

the Tyr-Tyr coupling reaction to happen, the two (one in each) Tyr radicals have to be produced, 

which would then combine to yield the cyclic product. First radical formation is proposed to occur 

in the close-Tyr, due to hydrogen atom transfer to Cpd I (Reaction steps a-b-c in Scheme 1B). The 

second radical formation, must be formed now in the far-Tyr, and several mechanisms have been 

proposed. The first one assumes that mono radical cyclo-dityrosine (cY*Y) may leave the protein 

active site to the solution and re-enter in the inverted orientation (Reaction step d' in Scheme 1B), 

yielding the second radical either in a new complete enzyme cycle (i.e thorough Cpd I) or in the 
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same cycle using Cpd II as the oxidant. Another interesting possibility is that internal electron 

transfer (IET) occurs from the far to the close tyrosine, thus resulting in first radical localization in 

the far-Tyr (Reaction step d in Scheme 1B), and allowing the second radical to be produced by the 

heme, again either using Cpd I or Cpd II as the oxidant. Finally, C-C coupling can occur with or 

without the aid of the protein matrix (Reaction steps f and f' in Scheme 1B). Discerning between 

these possibilities and understanding the role played by the protein matrix and active site in order to 

catalyze the reaction, is a very important issue not only due the relevance of CYP121 as a potential 

drug target but also for the general understanding of how CYPs selectively catalyze a given 

reaction. In this context we decided to tackle this problem using computational methods, namely 

Quantum Mechanics (QM), Molecular Dynamics (MD) and hybrid QM/MM based methods. 

Since their introduction by Warshel and Levitt [23] almost forty years ago, QM/MM methods have 

been extensively used to study enzyme reaction mechanism, granting an efficient way of 

incorporating the effects of the protein environment on the electronic structure of enzyme active 

sites [23–29]. In particular, Density Functional Theory (DFT) based QM/MM methods have allowed 

the detailed study of the electronic structure and reaction mechanism of many metalloproteins [30–32], 

particularly heme proteins and including several works on cytochrome p450 reaction mechanisms, 

although, to our knowledge none of these works analyzed MtCYP121 reaction. [30,31,33–35] Our group 

has a long standing tradition in the use of QM/MM methodologies to study enzymatic reactions 

using restrained energy minimizations, particularly in heme proteins, which allowed to understand 

the role played by the heme group and the surrounding protein framework along the process [36–40].  

In the present work we have thoroughly studied the reaction mechanism of MtCYP121 using the 

above mentioned computer simulation tools. Our result show that substrate binding is key for 
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initiating the reaction, that two Tyr radicals could be generated in only one heme reduction cycle, 

and that final C-C coupling reaction possibly occurs in bulk solution. 

 

Materials and Methods 

Classical Molecular Dynamic simulations. The starting structure for the present calculations was 

the crystallographic structure of CYP121 complexed with cyclo Tyr-Tyr (PDB ID: 3G5H). The 

desired heme ligand (oxo, peroxo, dioxygen) was added to the heme iron in-silico to generate the 

desired ternary complex. Given the importance of water molecules in the active site [9], the five of 

the water molecules that were present inside MtCYP121 active site in the starting crystal structure, 

were conserved. 

All classical simulations were performed using the PMEMD module of the Amber11 package of 

programs [41], with the ff99SB force field parameters [42] for all aminoacids. The heme parameters 

used in all different coordination states studied were developed and thoroughly tested in previous 

works [43–49]. Partial charges for the different CYY sates were determined using the suggested 

protocol for amber force-filed compatibility. Briefly, the corresponding system electronic structures 

were determined at the HF/6-31G* level, and charges were derived using the Restraint Electrostatic 

Potential (RESP) method. [50] All other parameters were assigned through analogy to the Tyr 

parameters in the ff99SB force field, or from the GAFF force field when required. These parameters 

are available under request. These methodology and both Tyr radical and Tyrosinate parameters 

were throughly tested in our previously work [51]. All the starting structures were immersed in a pre-

equilibrated octahedral box of TIP3P water molecules up to a distance of 10 Å from the protein 

surface. The resulting system consists of ca. 32900 atoms. All simulations were performed at 1 atm 

and 300K, and maintained with the Berendsen barostat and thermostat, respectively [52]. Periodic 
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boundary conditions and Ewald sums (grid spacing of 1 Å) were used to treat long-range 

electrostatic interactions; a 10 Å cut-off was used for computing direct interactions. Production 

simulation times are described in the main text.  

 

Thermodynamic Integration Free Energy Calculations. Thermodynamic integration (TI) scheme [53] 

as implemented in the AMBER package [54] was used for computing the Classical Free energy 

differences for the following steps: (i) Tyrosine protonation/deprotonation cY*Y-OH ↔ cY*Y-O- 

reaction (Figure 3, steps 1 and 3) and (ii) Charge transfer/reorganization in mono-radical negatively 

charged substrate, i.e the cY*Y- ↔ cY-Y* reaction (Figure 3, step 2). The method consists in slightly 

changing the system (in this case the di-tyrosine) as defined by the corresponding classical force 

field parameters from those corresponding to the initial, to the final condition.  For example, for step 

2, we start with close-Tyr with those parameters corresponding to a radical Tyr (charge 0) and far-

Tyr with those parameters corresponding to a Tyrosinate (charge -1). Then, we change them to 

those of a Tyrosinate in the close-Tyr and a Tyr radical in the Far-Tyr. The change is performed by 

representing the system as a linear combination of the initial and final state according to the 

following Hamiltonian, and varying the coupling parameter λ in eleven discrete steps, from λ = 0 to 

λ = 1. 

     H = Hi λ + (1- λ) Hf 

Here H corresponds to the actual Hamiltonian (i.e the force field using to perform the MD), Hi 

corresponds to the classical force field with parameters corresponding to the initial state, and Hf 

corresponds to the classical force field with parameters corresponding to the initial state. 

For each reaction, 11 windows corresponding to λ values of 0.01, 0.1, 0,2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9 and 0.99 were simulated, and for each one at least a 2 ns long MD was performed, or until 
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convergence of the corresponding < dE/dλ > value for each window. All the other MD simulations 

conditions were the same as above. The Gibbs free energy was then obtained by numerically 

integrating the < dE/dλ > vs λ curve. To have an error estimate of the obtained free energy values 

two independent estimations were performed (each using a separate set of 11 windows). The 

reported values correspond to the average ± Standard Deviation (SD) of the two values, obtained 

with the different simulations sets.  

Quantum and QM/MM methods. 

