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Abstract: A new approach to describe the maximum strength criterion of concretes with different strength capacities is formulated. The
proposed failure criterion incorporates the so-called “performance parameter” (3) that controls the dependence of the maximum strength
on the concrete quality. To assure the feasibility of the solution procedure for any possible set of known data, different methods are
proposed to determine [3, according to the available material data. The performance dependent strength criterion presented in this work
is expressed in terms of the Haigh Westergaard stress coordinates and as a function of four material parameters that fully define the
compressive and tensile meridians of the failure criterion. The variation of the shear strength between these two meridians follows an
earlier elliptic interpolation. The proposal includes approximating functions that define the dependence of the above mentioned four
material parameters on the two fundamental mechanical properties of concrete: the uniaxial compressive strength f, and the performance
parameter [3p. The capability of the proposed criterion to predict peak stresses of both normal- and high-strength concretes is verified with

experimental data available in the literature corresponding to uniaxial, biaxial, and triaxial compression tests.
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Introduction

The relevant knowledge evolution in concrete technology during
the last decade has led to the development of concretes of very
high compressive strengths characterized by mechanical proper-
ties that considerably differ from those of conventional or normal-
strength concretes (NSCs). Presently, high-strength concretes
(HSCs) are intensively used in the construction of high responsi-
bility structures such as bridges, tall buildings, dams, etc. Never-
theless, and contrarily to the case of NSC, the mechanical
behavior of HSC has still many unknown aspects, which are the
subject of several ongoing experimental and numerical studies by
the international research community.

Regarding the failure behavior of HSC and, moreover, the
form of its maximum strength surface the available experimental
evidence shows that they mainly depend on two fundamental ma-
terial features: the uniaxial compressive strength (f) and the mor-
tar quality. However, no agreement was found so far on the
indicator or parameter that best define the mortar or concrete
quality.

Related to the formulation of concrete maximum strength cri-
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teria, most of the available proposals in the literature were devel-
oped for NSC and, due to the relevant differences, they cannot
accurately predict the variation of the peak strength of HSC with
the stress stage. As discussed in the section called “Review of
Maximum Strength Criteria for Concrete” only a few empirical
failure criteria have been proposed for HSC, see among others the
contributions by Xie et al. (1995) and of Ansari and Li (1998).
More limited were the attempts to develop failure criteria that are
valid for a wide spectrum of concrete performances, as the one
proposed by Seow and Swaddiwudhipong (2005). This strength
criterion, although very easy to be implemented in computer pro-
grams, may lead to a poor accuracy as explained afterwards in the
mentioned section.

In this work, a unified failure criterion for concrete of arbitrary
performance is proposed that cover the entire spectrum of con-
crete quality from NSC to HSC. Depending on the material qual-
ity the proposed failure criterion leads to different forms of the
maximum strength surface.

The novel failure criterion for concrete of arbitrary quality is
based on the consideration of quadratic parabolas for the com-
pressive and tensile meridians in the stress space expressed in
terms of the Haigh Westergaard coordinates. Both parabolas have
a joint apex on the hydrostatic axis so that only four parameters
are required to completely define them. The innovative aspect is
the inclusion of the water/binder (W/B) ratio as a fundamental
property of the concrete mix controlling the material performance
or quality that is objectively defined in terms of the so-called
“performance parameter” (3 5). Thus, the four parameters defining
the compressive and tensile meridians are expressed as functions
of the uniaxial compressive strength and of the performance pa-
rameter in order to take into account the influence of the material
quality in the form of the maximum strength surface. The depen-
dence of the strength criterion on the Lode angle 6 follows the
elliptical function of the 5 parameter model by Willam and
Warnke (1974).

To account for the different alternatives of known concrete
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Fig. 1. NSC and HSC maximum strength curves—Data points:
Chern et al. (1992); Candappa et al. (2001); Xie et al. (1995); Hampel
and Curbach (2001): (a) meridian views; (b) deviatoric views

parameters, three different procedures for the evaluation of Bp
were developed. One of them is based on empirical consider-
ations while the others on numerical approximations. These nu-
merical approximations are, on the one hand, an adaptive
neurofuzzy inference system (ANFIS) and, on the other hand, a
genetic algorithm (GA).

The comparisons between experimental results in terms of
maximum strength surfaces and the corresponding numerical pre-
dictions included in this work demonstrate the capability and ac-
curacy of the proposed maximum strength criteria for concretes of
arbitrary performance.

Concrete Maximum Strength Features

Fig. 1(a) illustrates typical maximum strength curves of NSC and
HSC on the compressive and tensile meridians while Fig. 1(b)
shows their corresponding deviatoric views. These diagrams are
depicted in terms of the Haigh Westergaard stress coordinates &,
p, and 0 as

1
§=,—‘§ (1)
AY
p=12J, )
33 J
cos(36) = 71772 3)
2

thereby I;=first invariant of the stress tensor g ; J,=second in-
variant of the deviatoric stress tensor s ; ([,=8,0;; J,
=1/2s;8;5 8;;=0;;—1/38,0,;) and J;=third invariant of the de-
viatoric stress tensor, J3=1/3s;;s ;8-

As follows from Eq. (2) p takes into account only the shear
components of the deviatoric stress tensor in all Cartesian direc-
tions. Therefore, for a given & and 0, p defines the concrete
strength for all shear stress components acting simultaneously.

The NSC curves in Fig. 1(a) shows that the shear measurement
of concrete strength p progressively increases with the confining
pressure and varies with the considered Lode angle 6. However,
both the slope and the dependence on 6 of the NSC maximum
strength curves reduce for very high confinement levels.

With regard to the strength curves corresponding to HSC in
Fig. 1(a), similarly to NSC, they show relevant dependence of the
maximum p stress on both the confining pressure and the third
stress invariant. The comparative analysis between the maximum
strength curves of NSC and HSC leads to the following conclu-
sions:

1.  On the compressive meridian the HSC curves seems to have
a steeper slope than those of NSC.

2. Alinear increment of the uniaxial compressive strength from
levels corresponding to NSC to those corresponding to HSC
is not followed by a linear expansion of the maximum
strength curve on the compressive meridian.

3. The concrete performance has more influence on the com-
pressive meridians than on the tensile ones. Thus, the eccen-
tricity e=p,/p,, being p, and p,. the maximum shear strengths
in the tensile and compressive meridians respectively, is
clearly greater for NSC than for HSC. As an example, ana-
lyzing the data in Fig. 1(a) for £=—60 MPa, results in
p,/p.=0.69 when f.=20 MPa (NSC), while p,/p.=0.59
when f,=96 MPa (HSC). This is illustrated in Fig. 1(b) by a
comparison between the deviatoric views of NSC and HSC.

Due to experimental difficulties, there is a lack of data on
concrete triaxial tests. Nevertheless, and for the purpose of the
present work, a set of 18 triaxial test results performed in different
laboratories on both NSC and HSC was considered. These data
were extracted from the following literature:

e Ansari and Li (1998). Test samples: cylindrical 100 mm/200

mm (diameter/height).

e Candappa et al. (2001). Test samples: cylindrical 100 mm/200

mm (diameter/height).

e Chern et al. (1992). Test samples: cylindrical NX-core-sized

54 mm/108 mm (diameter/height).

e Hurlbut (1985). Test samples: cylindrical NX-core-sized 54

mm/108 mm (diameter/height).

e Imran and Pantazopoulou (1996). Test samples: cylindrical

NX-core-sized 54 mm/108 mm (diameter/height).

e Lu (2005). Test samples: cylindrical 100 mm/150 mm

(diameter/height).

e Sfer et al. (2002). Test samples: cylindrical 150 mm/300 mm

(diameter/height).

e van Geel (1998). Test samples: cubes 100 mm/100 mm/100

mm.

e Xie et al. (1995). Test samples: cylindrical NX-core-sized 54

mm/108 mm (diameter/height).

In Fig. 2(a) the normalized p/f, versus &/f, failure meridians
corresponding to the eighteen selected test sets are illustrated. It is
important to note that relevant boundary conditions such as the
geometry of the specimen, the age of concretes when the tests
were performed, the stress paths, and the way the confinement
was applied, do not agree among the different considered experi-
mental tests in Fig. 2(a). Nevertheless, in all of them /. represents
the uniaxial compressive strength at the time the triaxial test was
performed.

To minimize the scatters due to the probe size and geometry
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Fig. 2. Triaxial tests results—normalized plots: (a) different specimen sizes and geometries; (b) same specimen size and geometry

Fig. 2(b) shows those failure meridians corresponding to the ex-
perimental tests with the same specimen size and geometry. From
the analysis of the plots in Figs. 2(a and b), some interesting
conclusions follow:

1. The dispersion of the plots demonstrate that the simplifica-
tion based on the consideration of one single normalized
maximum strength surface for concretes of arbitrary perfor-
mance is not accurate.

Concretes having similar uniaxial compressive strength may
have different failure curves.

When considering experiment tests performed with concrete
specimens of the same size and geometry the scatter of the
failure meridians significantly reduces.

Even though the correlation is not the same for the different
concretes considered in the experimental tests, in general the
internal friction angle gradually and slightly increases with
Je

The shape of the maximum strength curve in the high con-
finement regime depends also on the followed stress path.

While most of the experiments were done by first applying
the lateral pressure and then increasing the axial displace-
ment, some of them were obtained by simultaneously apply-
ing the lateral confinement and axial displacement
(proportional loading). This last set of tests shows significant
discrepancy in the shape of the failure surface; see Chern et
al. (1992) and Ansari and Li (1998).

By stretching the rock mechanics features to concrete mechan-
ics, we may also conclude that the internal friction angle increases
with the concrete quality. In fact, most of the test results in Figs.
2(a and b) clearly demonstrate this effect.

Review of Maximum Strength Criteria for Concrete

Several triaxial failure criteria have been proposed for concrete.
Some of them were originally developed for soils or for rocks and
then further extended for concrete.

Following the evolution of the state of the art the most relevant
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Fig. 3. Extended Leon and Drucker Prager’s criteria predictions for NSC and HSC (data points: Imran and Pantazopoulou 1996; Lu 2005)

contributions are, among others, the criteria by Rankine (1876),
Mohr-Coulomb (Mohr 1900), Mises-Schleicher [von Mises
(1926)-Schleicher (1926)], Leon (1935), Drucker Prager (1952),
Willam and Warnke (1974), Ottosen (1977), Hoek and Brown
(1980), and Etse [extended Leon criterion—Etse (1992); Etse and
Willam (1994)]. The respective material parameters of almost all
the different models in the literature need to be specified for each
concrete mix again. Moreover, as most of the proposed failure
criteria were developed for NSC they do not have the appropriate
accuracy to predict the maximum strength of HSC even by up-
dating the material parameters. For example, the two parameters
extended Leon criterion has a very good fitting to test results on
NSC. However, it fails to adequately reproduce the failure enve-
lope of HSC. This may be observed in Fig. 3 that illustrates the
predictions of the maximum strength surfaces for both NSC and
HSC, obtained with the extended Leon and the linear Drucker
Prager’s criteria. The five parameters model by Willam and
Warnke was not considered in this analysis, as it requires results
of triaxial tests for an appropriate calibration. This is a relevant
shortcoming of this criterion.