Starting structures for QM/MM simulations were taken from the corresponding classical MD 

simulations, after slowly (200ps) cooling of selected snapshots to 0K. All QM/MM calculations 

were performed at the DFT level using the SIESTA code with our own QM/MM implementation 

called Hybrid [55]. In this method, the quantum and the molecular mechanics subsystem are 

combined through a hybrid Hamiltonian introducing a modification of the Hartree potential and a 

QM/MM coupling term. The protein (or classical) environment affects the electronic density in a 

self-consistent fashion due to the addition of the classical-point charge potential to the Hartree 

potential. The coupling term has two main contributions representing the electrostatic interaction 

between the electrons and nuclei, defining the QM charge density with the classical point charge 

and an additional term corresponding to the van der Waals interactions between the atoms in the 

quantum and classical regions through a 6-12 Lennard-Jones potential [55]. For all atoms, basis sets 

of double zeta plus polarization quality were employed and all calculations were performed by 

using the generalized gradient approximation functional proposed by Perdew, Burke, and Ernzerhof 

(PBE) [56]. For all systems studied, the spin-unrestricted approximation was used unless explicitly 

noted. The different QM subsystems included the heme group (without side chains), the heme 

ligand (depending on the species to be simulated in each case) the close tyrosine side chain of the 
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substrate (for first and second radical formations) and the complete substrate (for the analysis of the 

internal ET step), and the thiol group of the proximal cysteine. For the study of the C-C coupling 

reaction only the substrate was treated at the QM level. The rest of the protein unit and the water 

molecules were treated classically. QM/MM methods have been successfully applied for the study 

of enzyme reactions including heme proteins. Particularly, the Hybrid method showed excellent 

performance for medium and large systems, and was proven to be appropriate for biomolecules, 

specifically heme proteins, as shown by several works from our group. [43,49,57]  

Using QM methods, thorough analysis of reaction mechanisms requires the determination of 

accurate free energy profiles. There are several strategies that allow proper and reliable 

determination of a reaction free energy profile, like umbrella sampling [58], Multiple Steered MD 

combined with Jarzynski's equation [55,59], Metadynamics[60] or the recently developed paradynamics 

[25–27], however all of them require extensive sampling, which is computationally very expensive and 

difficult to achieve at the DFT QM/MM level for large systems containing transition metals, such as 

heme proteins. Therefore for the present case, we resorted to compute potential energy profiles by 

using restrained energy minimizations along the reaction path that connects reactant and product 

states[55,57,61]. For this approach, an additional term, V(ξ) = k (ξ - ξ0)2, was added to the potential 

energy, where k is an adjustable force constant (set to be 200 kcal/mol•Å2 here), ξ0 is a reference 

value, which was varied stepwise with an interval of 0.1 Å, along the reaction coordinate. By 

varying ξ0, the system is forced to follow the energy minimum reaction path along the given 

coordinate ξ. To avoid possible hysteresis problems in the RC scans due to accidental changes in 

the MM part of the system, a distance cut-off of 10Å was used, that only allows MM atoms that 

close to the QM active site to move during the RC scan. The energy convergence error for all 

QM/MM calculations was below 0.2 kcal/mol for each optimized structure and for the energy 
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barriers defined by the corresponding energy minimum reaction path. This methodology has been 

extensively used in several works and proven to successfully avoid the mentioned problem 

[37,39,55,62,63].  

 

Results 

In this work we analyze in detail the reaction mechanism performed by MtCYP121 by means of 

QM/MM and MD simulations. Given the complexity of the reaction performed by this protein we 

examined separately the following three key steps: i) First Tyr* or cY*Y generation, ii) Second Tyr* 

or cY*Y* generation, and iii) C-C bond formation or mcyc, as depicted in Scheme 1B. The results 

are presented separately for each step and are then discussed in the context of the whole reaction 

mechanism. 

 

1. First Tyr
*
 generation 

1.1 MD simulation of cYY bound to MtCYP121. The most potent and common oxidant in p450 

types of cytochromes is, as already mentioned, Cpd I. Once generated in the enzymatic reaction 

cycle, Cpd I is capable of abstracting a hydrogen atom and inserting an oxygen atom in variety of 

substrates. The most common way of determining the initial oxidation product in any given CYP is 

therefore, to look at the substrate atoms that are close to the iron [35]. In order to determine the 

possible mechanisms for first Tyr* generation, starting from the crystal structure of substrate bound 

MtCYP121, we performed 30 ns MD simulation of cYY bound to MtCYP121, with the heme in the 

Oxy, Cpd I, and Cpd II states, and analyzed the corresponding relevant geometrical parameters as 

shown in Table I (See Methods for details on the set-up of the system and simulation parameters). 

Cpd II and Oxy-heme where analyzed not only for comparative purposes, but also due to the fact 

Page 12 of 53

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics



 

 

 

 

that Cpd II has been shown to be able to perform oxidative reactions, while the oxy complex is 

known to be able to abstract protons from the surroundings. Analysis of the corresponding RMSD 

and RMSF plots (not shown) using the X-ray structure as the reference, show that protein structure 

remains stable during the simulation time scale. 

The results show that for Cpd I, TyrO does not establish a permanent hydrogen bond with the ferryl 

oxygen, since the presence of several (up to five) water molecules in the active site compete as 

hydrogen bond acceptors, and usually a water bridges the interaction between TyrOH and the ferryl 

oxygen. However, an hydrogen bond interaction between the phenol group and Cpd I can be 

established transiently (closest FeO1-TyrHOH distance is 1.57 Å) due to the high mobility of the 

close-Tyr and the surrounding water molecules. A similar picture is observed for Cpd II. For the 

oxy complex, on the other hand, a permanent hydrogen bond interaction is established between 

TyrOH and the bound ligand with the phenol hydrogen thus remaining close to both oxygen atoms. 

In all cases, the phenol hydrogen is closer than the ortho carbon hydrogen to the reactive heme 

bound oxygen atom. Thus, it seems that the CYP121 scaffolds positions the close-Tyr phenol group 

not permanently at reactive distance from Cpd I and Cpd II oxygen atoms, but allows to establish a 

tight hydrogen bond with the bound dioxygen. 

TABLE I 

1.2 Hydrogen abstraction from Cpd I. Starting from a selected representative structures from the 

MD simulations of cYY bound to MtCYP121 in the Cpd I state where an hydrogen bond is present 

between the ferryl oxygen and TyrHOH, we analyzed the hydrogen abstraction reaction using 

QM/MM simulations. The phenolic hydrogen is more acidic and closer to the heme than any of the 

aromatic hydrogens, thus we only considered abstraction of this hydrogen. Finally, and due to the 

known Multi State Reactivity [4] of Cpd I we analyzed both the doublet (D) and quartet (Q) spin 
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states. The corresponding energy profile for hydrogen atom abstraction results are shown in Figure 

2A, while selected structural and electronic structure parameters are shown in Table II. 

TABLE II 

The obtained energy barriers for the D and Q spin states are similar and small, less than 6 kcal/mol 

and smaller in the Q state. The Q state corresponds to the ground state along the explored range of 

the reaction coordinate. The  reaction results in the formation of a Tyr radical and a Cpd II type 

heme, as evidenced by the Mulliken and spin population analysis, which show a close to neutral Tyr 

with an unpaired electron (Tyr total spin is close to unity). Cpd II displays, as expected, a triplet 

ground state with two unpaired electrons and a mixture of [P-FeIII-OH* <=> P-FeIV-OH-] character 

(as evidenced by the charge and spin of the resulting OH group). Thus we confirm that Cpd I is able 

to abstract the first hydrogen from the close-Tyr in cYY and with a low activation barrier. 

 

1.3 Alternative oxygenated species as oxidants. As described in the introduction, during the CYP-

oxygen reaction cycle, dioxygen first binds to ferrous iron, and is then reduced to form iron-

superoxo species (FeIII-O2
-). For comparative purposes and as a possible alternative, we also 

evaluated whether the iron-dioxygen or iron-superoxo species are able of abstracting hydrogen from 

the close-Tyr. We used the same protocol and reaction coordinate as for the Cpd I reaction 

described above, and found that the oxy complex is unable to abstract a proton/hydrogen from the 

close-Tyr (data not shown).  However, the energy profile for the transfer reaction with the iron-

superoxo species, presented in SI (Figure S1), suggests that a in this cases proton/hydrogen can be 

transferred with a very small barrier. The resulting Mulliken and Spin atomic populations (shown in 

SI), however, show that the reaction corresponds to a proton transfer, since the Tyr product is left 

with a net negative charge, close to unity. Thus  the iron-superoxo species is not capable of 
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generating the first Tyr radical, although close-Tyr can participate as proton source in the first steps 

of the CYP reaction cycle to yield Cpd I. 