To resolve the deficiencies of classical criteria to predict HSC
maximum strength, new mathematical formulations have been
suggested in the last years. Some of them are the proposals by Xie
et al. (1995), Ansari and Li (1998), and Seow and Swaddiwu-
dhipong (2005). Both the criteria by Xie et al. and Ansari and Li
are characterized by empirical calibrations based on the results of
triaxial tests performed by the writers on three different kinds of
concrete strengths. Therefore, to extend its consideration to other
concrete strengths, recalibration procedures based on new test re-
sults are required.

The criterion by Seow and Swaddiwudhipong takes into ac-
count an extensive experimental database to define a normalized
maximum strength criterion valid for concretes of arbitrary quali-
ties. The resulting surface is the one having the best fitting to the
considered experimental data points. Although easy to be imple-
mented the maximum strength criterion by Seow may lead in
some cases, to a considerable loss of accuracy, as can be observed
in Figs. 2(a and b).

From the review of the strength criteria for concrete in the
literature, we conclude that further research is needed to obtain a

unifying theory that accurately predicts failure criteria of con-
cretes of arbitrary quality. This is the main purpose of the present
proposal.

Performance Parameter for Concretes

There is no doubt that the uniaxial compressive strength f, is an
essential property of concrete. On one hand, from a practical
point of view it can be easily determined in laboratory tests and,
on the other hand, provides relevant information on the concrete
mechanical features.

Regarding the composite nature of concrete, its quality is con-
trolled not only by the chemical properties but also by the physi-
cal and hydraulic properties of the mix and mix constituents.
While the chemical properties are defined by the mortar compo-
sition, the hydraulic feature is basically the porosity of the mortar,
and the physical ones are, among others, the shape and maximum
size of the coarse aggregates. Thus, different mix proportions
conduce to a different resulting composite material.

Until now, the uniaxial compressive strength f, has been con-
sidered as a synonymous of the concrete quality. Nevertheless, as
different mix proportions, i.e., different chemical, physical and/or
hydraulic properties, may lead to similar or same f, then, an
additional parameter is required to quantify objectively the mate-
rial quality. This additional or performance parameter should be
related to f; and, should be able to describe the variation of the
concrete quality from NSC to HSC in terms of the most relevant
chemical, physical and hydraulic properties of the concrete mix.

To obtain a reliable definition of the performance parameter
which allows accurate predictions of the material quality, more
than 250 experimental data from the literature were evaluated in
this work that are characterized by different mix proportions and
related uniaxial compressive strengths. The considered experi-
mental data belong to the range of uniaxial compressive strengths:
20 MPa<f! <120 MPa. The basic and common criteria consid-
ered for the selection of the experimental database are as follow:
cylindrical samples 100 mm/200 mm, 28 days of curing under
similar conditions, test performed at 28 days, cement Type I,
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Fig. 4. Cement—f,

similar loading rate, fiberless concrete mix, only natural sand as
fine aggregate, and no air trained. Regarding the mineral admix-
tures, three cases are considered: no mineral admixtures; addition
of silica fume; and addition of fly ash. (Note that these data cor-
respond to uniaxial compression tests and do not coincide with
the set of data used in the section called “Concrete Maximum
Strength Features.”) See Folino et al. (2007) for further details
regarding the database.

By organizing the data in terms of the cement content and the
related f. as indicated in Fig. 4, an overall increment of the ce-
ment content with f. can be recognized but with poor correlation.
Therefore, it can be concluded that the cement content is not an
appropriate parameter to define the quality of concrete. Several
other properties of the concrete mix were also evaluated, such as
water content, silica fume content, fly ash content, superplasti-
cizer content, coarse aggregate content, fine aggregate content,
total volume of aggregates, relative volume of aggregates, and
maximum coarse aggregate size. It was found that although most
of them follow a tendency, a very poor correlation is obtained.
Thus, it was concluded that none of them is clearly related to the
concrete quality.

However, by relating f. with the W/B ratio, whereby the
binder takes into account not only the cement content but also
eventual mineral admixture contents such as silica fume and/or fly
ash, a defined correlation is obtained (see Fig. 5). It is important
to note that the well-known Abrams law proposed in 1918 when
only NSC existed already takes into account the relation between
/. and the water/cement ratio. In this sense, the plot in Fig. 5 can
be understood as an extension of the Abrams law to encompass
both NSC and HSC when the pure cement content is replaced
with the binder content.

Then, it is concluded that the most effective set of parameters
to objectively quantify the quality of concrete is the one com-
posed by f. and the W/B. Consequently, the so-called perfor-
mance parameter “3p” is defined as
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Fig. 5. W/B ratio—f,.

1 f ;.
Br="1000 (W/B) fe in (MPa) 4)
where W=water content (kg/m?) and B=binder content (kg/m?),
constituted by the sum of the cement and the mineral admixtures
contents (kg/m?).

In Fig. 6 the resulting dependence of the performance param-
eter B on f,, corresponding to all the different considered experi-
mental data, is plotted. Note that for a given value of f, different
Bp may arise depending on the particular W/B ratio. The Bp-f,
relation in Fig. 6 plays a relevant role in the formulation of the
performance dependent criterion for concrete of arbitrary quality
proposed in this paper in terms of the uniaxial compressive
strength and of the performance parameter.
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Fig. 6. Variation form of the performance parameter 3p with f.
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Evaluation Strategies of the Performance Parameter

The evaluation of the proposed performance parameter may be a

very difficult task. This is due to the fact that the W/B ratio is not

always known in advance. Three possible situations may be dis-

tinguished for the evaluation of 3, as follow:

» Case 1—both, the concrete mixture and f are known;

* Case 2—the concrete mixture is unknown and cannot be
evaluated while f! is known; and

e Case 3—the unknown concrete mixture can be evaluated fol-
lowing numerical methods, while f7. is known.