FIGURE 2 

1.4 Evaluation of OH rebound step as a competing reaction. The first step in  the commonly 

observed hydroxylation reactions in CYPs, usually consists as in this case, in the generation of an 

alkyl-radical and Cpd II. This state, usually proceeds through the so called rebound step, consisting 

in Cpd II OH ligand radical addition to the radical substrate, resulting in the desired hydroxylated 

product. In MtCYP121 the rebound mechanism would lead to formation of a catechol (ortho-bi-

phenol) in the close-Tyr, in one CYP cycle. To analyze the likelihood for the occurrence of this 

competing reaction, we computed the energy profile for the rebound step in both the doublet and 

quartet spin states. The results presented in Figure 2C, show that the rebound step is exergonic, but 

has a moderately high barrier in both studied spin states (16-20 kcal/mol). Thus, in order to avoid 

this unwanted reaction, the second Tyr radical generation should have a lower barrier compared to 

the reported rebound step energy barrier. 

 

2. Second Tyr* generation 

2.1 Hydrogen atoms abstraction by Cpd II. The second Tyrosine radical formation in MtCYP121 is, 

as previously described, the less understood step and there are several mechanistic possibilities (see 

reaction steps d, d' and e  in Scheme 1B). The simplest proposal assumes that mono radical cYY*, 

where the close-Tyr bears the radical, may leave the protein active site and re-enter in the inverted 

orientation, thus leaving the radical in the far-Tyr and a neutral close-Tyr. The second radical, must 

now be generated again in the close-Tyr, and could occur either in a new complete enzyme cycle 

(i.e thorough Cpd I) or in the same cycle using Cpd II as the oxidant. We have shown above that 
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Cpd I can perform the corresponding H abstraction, so now we will analyze the likelihood that Cpd 

II generates a Tyr radical, in both the T and S states. For this sake we selected a snapshot from the 

cYY Cpd II MD simulation and performed the corresponding QM/MM optimizations and reaction 

energy profiles. The results are shown in Figure 2B and Table III. 

TABLE III 

In Cpd II the ground state is the T state, which lies ca. 3.5 kcal/mol below the S state, displays a 3.5 

kcal/mol barrier for hydrogen abstraction, and the reaction is endergonic in a similar amount. 

(Figure 2B red line). In the S state the barrier is very small (ca. 1.5 kcal/mol) and also slightly 

endergonic. The final step for the reaction includes water release upon spin transition of the 

resulting ferric heme. Again, analysis of the Mulliken and spin populations show that the product 

corresponds to a radical Tyrosine. The charge and spin of the resulting heme moiety show that it 

corresponds to a ferric water bound heme. Thus, although with some energetic cost, Cpd II is also 

capable of producing a cYY* close-Tyr radical in CYP121.  

 

2.2 Internal Tyr-Tyr electron transfer. Since both Cpd I and Cpd II are able to perform close-Tyr 

radical formation in MtCYP121, both radicals could in principle be produced in one heme oxidation 

cycle. However, if this has to occur efficiently, a reorganization of the first radical product has to 

take place, implicating either the release and re-entering of the cYY* intermediate, or the migration 

of an electron from the far-Tyr to the close-Tyr in an intramolecular electron transfer (IET) reaction 

(reaction steps d' and d in Scheme 1B). Given the already mentioned potential complications with a 

mechanism involving cY*Y release, we thought about a possible mechanism that would generate 

the second Tyr radical but retaining the cY*Y moiety inside CYP121. We propose that this could 

occur through an IET, that would result in electronic reorganization that stabilizes a state with the 
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spin density located in the far- Tyr, and the electron density reorientates to the close-Tyr, or even 

directly to the heme group. As will be shown below, the process may occur through several 

elemental steps, that could or could not involve protonation/deprotontion process of the involved 

species (vide infra). Moreover, recent results from our group[51] for Tyr* containing peptides in 

solution, show that IET steps can be tightly coupled to proton uptake and release, leading indeed to 

a Proton Coupled Electron Transfer (PCET) processes. In this case PCET is defined in its broadest 

sense following Hammes-Shiffer and Soudackov’s work, [64] i.e. involving movement of a proton 

and an electron through different bonds in either a time-concerted or sequential manner [51]. We now 

turn to the analysis of this last possibility. 

2.2.1 Classical analysis of Tyr to Tyr
*
 ET. We begin our analysis by computing the free energy 

change (∆G) associated with the Tyr to Tyr* ET (or PCET) process in MtCYP121, using a TI 

scheme as described in methods. We divided the process in three elemental steps consisting of 

deprotonation of the far-Tyr (Figure 3, step 1), moving the electron from the far-TyrO- to the close-

TyrO*, which corresponds to radical migration to the far-Tyr process (Figure 3, step 2), and close-

TyrO- protonation (Figure 3, step 3).  

FIGURE 3 

Since it is well known that absolute free energy changes of protonation equilibrium computed with 

classical force fields using TI are significantly shifted from experimental values, several works 

show that relative free energies of a given residue in a protein environment with respect to the 

reference value in solution, are able to correctly predict the shift or trend in the pKa values [65,66]. 

Thus, in the present case, each step was evaluated for the substrate inside MtCYP121 and in water 

solution. We report the values corresponding to the difference between the protein and water free 

energies for each step, and a negative value means that the step is more favorable to occur inside 
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MtCYP121 compared to bulk solution. The results presented in Table IV show that removing the 

proton from the far-Tyr is unlikely to occur spontaneously. Tyr pKa in solution is about 10.2 [67], but 

since the deprotonation free energy inside MtCYP121 is smaller than in bulk solution (∆∆G = 17.3 

± 1.0 kcal/mol), its pKa must be even higher. This is not the case for the close-Tyr where 

deprotonation free energy is close to the bulk solvent value and thus a similar to bulk pKa is 

expected, that could result in protonation of the close-Tyr after IET. Most importantly, the radical 

transfer step, is highly exergonic, and compensates the free energy of the first deprotonation, 

resulting in an overall spontaneous PCET reaction (∆∆G = -14 ± 3.2 kcal/mol). The PCET nature of 

the IET step is clearly evidenced by the fact that only considering the first two (or all three steps) 

together, a spontaneous reaction is obtained. Thus the MtCYP121 enzyme framework strongly 

favors a neutral radical far-Tyr and a negatively charged close-Tyr.  