It is clear that in case 1 the W/B ratio can be easily calculated
from the known concrete mixture. Then as f!. is also known, Bp is
determined with Eq. (4).

Case 2 is the one corresponding to an existing concrete. So,
the uniaxial compressive strength can be evaluated by means of
destructive or nondestructive tests. However, the composition of
the concrete mixture and, therefore, the W/B ratio are unknown.
To bypass the dependence of B, on the W/B ratio, a relation
between the performance parameter and f, is proposed in this
work that is useful in this Case 2. Thus, 3 and, therefore, the
concrete performance level can be determined from the only
available material parameter f,. The dependent function of B in
terms of f. can be obtained from the plot in Fig. 6. The detailed
observation of the Bp-f.. relation in this figure leads to the con-
clusion that the dependent function has a potential form when
f.<55 MPa while it has an exponential form when f]
>80 MPa. (See Fig. 7.)

As can be observed in Fig. 7 the Bp-f. relation is not single
valued due to the dependence of B, on both f. and W/B. In this
work an upper and lower limiting curves representing the varia-
tion range of B, in terms of f. are proposed. These limiting
curves content the set of maximum and minimum values of 3 for
all possible f, depending on W/B. (See Fig. 8). The upper Bp max
and lower Bp ;, limits of the performance parameter are defined
as
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Fig. 8. Proposed variation forms of the upper and bottom limits of
Bp with f]

(2.60E - 4)(f. +5)"%°  when f/ =55 MPa
B max = (4.00E — 2)6(2~SE‘2W£+5) when f. > 55 MPa

(5)

(2.60E - 4)(f. —5)"°  when f. =55 MPa
B min = (4.00E — 2)e>5E-26=5) when f.>55 MPa
(6)

with f! in (MPa).

Case 3 corresponds to the most common situation whereby the
concrete is to be designed. The evaluation of the concrete mixture
composition is performed in accordance with the particular f,. that
is expected to be reached. For this evaluation, two numerical
procedures are proposed in this work: an ANFIS and, a GAs
system (GAS). These procedures are described in the next sec-
tions.

Adaptive Neurofuzzy Interface System Procedure for
the Prediction of f,

The ANFIS is a particular type of networks that accepts fuzzy
input variables. They have been successfully applied to model-
free prediction based on historical data such as stock market,
weather, and river level forecasts as well as to a wide range of
industrial and military problems. They are particularly suitable to
work with low precision databases that are characterized by low
linearity, highly complex relations and/or high noise levels that
are frequently found in practical situations. They require appro-
priate treatment of the input data, and massive amounts of pro-
cessing.

In the present case, the proposed ANFIS defines an iterative
procedure to evaluate the uniaxial compression strength f7. corre-
sponding to a given or known concrete mixture. The procedure
starts by assuming a concrete mix proportion and calculating f.
by means of the ANFIS (Fig. 9). If the obtained f is acceptable,
the mix proportion is adopted. Otherwise, a different mix propor-
tion is considered. Details of the proposed ANFIS are given in
Folino et al. (2007). This numerical tool was developed on the
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basis of 254 data taken from the available literature. The network
considers 9 input variables and one output variable. It accurately
predicts the uniaxial compression strength f. corresponding to the
considered concrete mixture.

Genetic Algorithm System for the Prediction of a Set
of Concrete Mixes

GAs are a class of evolutionary algorithms used in heuristic op-
timization. Evolutionary algorithms are mainly based on the con-
cept of Darwin’s evolution. That is, evolution over time of a
population and survival of the fittest in order to find the extreme
value (maximum or minimum) of a function. They have been
successfully applied to many real life problems and are particu-
larly suitable for complex, nondifferentiable problems. They are
also suitable to be applied in problems characterized by many
local maximums whereby a global near-optimum is needed. We
used in this work a modification (niching GA), based on the bio-
logical idea of speciation and niching (in nature, different species
evolve in order to occupy ecological niches that are not occupied
by other species). This allows the GA to attain and preserve not
only one global near optimal, but a complete list of other good
solutions, which is the objective of the work.

It is important to notice that the initial population is randomly

Given or desired GENETIC List Of.
Se —>| ALGORITHM |==>| concrete mixes

0

Fig. 10. GAS

Fig. 11. Elliptic description in the deviatoric plane

generated and, as a consequence, a lot of random steps need to be
processed. So, a significant effort and processing time is devoted
to ensure agreement among the obtained results.

In this research a GAS was developed that includes the ANFIS
network as a part of the GA fitness function. As a result of the
application of the GAS, see Fig. 10, a list of possible concrete
mixtures corresponding to the given or desired f! is obtained. It
allows introducing some constraints in the concrete mixture such
as no silica fume, no fly ash, or to fix some of the variables that
are known from the beginning (i.e., type of coarse aggregate). By
selecting one choice of the list of possible concrete mixtures ob-
tained by the GAS a realistic knowledge of the concrete content
proportions is achieved. Details of the GAS are being published
in a separated paper by the writers.

Performance Dependent Failure Criterion for
Concretes of Arbitrary Quality

In this section, a novel failure surface of concretes of arbitrary
strength performances is presented. The proposed concrete
strength criterion is based on the 5-parameters criterion by Wil-
lam and Warnke (1974).