TABLE IV 

To get an insight into the molecular basis for the radical localization in the far Tyr, we looked for 

those residues that could either promote the presence of a neutral far-Tyr and/or a charged close-

Tyr. Arg386 is a key residue located in close proximity to the close-Tyr and given its natural 

positive charge at physiological pH (Figure 1), we decided to analyze its influence in the charge 

transfer process. For this sake we computed the free energy of the IET in the R386A mutant 

MtCYP121 (Figure 5, step 2). Analysis of the structure and dynamics of the R386A mutant protein 

show that no major changes in the protein structure occur (data not shown), a fact that is consistent 

with the X-ray structure of the corresponding mutant [8]. Interestingly, and consistent with a 

predominant role of this arginine in guiding the radical transfer process, the resulting ∆∆G = -10.5 

± 0.6 kcal/mol for the charge transfer step (step 2 in Figure 3) is significantly smaller than in the wt 

protein of -28.8 ± 1.6 kcal/mol. Thus Arg386 plays a key role for the proposed IET process.   
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It is important to note that the above presented data only measures the effect of the protein on the 

process of moving the negative charge, as defined by the classical parameters, from one Tyr to the 

other. Thus it represents an ideal or extreme case where tyrosine residues are either neutral or have 

a one electron charge. A more accurate calculation would require the use of QM/MM free energy 

methods as performed and reviewed by Kamerlin et. al.[25] which, as already mentioned, is 

computationally too demanding for the present system. 

 

2.2.2 QM/MM analysis of Tyr to Tyr
*
 ET. To get further and more detailed insight into how the 

protein could modulate or promote the IET we performed QM/MM optimizations of mono-radical 

and negatively charged substrate (cYY*-) directly related with the IET process and analyzed the 

resulting charge and spin distributions (Table V). 

We first computed the electronic structure of the cYY*- species inside the protein, considering the 

heme moiety classically (i.e when charge transfer to the heme group cannot be produced). In 

agreement with the above described classical results, the Mulliken and Spin population results show 

that the protein framework favors radical (spin) localization in the far-Tyr and negative charge in 

the close-Tyr. Moreover, we also computed the proton affinity of the far-Tyr inside MtCYP121 

considering a neutral close-Tyr, or a radical close-Tyr (i.e after the first hydrogen abstraction step). 

The results show that the presence of radical Tyr lowers the proton affinity by 6 kcal/mol, thus 

favoring far Tyr proton release. 

Even more revealing are the results obtained when the heme moiety in the Cpd II state is added to 

the QM system. As shown in Table V, for both spin states considered (Q and D), the close and far-

Tyr display a radical character (small charge and >0.5e- unpaired spin density) while the heme 

displays ferric hydroxy like state (FeIII-OH-), which corresponds to the MtCYP121 heme resting 
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state. Moreover, the difference between both spin states is that, while the D state presents both Tyr 

residues coupled antiferromagnetically and the only unpaired electron remains in the heme, in the Q 

state cYY displays the expected bi-radical triplet state character (see below). Thus, these results  

suggest that once the first radical is formed in the close-Tyr, when the far-Tyr releases its phenolic 

proton the electron is taken by Cpd II, resulting in a biradical cYY and a ferric hydroxo bound 

heme. Thus an IET seems to operate in MtCYP121 to generate efficiently and fast the second Tyr 

radical. It is important to note that in the present work we did not evaluate the coupling and 

reorganization energy parameters that both together, with the corresponding change in free energy, 

control the ET rate. However, we note that IET in adjacent and/or covalently bound residues (as the 

two Tyrs and the heme in the present substrate) is very fast if the reaction is exergonic, and thus is 

not expected that the coupling and reorganization energy contribute to the overall reaction rate.[68,69] 

TABLE V 

3. cY
*
Y

*
 to mcyc: C-C bond formation occurs in solution 

3.1 MD simulations of the cY
*
Y

*
 in solution and in MtCYP121. As mentioned in the introduction, 

the C-C coupling reaction after bi-radical formation, can occur either inside the protein, or in 

solution after a possible di-radical substrate (cY*Y*) release. In any case, for the reaction to take 

place, the two possible ortho carbons must come close enough to allow for bond formation to occur 

(vide infra). In order to analyze the probability of this step, we firstly performed 30 ns long MD 

simulations of cY*Y* in solution and inside MtCYP1212 and measured all possible four relevant C-

C distances. The resulting histogram for cY*Y* free (Figure 4) shows all C-C pairs have a bimodal 

distribution with peaks at 7Å and 10.5Å (which correspond to the distance of the closest and 

furthest ortho carbons in the most stable conformation). Interestingly, a significant population of 

conformations where both carbon atoms are at 5Å is found, with a minimum distance of ca. 4.5 Å. 

Page 20 of 53

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics



 

 

 

 

The results obtained from the MD simulation of cY*Y* inside protein show that in this case the 

closest ortho-carbons pair are nearer than others during most of simulation time, and arriving at the 

same closest distance as those found for the cY*Y* in solution. Thus similar closest distance of ca. 

4.5 Å between two potential reactive carbons can be found in solution or inside MtCYP121, with 

the protein framework increasing the population of the closest conformation.  

 

3.2. Mycocyclosine (mcyc) product formation in vacuum. We begin the study of the Tyr*-Tyr* 

(cY*Y*) for the isolated bi-radical in vacuum to have it as reference reaction. The corresponding 

reaction energy profile was determined using the Tyr1Ce-Tyr2Ce distance as a reaction coordinate. 

The results and key structures along the reaction are shown in Figure 5 and Table VI. As expected, 

the plot shows that for long distances the ground state corresponds to the triplet (T) spin state. 

Mulliken and Spin population analysis shows one unpaired electron localized in each Tyr, and both 

Tyr being neutral. The singlet (S) state lies ~11 kcal/mol above the T state in vacuum in the reactive 

species, with both Tyr still being neutral. The closest distance between two ortho carbons in the 

optimized structure in vacuum is 4.6Å, which is similar to the closest possible value in solution. 

When the C-C distance starts to decrease the energy of the T state raises up continuously while the 

S state energy also increases but with a smaller slope. At a C-C distance of ca. 2.4 Å both surfaces 

cross (we will call this structure TSA). After the crossing the S state curve drops to a first minimum 

corresponding to a first intermediate state (ISA). The effective barrier starting from the ground T 

state is 16 kcal/mol. Interestingly, the TSA structure displays a value for the dihedral angle around 

the Cα-Cβ bond of ~137º, nearly the most populated value between both possible tyrosine rotamers 

found in solution for cYY (64º and 183º). The ISA state, which lies 6 kcal/mol below cYY in the T 

state, displays a well established C-C bond (1.58 Å), with the concomitant conversion of both ortho 
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carbons from pure aromatic sp2 to an sp3 configuration (Figure 5, ISA structure). In the ISA T state 

in both unpaired spins are localized in the same Tyr showing clearly that a significant change in the 

electronic structure of the molecule has occurred.  

FIGURE 4 

To proceed from ISA to the final product, Ce hydrogens must be transferred to the phenol oxygens. 

Structural analysis of ISA shows that each Ce hydrogen is closer to the other Tyr oxygen atom 

(2.43Å) than to the same Tyr phenolic oxygen (2.73Å). We therefore analyzed the sequential and 

cross hydrogen transfer using the corresponding difference in Ce-He and He-Oz distances as the 

reaction coordinate. The corresponding profile shows that the first hydrogen is transferred with a 

~20 kcal/mol barrier passing through TSB and leading to ISB. In ISB one Tyr has a planar ortho C 

while the other one has a tetrahedral ortho C (Figure 5, ISB structure). Transfer of the second 

hydrogen has very small barrier (~2 kcal/mol) and finally leads to the product in which both ortho 

carbons adopt a planar orientation (Figure 5, mcyc structure). As expected from the structural 

analysis trying to transfer the hydrogen to the same Tyr oxygen results in much higher barrier of 

~45 kcal/mol than to the other Tyr oxygen residue (Figure S2). 

Since the obtained barrier for the C-C coupling is quite high, we decided to explore also an 

alternative mechanism, where first the proton/hydrogen migrates from the ortho-carbon to the 

phenolic oxygen, and the C-C bond formation occurs for the corresponding ortho-carbon located 

Tyr radicals. The obtained barrier for this proton/hydrogen transfer is over 50 kcal/mol (See Figure 

3 in SI), thus, significantly higher than the barrier observed for C-C coupling in the phenolic oxygen 

located radical Tyrosines.   

TABLE VI 
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3.3 Tyr*-Tyr* C-C bond formation in solution. To study the Tyr coupling reaction in solution we 

started from a snapshot taken from the corresponding MD simulation with the C-C atoms at ca. 5Å. 

The corresponding energy plot, presented in Figure 5 solid line, has the same shape as that 

previously described for the reaction in vacuum. In the reactant structures the ground state 

corresponds to the T state, with two Tyr radicals, and an S state lying about ~19 kcal/mol above it. 

When the C-C distance starts to decrease, the energy of both states raises up continuously. In the T 

state surface, a TS (with a barrier of 23 kcal/mol) is found at C-C distance of ca 2 Å. However, at a 

distance of ca 2.5 Å the T state and S state profiles cross, yielding an effective transition state 

structure (TSA), which lies about 16 kcal/mol above the ground state energy, a value which is 

similar to that obtained in vacuum. After crossing this TSA, the energy drops along the S to the first 

ISA. The reaction then proceeds similarly to what is observed in vacuum, with a first 

hydrogen/proton transfer with a high barrier, and a very small barrier for the second 

hydrogen/proton (data not shown).  

FIGURE 5 

3.4 Tyr*-Tyr* C-C bond formation inside the MtCYP121. To study the Tyr coupling reaction inside 

MtCYP121 we used the same strategy described above for the reaction in vacuum and in solution. 

The corresponding energy plot, presented in Figure 5B dotted line, has the same shape as those 

previously described. In the reactant structures the ground state corresponds to the T state, with two 

Tyr radicals and an S state lying about ~11 kcal/mol above it. When the C-C distance starts to 

decrease the energy of both states raises up continuously. In the T state surface a TS (with a barrier 

of 40 kcal/mol) is found at C-C distance of ca 2 Å, but at a distance of ca 2.2 Å the both S and T 

state surfaces cross (TSA), yielding an effective 32 kcal/mol barrier with respect to the ground state 

energy. After crossing the TSA the energy drops along the S state to the first ISA, lying about 5 
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kcal/mol above the reactants. The reaction then proceeds similarly to what is observed in vacuum 

and in solution, with a first hydrogen/proton transfer with a high barrier, and a very small barrier for 

the second hydrogen/proton transfer. 

Thus the results show that in all cases vacuum-solution-protein the C-C coupling reaction occurs 

through the same elemental steps, with formation of the C-C bond and spin transition, depicting the 

higher barrier and thus assigned as the rate limiting step. The most important finding, comparing all 

three environments is that inside MtCYP121, the energy barrier for this first step is significantly 

higher than in vacuum/solution, possibly reflecting the fact that the protein binding site is prepared 

to host the cYY and not the mcyc product, and thus additional energy is required to allow the two 

tyrosines to come close enough to establish the C-C bond.  

 

Discussion 

In the present work we have analyzed in detail the reaction mechanism performed by MtCYP121, 

which involves the C-C bond coupling reaction between two ortho carbon atoms of the two phenol 

groups of cyclo-di-Tyrosine (cYY), to yield mycocyclosine (mcyc), by means of QM/MM and 

molecular dynamics simulations. For this  sake we divided the reaction in three elemental steps: 1- 

first Tyr* generation, 2- second Tyr* generation and 4- the cY*Y* C-C coupling reaction. A 

complete detailed proposal of the reaction mechanism derived from our results highlighting the key 

role of MtCYP121 protein matrix is shown in Scheme 2, with key energetic values reported in 

Table VII, and discussed below.  

TABLE VII 

Our results for the first step show that most likely Cpd I is responsible for generation the first Tyr* 

in the cYY close-Tyr. The hydrogen abstraction reaction (from the phenolic oxygen) has a 
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relatively small barrier, for example when compared to hydrogen abstraction barriers in alkyl-

hydroxylating CYPs displaying barriers in the 10-20 kcal/mol range [35] and is iso- or slightly 

exergonic. What seems interesting is the fact that the hydrogen bond interaction between Cpd I oxo 

and the Tyr-OH is established only transiently, while a permanent hydrogen bond is formed when 

dioxygen is bound to the heme. We also showed that neither dioxygen, nor peroxide are capable of 

producing the first Tyr*, the former reaction is thermodynamically unfeasible, while in the latter 

case a proton (not an hydrogen) is abstracted leading to a negative Tyr (that would be reprotonated 

by the water molecules in the active site, see below), and eventually participating as  a proton 

source for  the formation of Cpd I. Thus, it seems that the close-Tyr of the cYY substrate is 

positioned in a sub optimal position with respect to the heme iron. Although it is tempting to pay 

minor attention to this observation, proteins hardly ever do something without a specific purpose. 

The question then arises, as to why the phenol group is positioned in a suboptimal position. To 

answer this issue we propose that the phenol positioning has the following two key consequences. 

First, once the first Tyr* and Cpd II are produced, two competing reactions can occur, the proposed 

PCET that allows the MtCYP121 reaction to proceed, but also the typical OH rebound step 

observed for many CYPs performing simple hydroxylating reactions. Hydroxylation reactions in 

phenols typically occurs in the ortho carbon, but in order to take place the carbon atom must be 

close to the Cpd II -OH, a fact that in MtCYP121 occurs only transiently. Even for this most 

reactive structure we computed the energy barrier of the rebinding reaction yielding an energy 

barrier between 16-20 kcal/mol (Figure 2B). Barriers obtained for the OH rebound step in other 

CYPs are much smaller, in the 3-4 kcal/mol range, and can be even smaller for some spin states. 

This difference can be simply explained by the reactive carbon relative position which in cYY lies 

at ca. 5 Å from the Cpd II oxygen, while in hydroxylating CYPs optimal distance is less than 3A [35].  
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Another possible explanation, for the high barrier observed for the rebound step, is the spin 

delocalization of the Tyr radical on the whole phenol group. In alkyl radicals, which are the usual 

substrates of CYP hydroxylations, spin is highly localized on the reactive Carbon (>0.8e) [70], while 

in Tyr radical  studied in the present work, spin density on the ortho carbon is small (<0.3e). The 

low spin density on the ortho carbon could also contribute to explain why the C-C coupling step 

also exhibits a very high barrier (see below). In any case, the high barrier for hydroxylation is 

consistent with recent findings using mass-spec showing that hydroxylation of cYY was not 

detected, even for the minoritary (ca. <2%) side products, different from mcyc. [16]. 