The concrete failure condition in the Haigh Westergaard stress
coordinates (£,p,0) can be expressed as

P :
Flepos pp= o 1=0=p=p (7)

with p*=shear strength that varies with the Lode angle 6 accord-
ing to the elliptic interpolation by Willam and Warnke (1974)
between the compressive and the tensile meridians

V 0°=0=60°=p =t 8)
r
with
4.-(1-€*)-cos’0+(2-e—1)?
r=
2-(1-¢?)-cosB+(2-e—1)-V4-(1-¢®)-cos’>0+5-e>—4-e
)

and e=eccentricity, defined as the ratio between the tensile and the com-
pressive shear strength

o= (10)

Pe
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Fig. 12. 3D view of the deviatoric planes

The elliptic approximation of p* assures a Cl-type continuity
of the failure surface in the deviatoric plane (see Figs. 11 and 12).
From Egs. (9) and (10), follows that r=1 when 6=1/3, while r
=p./p, when 6=0°.

In the proposed failure criterion for concrete of arbitrary qual-
ity the compressive and the tensile meridians are considered to be
quadratic polynomials of the general form

A;-p*+B; p+C,-E-1=0 (11)

with the normalized stress coordinates p=p/f}; E=¢/ f. and the
subindexes i=c,t denoting the coefficients of the compressive
and tensile meridians, respectively. Therefore, a total of six coef-
ficients are involved.

By assuming that all the meridians have a common vertex on
the p axis, then C.=C,=C. In this work, it is also assumed that the
coefficient defining the quadratic dependence of the maximum
strength surface on the normalized shear stress coordinate p does
not depend on 0, and therefore, remains unchanged in the com-
pressive and tensile meridians, i.e., A.=A,=A. Then, from Eq.
(11) the following expressions of the compressive and tensile me-
ridians are obtained

oy iy _ —
O=§=>A-pC+BC-pC+C-E—1=0 (12)
0=0=A-p;+B, p,+C-£E-1=0 (13)

involving a total of four independent coefficients (A, B, B,, and

C). For their evaluation, the following four independent auxiliary

conditions are considered (see Fig. 13):

* Condition 1. The peak stress’s shear component corresponding
to the uniaxial compression test belongs to the compressive
meridian. The Haigh Westergaard coordinates of this peak

stress are: 0=1/3, Ez—\e’g/.%, and p,= 2743,

P/ £ )
compressive
meridian ©=60

Uniaxial tensile
Compression @ meridian =0
Zm Conventional Triaxial
1 Extension Test (CTET)
(biaxial compression)
Vertex &, {1
V'

BN B _2fy &
3R\ 3 ff g/f

Uniaxial Tension %

Fig. 13. Imposed conditions on the compressive and tensile merid-
ians

e Condition 2. The tangent to the compressive meridian on the
peak stress’s shear component corresponding to the uniaxial

compression test is defined as: d(p)/d(€)=m, being m a mate-
rial property. Note: in case of linear polynomials defining the
compressive and tensile meridians, m would coincide with the
classical friction angle.

e Condition 3. The shear component of the peak stress state
corresponding to the uniaxial tensile test belongs to the tensile
meridian. The Haigh Westergaard coordinates of this peak
stress are: 0=0, £=13-a,/3, and p,= \Eu,/ V3. Thereby is a,
the strength ratio defined as: o,=f,/f., with f;, the uniaxial
tensile strength.

e Condition 4. The shear component of the peak stress state
corresponding to the Conventional Triaxial Extension Test
(CTET) characterized by the cylindrical stress state 0,=0; o,
=03<0 belongs to the tensile meridian. The Haigh Wester-
gaard cooLdinates_ of this peak stress are: 0=0, £=—2-a,/\3,
and p,=V2-a,/\3, being o, the strength ratio defined as: a,
=f,/f%, and f} the peak lateral confining pressure of the CTET
under zero axial stress.

By replacing the considered auxiliary conditions in Egs. (12)
and (13), a system of four linear equations is obtained (see Ap-
pendix for further details)

(1)2A \/EB 1C10 (14)
= —. + —_. - — 1=
3 3 ¢ V3
2 1
(2)=>2-\/j-A+BC——-C:0 (15)
3 m

2 2
()= -al-A+ \/;~a,-3,+%-C—1=0 (16)
\r

2 2 2.
W=3a)-A+ \/;wx,,-B,—%-C—l:O (17)
v

The four unknowns can be obtained by solving Egs. (14)—(17)

with
3
A=-71+
2

e @{ e 02 D0 - 0y) (e, =) } "
OLbOL,[(m -V2) (ab - 0‘[) + 3m]

B - \/E{ 1 +0L,2 [(m - \E)a,—m](l —ocboct)(ab—(x,)}
= + —
2 Q; oo (m—=2) (o, — ) + 3m]

(20)

(m=2)(1 = a0) (e, — ) } (18)

[ (m=2)(a, - ) +3m]

C= \Em (1- O‘b‘)‘z)(ab - at)

21

()Lbott[(m - \‘E) (ab - OLt) + 3m]

From Egs. (7) and (8) follows that p,=r-p*. Then, by replac-
ing p, in Eq. (12), the general form of the performance dependent
failure criterion proposed in this paper is obtained

F=A-72 - p24B.-r-p'+C-E-1=0 (22)

Egs. (18)—(21) express the coefficients A, B, B,, and C in
terms of four material parameters: (a) the uniaxial compressive
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strength f7; (b) the tangent m to the compressive meridian at the

£—p coordinates corresponding to the peak stress state of the

uniaxial compression test; (c) the uniaxial tensile strength ratio

a,; and (d) the biaxial compressive strength ratio o,.