Second, it is important to note that in each reaction cycle MtCYP121 requires two electrons to 

reduce the dioxygen to Cpd I. It is important that each oxygen reduction cycle results in cYY 

oxidation, and not in unproductive oxygen reduction to water. For this sake, a tight coupling of the 

co-substrates (cYY and molecular oxygen) is needed. In many heme proteins, a Tyr residue located 

at hydrogen bonding distance to the dioxygen bound heme, is the main responsible for its 

stabilization and an overall high oxygen affinity. This high affinity is a key element for assuring the 

efficiency of subsequent oxidative reactions [38,71]. Given, thus the above mentioned observations 

related with the cYY close-Tyr position and its interactions with heme dioxygen ligand, we 

computed the oxygen binding energy to reduced MtCYP121 in the presence and absence of cYY. 

Our results show that the presence of cYY increases the oxygen binding energy in ca. 7 kcal/mol. 

This value is similar to that reported in our previous work when comparing wt Mycobacterium 

truncated hemoglobin N (displaying the TyrB10 residue hydrogen bonded to the dioxygen ligand) 

to the TyrB10 to Ala mutant, which results in an over 100 fold decrease in oxygen affinity [38,71]. 

Thus it is clear that the presence of cYY significantly increases MtCYP121 oxygen affinity, thus 

promoting its reduction only when the enzyme substrate is present, and thus decreasing non 
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productive consumption of reducing power. The relevance of Tyr-OH for the oxidation reaction is 

consistent with recent observations showing that when Tyr is replaced by Phe, it can be found in the 

site close to the heme, but it is oxidized at a very slow rate. Moreover, in the corresponding crystal 

structure the iron to ligand bound water molecule network is also missing [16]. 

SCHEME 2 

Concerning the second Tyr radical formation step, the results presented here clearly favor an 

internal electron transfer (or charge rearrangement) process, that can be described as Proton 

Coupled Electron Transfer. Specifically, the presence of a close-Tyr radical slightly decreases the 

far-Tyr proton affinity (thus favoring its release to the water environment), while the protein matrix, 

in part due to the presence of Arg386, favors negative charge localization in the close-Tyr. These 

results in a net driving force for the formation of a far-Tyr radical, and a close negatively charged 

Tyr. Moreover, Cpd II although capable of abstracting an hydrogen from the close-Tyr to generate a 

Tyr radical, does it with a ca. 4 kcal/mol energy cost (although it should be noted, that the barrier 

and energy cost is smaller than that observed for Cpd II hydrogen abstraction from alkyl substrates 

of ca. 20 kcal/mol and ca. 13 kcal/mol, respectively [4,35]. Strikingly, it can act efficiently as an 

electron sink, producing the cY*Y* bi-radical and regenerating the ferric hydroxo enzyme resting 

state. The alternative proposal (without IET) requires that cY*Y leaves the protein and re-binds in 

the opposite orientation. This proposal would however, not only diminish the enzyme overall rate, 

but lead to the presence of significant amount of cY*Y* in solution, which do to its radical nature 

could lead to non desired side products, like for example cYY dimers (due to C-C bond formation 

of Tyr radical from different molecules). 

Looking at both Tyr radical generation steps together, it is clear that the rate limiting step should be 

the formation of the strong oxidant Cpd I. Once Cpd I is present, it abstracts the phenolic hydrogen 
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leading to the Close-Tyr radical, which would then proceed fast and directly to the cYY biradical 

through the PCET. Thus both Tyr radicals are indeed formed almost in a concerted fashion in one 

heme reduction cycle. 

Once the cY*Y* is established, last reaction step concerns Tyr-Tyr coupling or C-C bond formation. 

Our results show that mechanistic steps of this reaction are same for the reaction in vacuum, in 

water or inside MtCYP121. In all cases, rate limiting step is formation of the C-C bond, leading to 

the first intermediate ISA, where the C-C bond is already established, with the two ortho carbons 

adopting transiently an sp3 conformation. This first reaction step is further difficulted by the fact 

that a triplet to singlet spin transition is required, since in the  cY*Y* the triplet state, with one 

unpaired electron localized in each aromatic ring is the ground state. Concerning the energy and 

geometry of the different states, our results are in excellent agreement with previous calculations of 

Tyr-Tyr coupling reaction in vacuum using B3LYP, where the relative energy of stable 

intermediates along the reaction were computed, showing that ISA like state lies ca. 12 kcal/mol 

below the cY*Y*. In that case no barriers were reported [72].  

Besides the mechanism, when comparing the energetics of the reaction in the three studied 

environments it is clear that the protein framework does not promote it. Indeed although the MD 

simulation data show that reactive C-C carbons can be found close to each other, the energy barrier 

for establishing the bond is significantly higher inside the protein compared to the reaction in 

vacuum/water. In other words the protein active site seems shaped for properly accommodating the 

substrate and not the product, and thus possibly the C-C bond formation step occurs outside the 

protein in the bulk solution. The fact that MtCYP121 active site is unable to properly accommodate 

the product, is consistent with recent results showing that mcyc product does not inhibit the protein 

possible due to an incapacity of binding (no binding was observed at 80µM) [16]. The occurrence of 
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the C-C bond formation step in solution has several interesting implications. First, similarly to the 

cY*Y, it could be argued, that a cY*Y* in solution could give rise to undesired side products. 

However, it is important to note that since both Tyr radicals belong to the same molecule, they are 

linked by the diketopiperazine cycle formed by the respective Tyr backbone groups, the chance of 

intramolecular bond formation is far more likely than intermolecular formation of cYY dimers, 

specially if the biradical concentration is small. Also important, Tyr radicals are quite stable to 

oxidation by molecular oxygen, compared to other residues, such as Trp or Cys [73] and thus live 

long enough in solution to yield the desired product. Another implication of non catalyzed C-C 

bond formation, is related to the development of selective inhibitors based on substrate and or 

product analogs. Our results suggest that substrate analogs are better candidates to bind MtCYP121 

compared to product analogs, since the product is formed outside the protein matrix. 

An important issue of the present mechanistic proposal, is that several predictions are made, that 

could be confirmed by experimental means. For example addition of an external spin trap to the 

enzyme in the presence of substrate, could lead to trapping/identification of the cY*Y*, but not the 

cY*Y. Moreover, mutation of Arg386 to a neutral residue (like Gln or even Leu), could by retarding 

the IET, to some accumulation of cY*Y and/or significant changes in the overall rate. The same or 

even an additive effect, could be achieved by performing mutations that stabilize a negative charge 

in the far-Tyr, as for example Gln385Arg and/or Phe76Arg/Lys. 

Last but not least, the results presented contribute to a deeper understanding of the general 

mechanisms of CYP enzymes, in particularly those that perform C-C coupling reactions. In this 

context, an interesting comparison can be performed with previous QM/MM studies of CYP StaP 

which catalyzes the intramolecular C-C bond formation in Chromopyrrolic acid in a key step of 

Staurosporine biosynthesis [74]. In the mentioned work the authors were able to show that since the 
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reactive carbon is too far from Cpd I ferryl oxygen, the first radical is formed by Cpd I, through a 

PCET process, in which a proton from the substrate (derived from an NH group adjacent to the 

reactive carbon) is transferred to Cpd I through a water mediated hydrogen bond array, 

concomitantly with an ET process. The barrier for this step is 16.3 kcal/mol. The second radical in 

this case is formed concertedly with C-C bond formation and a PCET to Cpd II, yielding a barrier 

of 20 kcal/mol. Thus in this case since both reactive carbons are far from the reactive ferryl groups, 

PCET process are operative, as in the second radical generation step presented here for MtCYP121. 

Also interesting, is the fact that as in the present case, the step involving C-C bond formation 

displays the larger barrier.  

Thus, it would seem that for CYPs involved in C-C coupling reactions, Cpd I is retained as the main 

oxidant and starter of the reaction cycle and that Cpd II acts as the second oxidant, allowing C-C 

bond formation to happen in one enzyme oxidation cycle. However, since in one or both radical 

generation steps the reactive carbon can be positioned far from the iron (possibly to avoid 

unproductive hydroxylation products), the mechanism operates through a PCET process possibly 

enhanced by the protein matrix [74]. 

 

Conclusions 

In the present work we have used MD and QM/MM methods to study MtCYP121 reaction 

mechanism. Our results show that substrate binding promotes formation of the initial oxy complex. 

That Cpd I is the responsible for first Tyr* formation and that the second Tyr* is formed 

subsequently, though PCET reaction, promoted by the presence of key residue  Arg386, that leads 

to the heme ferric resting state and avoids OH radical rebinding. The final C-C coupling reaction 

possibly occurs in bulk solution, thus yielding the product (mcyc) in one oxygen reduction cycle. 
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Figure 1. Structure of the ferric cYY bound MtCYP121. The cYY substrate (labeling the Close and 

Far Tyr), the heme group, and residues Cys345 (the proximal ligand), Arg386 and Ser237 are 

shown as sticks. Active site waters are shown as cyan spheres. Substrate binding pocket is shown as 

yellow isosurface. 

 

Scheme 1. A: Overall reaction catalyzed by MtCYP121, showing both the structure of the reactive 

ciclo-di-tyrosine (cYY) and product mycocyclosine (mcyc). B: Proposed reaction mechanism of 

MtCYP121. Relevant heme oxidation/coordination states are labeled as numbers: 0: Ferric resting 

state, 1: Compound I with substrate bound, 2 & 3: Compound II with one Tyr radical located at the 

close and far-Tyr respectively, 4: Ferric di-radical bound and 5: ferric mycocylosine product 

(mcyc) bound state. Reactions are labeled as (letters): (a) oxygen binding and reduction, (b) O-O 

bond cleavage and water release (c) first radical formation in the close-Tyr, (d) Tyr Tyr 

intramolecular electron transfer inside the protein, d') cYY radical release and renter to MtCYP121 
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with radical located in the far-Tyr, e) second Tyr radical formation and water release, f) C-C bond 

formation inside MtCYP121 and mcyc release, f') C-C bond formation in solution. 

 

Figure 2. a) Energy profile for the hydrogen atom abstraction and Tyr
* 

formation using Cpd I as 

the oxidant. b) Energy profile for the hydrogen atom abstraction and Tyr
* 

formation using Cpd II as 

the oxidant. c) Energy profile for the Cpd II OH rebound step. In Figure A) and C) Red and Blue 

lines show the quartet and doublet spin states, respectively. In figure B) Red and Blue lines 

correspond to triplet and singlet spin states, respectively. 

 

Figure 3. Classical analysis of Tyr* to Tyr PCET using TI. ∆∆G values correspond to the free 

energies for each process (step) inside the protein with respect to the same process in water. Values 

for wt CYP121 and R386A mutant are shown in red and blue respectively. 

 

Figure 4. Histograms for all possible four relevant C-C distances obtained from simulation of 

cY
*
Y

*
 free in solution (blue) and inside protein (red). 

 

Figure 5. (A) Energy profile as a function of the reaction coordinate for the complete reaction in 

vacuum. For the first step of the reaction, the calculations were done for both S (blue) and T (red) 

spin states. For the subsequent steps, only the profiles for S state are shown. The // symbol in the X-

axis indicates the change in the reaction coordinate. (B) Energy profile for C-C bond formation in 

solution (solid line) and inside the protein (dotted lines) for both S and T spin states. (C) Key 

structures along the reaction of mcyc (mycocyclosine) formation.  
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Scheme 2. Proposed four steps MtCYP121 reaction mechanism. 
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Table I. Heme-ligand close-Tyr interactions. Reported values were taken from the respective MD and 

correspond to average distances (Å) ± SD. Values in the last row shows FeO1-HOH-TyrO angle.  

Parameter
a
 

Protein Heme State 

Oxy CpI CpII 

FeO1-TyrOOH 3.61 ± 0.47 5.19 ± 0.29 5.31 ± 0.28 

FeO1-TyrHOH 2.83 ± 0.68 4.31 ± 0.28 4.43 ± 0.28 

FeO1-TyrHCA 2.68 ± 0.35 4.96 ± 0.40 5.12 ± 0.32 

FeO2-TyrHOH 2.21 ± 0.66 - - 

FeO2-TyrHCA 2.86 ± 0.31 - - 

FeO1-HOH-TyrOOH 169º 158º 166º
 

a) 
FeO1 corresponds to the oxygen atom bound to the iron, FeO2 corresponds to the oxygen atom in the 

O2 molecule which is not bound to the iron, TyrOOH Corresponds to the Tyrosine phenol oxygen atom, 

TyrHOH Corresponds to the Tyrosine phenol hydrogen and TyrHCA corresponds to the Tyrosine aromatic 

hydrogen in ortho position. 
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Table II. Selected distances (d), Mulliken (q) and spin (s) populations relevant for the first close-Tyr
*
 

(cY
*
Y) formation step in MtCYP121.  

Parameter 

System 

Cpd I TS Cpd II 

D Q D Q D Q 

∆E spin 1.0 0 n.c n.c 3.0 0 

d Fe-O 1.68 1.69 1.74 1.74 1.83 1.83 

d FeO-TyrHOH 1.79 1.65 1.16 1.18 1.00 1.00 

d TyrO-TyrHOH 1.00 1.01 1.26 1.25 1.99 1.97 

q close-Tyr -0.012 0.205 -0.048 -0.097 -0.075 -0.070 

q OX(FeOX) -0.337 -0.348 -0.284 -0.241 -0.189 -0.190 

q TyrHOH -0.125 -0.133 -0.154 -0.172 -0.115 -0.115 

q Heme-Cys 0.131 0.136 0.329 0.330 0.263 0.262 

s close-Tyr -0.118 0.164 -0.234 0.475 -0.981 0.990 

s OX(FeOX) 0.697 0.762 0.656 0.605 0.261 0.270 

s TyrHOH -0.001 -0.003 0.000 -0.006 0.005 -0.001 

s Heme-Cys 0.424 2.075 0.581 1.920 1.982 1.744 
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Table III. Selected distance (d), and Mulliken (q) and spin (s) populations relevant for the second Tyr
*
 

formation step in MtCYP121. L corresponds to the heme bound ligand, i.e the OH in Cpd II and water 

molecule in the product. 

Parameter 

System 

CpdII TS Fe3-H2O 

S T S T S T Q 

∆E spin 3.5 0 n.c n.c 1.0 0  

d Fe-O 1.93 1.91 2.00 2.02 2.01 2.02 2.32 

d FeO-TyrHOH 1.55 1.62 1.20 1.08 1.08 1.08 1.03 

d TyrHOH-TyrO 1.04 1.02 1.24 1.40 1.40 1.40 1.56 

q Tyr -0.041 -0.019 -0.092 -0.146 -0.120 -0.144 -0.102 

q L -0,393 -0,410 n.c n.c -0,093 -0,073 -0.003 

q Heme-Cys 0.435 0.414 0.299 0.262 0.213 0.229 0.183 

s Tyr -0.143 0.125 0.454 0.508 0.610 0.568 0.764 

s L 0,049 0,088 n.c n.c -0,013 0,019 0.029 

s Heme-Cys 0.095 1.792 -0.435 1.472 -0.599 1.415 3.209 
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Table IV. Free Energy changes associated with radical migration as determined by Thermodynamic 

Integration. Free energy values are in kcal/mol. Absolute error is estimated as the SD of the obtained 

values from two independent simulation sets.  