As indicated in the section called “Performance Parameter for
Concretes” to completely define the quality of the particular con-
crete under consideration two material parameters are required,
the uniaxial compressive strength f. and the performance param-
eter 3p. Thus, to account for the material quality influence in the
present formulation of concrete maximum strength criterion the
three controlling material parameters beside f7, i.e., m, o, and o,
are defined in terms of 3 by means of numerical approximations.
These functions are as follows:

1. Proposed m-Bp relation: although m does not fully agree
with the classical definition of material friction they are
closely related. Thus, similarly to the case of the frictional
parameter it is assumed that the tangent m also increases with
the concrete performance. This increment is considered as
follows:

m=1.05-p%" (23)

The procedure for the evaluation of the m parameter is as
follows: first, the performance parameter 3 is obtained as it
was explained in the section called “Evaluation Strategies of
the Performance Parameter.” For example, if fL’,:8O MPa
then from Egs. (5) and (6) the corresponding upper and lower
limits of Bp are obtained (Bp mx=0.335; Bpmin=0.261). By
selecting the mean value, results $,=0.298, and by means of
Eq. (23), m=0.99 (44.7°). The upper and lower limiting val-
ues of [3p would lead to the friction angles 44.8 and 44.5°,
respectively. Observe that if the W/B ratio is known, then 3
could be determined directly by means of Eq. (4).

2. Proposed a,-f3p relation

: 0.27
0 LSBT e k) (24)
i e

3. Proposed «,-3p relation: the biaxial compressive strength

ratio «, is defined in terms of o, and Bp as

Olb=ﬁ=(1.2] kb+ 1.50()(,)
f

BP = BP max ~ kb =0.89

B = Br = B — ky= 1 —o.ll[M]
kh Pmax_BPmin
BP_BPmin

Bp=PBpmn— k =1—0.125[
g r b BPmax - BP min

(25)

where Bp nax and Bp i, are obtained from Eq. (5) or (6).

Egs. (24) and (25) play a very important role in the proposed
formulation for concrete maximum strength criterion as the ma-
terial parameters f, and f; cannot be obtained from standard tests.
Moreover, the scarce test results available in the literature corre-
spond to test programs involving uniaxial tensile tests or biaxial
compressive tests, but very rarely to both of them. Herein it is
assumed a dependence of the tensile and compressive strength
ratios on the performance parameter, allowing the possibility to
have two concretes with the same f. but different f; and f;, which
agrees with the available test results. Notice that to distinguish the
proposed values from the “real” ones, an asterisk has been intro-
duced. Various writers have reported an inflection point at about

fi=55 MPa in the f; versus f, relation. This issue was also taken
into account in the proposed function for a,. In conclusion, the
material properties m, o, and o, can be evaluated with Egs.
(23)—(25), or alternatively, from experimental tests.

To assure a stable behavior, the surface must not present in-
flection points (Drucker’s postulate), and therefore it must satisfy
convexity. Experimental evidence demonstrates that the concrete
maximum strength surface remains convex (no inflection point)
even being the uniaxial tensile strength much smaller than the
compressive one.

The convexity of the proposed maximum strength surface in
the meridian view is assured by the parabolic proposed depen-
dence function of & in terms of p. In the deviatoric plane the
convexity of the failure surface is controlled by the auxiliary con-
dition

0.50=¢=1.00 (26)

of the eccentricity e that follows from the elliptic approximation
of the shear strength accordingly to Willam and Warnke (1974).
The auxiliary condition for convexity in Eq. (26) leads to a cou-
pling between the material parameters m, o, and «, as can be
observed in the following equations.

From the relations in Egs. (12) and (13), it results

A-p’+B.-p.=A-p2+B,p, (27)

After some algebra follows:

=A-¢-p,+B-e-A-p.—B.=0 (28)
A5 -B,-e+B, (29)
=A-p.=—F"
Pe= 2 -1)

Considering the extreme values for the compressive shear
strength p,

=p.—oe?-1)—0=>e—1 (30)

_ B,
=>pc—>0=>(—Bt€+Bc)—>0=>€’—’E (31)
t
From Eq. (30) follows that in the high confinement regime
(p— ) the deviatoric view of the surface approximates a circle,
indicating constant shear strength for all possible Lode angles,
similarly to the Drucker Prager criterion.
From Eq. (31) and the auxiliary condition in Eq. (26) follows
the coupling condition between B, and B,

B,
100= =050 (32)

t

By replacing the explicit expressions of B,. and B, from Egs.
(19) and (20) in Eq. (32) we obtain

_
- (2m-1(- -
B,=0.50- B, = 3] (24 (2= DU s, — )

[ (m=2)(a, - ) +3m]

>l\/§ 1+a,2+[(m—V'E)a,—m](l—ocboc,)(ab—a,)
2

2 o o[ (m = \2) (o, — o) + 3m]

(33)

JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2009 / 1401

Downloaded 20 Jan 2010 to 201.235.100.235. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



—-55
226 4
fc=120MPa
2.00
X" f.=20MPa —a—H20
75— H40
z H60
compressive -
1.50 meridian —=
—*—H100
t 1.25 —&—H120
3 —— H20-tensile
1.00 A —=— H40-tensile
H60-tensile
tensile —*—H80-tensile
0.75 meridian —%—H100-tensile
—&— H120-tensile
0.50 -
0.25 %

025 000 025 050 075 100 125 150 175 200 225 250

—é&lfe

Fig. 14. Predictions of maximum strength compressive and tensile meridians in normalized stress coordinates for different concrete performances

After some algebra follows Then the procedure is as follow. Once the parameters m, o,
_ 1 40— 4o and «,, are determined from Egs. (23)—(25) or, alternatively from
(V2 —=m)a, ! L —o, |2+ 1+ +[(m experiment tests, the inequality (34) must be verified. If it is not
I~ b t
a[m(5—a)+v2(a, - 2)]

fulfilled, two of the three material parameters are set fixed while
1+ a[z - 4a, the third one is recalculated with Eq. (34).