Step In water  Inside protein   

  Wild type R386A ∆∆G wild type – water  ∆∆G R386A  – water  

1. Far Tyr deprotonation 
-65.0 ± 0.2 -47.7 ± 0.8 -46.8 ± 0.6 

17.3 ± 1.0 18.2 ± 0.8 

2. Far to close Tyr ET 
-1.0 ± 0.1 -29.8 ± 1.5 -11.5 ± 0.5 -28.8 ± 1.6 -10.5 ± 0.6 

3. Close Tyr protonation 
60.9 ± 0.2 58.4 ± 0.4 60.6 ± 0.4 -2.5 ± 0.6 -0.3 ± 0.6 

Total ∆∆G    -14.0 ± 3.2 7.6 ± 2.0 
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Table V. Mulliken (q) and spin (s) populations for mono-radical and negatively charged substrate 

(cYY
*-
) directly related with the IET process. 

Parameter 

QM Sub-System 

[cYY]
*-
 CpII [cYY]

*- 

 
D Q 

q close-Tyr -0.778 -0.007 -0.065 

q far-Tyr -0.222 -0.325 -0.299 

s close-Tyr 0.430 -0.997 0.909 

s far-Tyr 0.570 0.673 0.703 

q heme-Cys n.c -0.188 -0.146 

s heme-Cys n.c 1.207 1.262 

q L n.c -0.476 -0.486 

s L n.c 0.114 0.126 
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Table VI. Energetic, selected distance (d), and Mulliken (q) and spin (s) populations for the C-C bond 

formation reaction in vacuum (reference), solvent and inside protein. 

Parameter  

Energetic Parameters 

Vacuum Solvent Protein  

T S T S T S 

∆Espin 0 10 0 19 0 11 

EactcY
*
Y

*
=>IS 22 10 23 10 40 25 

Eact-Effective 16 16 32 

∆Ereaction  -7 -15 6 

 Structural Parameters, Mulliken and Spin Populations for the complete reaction in vacuum  

 cY
*
Y
*
(T) TSA(S/T) ISA(S) TSB(S) ISB(S) mcyc (S) 

d Cε-Cε 4.52 2.59 1.59 1.56 1.55 1.52 

d Cε-Hε 1.11 1.11 1.13 1.51 2.42 2.38 

d Hε-Oζ (same) 2.65 2.67 2.69 3.04 3.30 3.85 

d Hε-Oζ (diff) 5.25 2.64 2.49 1.24 1.00 0.99 

Cε planar angle 89.64º 65.60 61.04º 58.32º 62.95º 68.42º 

q Tyr1 0.029 0.019 0.040 0.198 0.350 0.014 

q Tyr2 -0.032 -0.021 -0.038 -0.194 -0.350 -0.010 

s Tyr1 1.013 0.000 0.000 0.000 0.000 0.000 

s Tyr2 0.988 0.000 0.000 0.000 0.000 0.000 
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Table VII. Summary of the energetic results (in kcal/mol) for each Step of the MtCYP121 reaction 

mechanism. 

Step 
Spin-state

a    
ΔΔΔΔE    ΔΔΔΔE# Method 

First radical formation by Cpd I 
Q - 4 ± 0.1 QM-MM 

OH Rebound 
Q - 16 ± 0.2 QM-MM 

PCET-Classical Contribution
b
 

D -14.0 ± 3.2 n.c
d
 TI 

Second radical formation by Cpd II 
T 3.5 ± 0.1 3.5 ± 0.1 QM-MM 

C-C bond formation in vaccum and 

solution
c
 

T => S -7 ± 0.1 (-15 ± 0.1) 16 ± 0.1 (16 ± 0.1) QM and (QM-MM)
 

a) 
Reference Spin state corresponds to the ground state where the reaction occurs. If the reaction involves spin states 

crossing the two states are mentioned. b) In this cases value corresponds to free energy (i.e ∆G) instead of potential 

energy. c) Values in parenthesis correspond to those obtained in solution. d) not computed  
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Figure 1. Structure of the ferric cYY bound MtCYP121. The cYY substrate (labeling the Close and Far Tyr), 
the heme group, and residues Cys345 (the proximal ligand), Arg386 and Ser237 are shown as sticks. Active 

site waters are shown as cyan spheres. Substrate binding pocket is shown as yellow isosurface.  

79x79mm (300 x 300 DPI)  
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Figure 2. a) Energy profile for the hydrogen atom abstraction and Tyr* formation using Cpd I as the oxidant. 
b) Energy profile for the hydrogen atom abstraction and Tyr* formation using Cpd II as the oxidant. c) 

Energy profile for the Cpd II OH rebound step. In Figure A) and C) Red and Blue lines show the quartet and 

doublet spin states, respectively. In figure B) Red and Blue lines correspond to triplet and singlet spin 
states, respectively.  

326x772mm (300 x 300 DPI)  
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Figure 3. Classical analysis of Tyr* to Tyr PCET using TI. ∆∆G values correspond to the free energies for 
each process (step) inside the protein with respect to the same process in water. Values for wt CYP121 and 

R386A mutant are shown in red and blue respectively.  
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Figure 4. Histograms for all possible four relevant C-C distances obtained from simulation of cY*Y* free in 
solution (blue) and inside protein (red).  

107x84mm (300 x 300 DPI)  

 

 

Page 50 of 53

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics



  

 

 

Figure 5. (A) Energy profile as a function of the reaction coordinate for the complete reaction in vacuum. For 
the first step of the reaction, the calculations were done for both S (blue) and T (red) spin states. For the 
subsequent steps, only the profiles for S state are shown. The // symbol in the X-axis indicates the change 

in the reaction coordinate. (B) Energy profile for C-C bond formation in solution (solid line) and inside the 
protein (dotted lines) for both S and T spin states. (C) Key structures along the reaction of mcyc 

(mycocyclosine) formation.  
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Scheme 1. A: Overall reaction catalyzed by MtCYP121, showing both the structure of the reactive ciclo-di-
tyrosine (cYY) and product mycocyclosine (mcyc). B: Proposed reaction mechanism of MtCYP121. Relevant 
heme oxidation/coordination states are labeled as numbers: 0: Ferric resting state, 1: Compound I with 

substrate bound, 2 & 3: Compound II with one Tyr radical located at the close and far-Tyr respectively, 4: 
Ferric di-radical bound and 5: ferric mycocylosine product (mcyc) bound state. Reactions are labeled as 
(letters): (a) oxygen binding and reduction, (b) O-O bond cleavage and water release (c) first radical 

formation in the close-Tyr, (d) Tyr Tyr intramolecular electron transfer inside the protein, d') cYY radical 
release and renter to MtCYP121 with radical located in the far-Tyr, e) second Tyr radical formation and water 

release, f) C-C bond formation inside MtCYP121 and mcyc release, f') C-C bond formation in solution.  
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Scheme 2. Proposed four steps MtCYP121 reaction mechanism.  
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