a[m(5—a) + \E(at— 2)] =0 =0 Figs. 14 and 15 illustrate the compressive and tensile merid-

ians of the proposed failure criterion for different concrete perfor-

- \E)atz -3mao,]

(34) mances. Fig. 16 shows 3D views of the proposed performance
which represents the coupling due to the convexity condition be- dependent failure criterion for different concrete qualities.
tween the material parameters m, o, and . The proposed performance dependent strength criterion is

266
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Fig. 15. Predictions of the compressive and tensile meridians for different concrete performances
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Fig. 16. NSC and HSC failure surfaces 3D views

valid for plain concrete with uniaxial compressive strength vary-
ing from 15 to 140 MPa. Due to the lack of concrete triaxial tests
in the very high confinement regime, the recommended limit of
applicability of the proposed failure criterion is defined by the
normalized pressure level of |£/f|= 6. For larger confining pres-
sures, a “cap” surface needs to be introduced.

Numerical Validation

In this section, the predictive capabilities of the proposed maxi-
mum strength criterion for concretes of arbitrary qualities are
evaluated. To this end, three sets of available data are considered.
In all of them, the uniaxial compression strength f is known. In
the first case, the concrete mixture is known too. In the second
case, the concrete mixture is unknown and cannot be defined due
to the lack of data. In the third case, the concrete mixture is not
known and is defined by means of the proposed numerical algo-
rithms.

Example Case 1—The Concrete Mixture and f, Are
Known

The predictions of the maximum strength curve for the experi-
mental triaxial compression tests in Fig. 2(a) were evaluated. The
performance parameter B, was determined with Eq. (4) based on
the known values of f. and W/B. The results in terms of the
predicted maximum strength curve and the comparison with the
experimentally obtained strengths are depicted in Figs. 17-22 for
the different cases. These figures include the minimum and maxi-
mum relative errors obtained with the predictions, being the rela-
tive error evaluated as: Error=(Predicted value-Test Result)/
Test result

Analogously, the experimental tests performed by loading on
the tensile meridian that are depicted in Fig. 1(a) were also evalu-
ated with the proposed maximum strength criterion, and the cor-
responding results are plotted in Fig. 23.

It may be observed a good agreement of the peak stresses
predicted with the performance dependent criterion, both for NSC
and HSC, with available experimental data in almost all the plots
in Figs. 17-23.

Nevertheless, the test-data of Ansari and Li (1998) show sig-
nificant deviations. It is not possible to be conclusive in order to
explain the reason of this. On one hand, a cylindrical sample 100
mm/200 mm (diameter/height) was used which is larger than the
sample sizes used in most of the other experimental tests being
compared. On the other hand, three other differences were noted:
(a) cement Type III (ASTM) was used, while cement Type I
(ASTM) was used in all the other tests; (b) to limit the effect of

the additional confining effect of the rubber membrane on the
axial stresses, the obtained concrete strengths were reduced by
7% and (c) proportional loading was followed.

Example Case 2—The Concrete Mixture Is Unknown
and Cannot Be Defined While f, Is Known

The Launay and Gachon (1972) triaxial test results are considered
in this case. The concrete uniaxial compressive strength is f
=36 MPa. However, no information is available regarding the
W/B ratio of the concrete mix.

Extreme values of B, are obtained from Egs. (5) and (6) for
fi=36 MPa. They define the following variation range of the
performance parameter: 0.063[3[0.099. Using the proposed per-
formance dependent maximum strength criterion, the resulting
limiting strength curves of the compressive and tensile meridians
are depicted in Fig. 24 together with the corresponding experi-
mental results. A very good agreement between experimental and
numerical results can be observed in this figure with superior
precision in case of the larger (3p. This is probably due to the fact
that these tests were performed using a not very effective system
to reduce the friction between the sample and the loading platens
(aluminum-talc powder sandwich).

Example Case 3—The Concrete Mixture Is Unknown
and to Be Defined While f, Is Known

Based on the known uniaxial compressive strength f7, the ANFIS
system described in the section called “Evaluation Strategies of
the Performance Parameter” is applied. To this end, a concrete
mix is proposed and then the uniaxial compressive strength is
predicted with the ANFIS system. If the result is acceptable, the
mix is selected. If not, another mix proportion is proposed and the
process is repeated iteratively. As mentioned in that section, the
writers are working on the development of a GAS, based on the
ANFIS system, to predict possible concrete mixtures from a given
£

As an example, for /=70 MPa, the mix in Table 1, validated
with the ANFIS system is selected:

Then the W/B ratio is calculated, and Bp is determined by
means of Eq. (4) leading to B,=70/0.299/1000=0.234. The plot
of the resulting maximum strength curves corresponding to the
compressive and tensile meridians for this particular performance
parameter and uniaxial compression strength are included in Fig.
25. Observe that if the mixture and the W/B ratio were different,
even with the same f,. different maximum strength curves would
be obtained.

In Case 3, corresponding to a concrete to be designed, it is also
possible to estimate (3, analogously to case 2, i.e., by means of
Egs. (5) and (6). Nevertheless, the implementation of numerical
methods like the ANFIS or the GASs has the advantage to allow
a simple and relatively rapid predesign procedure of the concrete
mixture right from the beginning of the structural concrete evalu-
ation.

Conclusions

In this paper a performance dependent failure criterion to predict
maximum strength of plain concrete is proposed, covering a wide
range of concrete qualities, from NSC to HSC. The proposal is
based on:

e The so-called “performance parameter” (Bp), that is defined in
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Fig. 19. Numerical prediction of the maximum strength compressive meridian for: (a) f,=47 MPa; (b) f.=47 MPa; and (c) f.=60 MPa
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Fig. 23. Numerical prediction of the maximum strength tensile meridian for: (a) f.=20 MPa; (b) f.=73 MPa; and (c) f.=96 MPa

this paper as a depending function of the uniaxial compressive

strength f, and of the W/B ratio.

* The elliptic interpolation in the deviatoric plane between the
compressive and tensile strengths by Willam and Warnke
(1974).

The proposed failure criterion for concrete of arbitrary quality
reduces to one equation in terms of the three stress invariants, of
/& and of three material features: the tangent to the compressive
meridian at the stress coordinates corresponding to the peak of the
uniaxial compressive test, the uniaxial tensile strength ratio and
the biaxial compressive strength ratio. These material features are
defined as depending functions of the performance parameter and
the related functions are also formulated in this proposal. Thus,
the failure criterion for concrete of arbitrary quality finally de-
pends on only two controlling material parameters: B and f.

The numerical validation analyses in this paper demonstrate
good agreement of the peak stresses predicted with the perfor-
mance dependent criterion, both for NSC and HSC, with available
experimental data corresponding to uniaxial, biaxial and triaxial
compression tests.

Finally, and in order to assure the feasibility of the solution
procedure for any possible set of known data, different numerical
methods are presented in this work to evaluate the performance
parameter without the need to know the W/B ratio, that is not
always available and/or easy to evaluate. For the case of existing
concretes, approximation functions are proposed. For the case of
concretes to be designed, a method based on an ANFIS system
developed previously by the writers is exposed. The ANFIS net-
work details have been published in reference Folino et al.
(2007).
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Fig. 24. Maximum strength meridian predictions for the Launay and
Gachon (1972) experimental data

Table 1. Selected Concrete Mix Validated with the ANFIS System

Moreover, the ANFIS network developed in the frame of this
work constitutes an interesting tool to be used for the determina-
tion of concrete mixtures in the field of concrete technology, re-
garding the lack of other methods. This network also conduced to
the development of a GAS to solve the inverse problem: to obtain
different concrete mixes that correspond to a given or desired
concrete strength. The details of this GAS are to be published by
the writers.

In the future, further research should be perform to extend the
presented criterion to take into account other relevant mechanical
effects such as time and rate dependence as well as temperature
dependence. In this sense, it is convenient to include also chemi-
cal effects such as corrosion and alkalis aggregate reactions.
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Appendix. Determination of the Criterion
Coefficients

Concrete mix constituent Units Content
Cement (kg/m?3) 469 As detailed in the previous section, to determine the unknown
Silica fume (kg/m?3) 62 coefficients A, B., B,, and C of the quadratic expressions with
Fly ash (kg/m?) 0 common vertex of the compressive and tensile meridians in Eqs.
Water (kg/m?) 159 (12) and (13), two constrain conditions are considered to each one
Super plasticizer (kg/m®) 7.9 of these curves (beside the common vertex). These constrain con-
Coarse aggregate (kg/m?) 1.100 ditions result from the expe.rimental te.sts indicated in Fig.. 26. As
Fine ageregate (kg/m?) 622 a consequence, the quadratic formulation of the compressive me-
. . ridian is defined by the common vertex, the stress point corre-
Maximum aggregate size (mm) 12 . . .
sponding to the peak of the uniaxial compression test, and the
Coarse aggregate type — 2 e . . . . .. .
. MPa) 0.0 inclination of the curve in this stress point. Similarly, the tensile
fe (MPa : meridian is defined by the common vertex and the stress points
—2-56
2.25 H70-Model-Prediction-Compressive
2.00 - — - — H70-Model-Prediction-Tensile
1.75 - |
compressive ,
meridian fc=70MPa :
1.50 - -
e
t'.u /./'/
- 1.25 oA
Q _/'/
-
1.00 -
075 - : tensile
Pl meridian
e
-
-0.25  0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 225 2.50
—& 1 fe

Fig. 25. Predictions of maximum strength meridians for the selected concrete mix
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corresponding to the peaks of the uniaxial tensile test and of the
CTET with zero axial stress.

Evaluating the imposed conditions to the compressive merid-
ian, result:

Peak of the uniaxial compression test

00 O
[g]=]{0 0 O
00 -If]
30 o
[s]={ O |fl3 O
0 0 =2|f3
22 \/E
J2:—:} L=_r= —
3 ! 3
I 3
L=-|f|=>E=—"—=-""; and 0=60°
\"3'fc 3

Replacing in Eq. (12)

2 2 1
=-A+\/B.—-—=C=1 (35)
3 3 N

Tangent at the peak of the uniaxial compression test

_ 1 9€ -2-A-p.—-B. 1
=— (1-A-p2-B.-p)=>—2=—""Cc_—
€= Pe =B po) 5 C .
_ C 2 C
=2-A-p,+B,——=0=2+/-A+B,——=0 (36)
m 3 m

Evaluating the three conditions imposed to the tensile meridian,
result:
Peak of the uniaxial tensile test

(=)
(e}

t
[g]=|0 0 0
0 00

263 0 0

[s]= 0 —f;/3 0
0 0 -3

_
. = 1 /3
L=f=&=— :\—at; and 0=0°
Bopl 3
Replacing in Eq. (13)
2, 2 1
ﬂg-(xt-A+ E-OL[~Bt+VT§~OLt-C=1 (37)

Peak of the CTET with zero axial stress

0 0 0
[g]=|0 -Ifi] 0
0 0 -[f

03 (O]

g3

a3
02=03

g3 g

Fig. 26. Uniaxial compression test, uniaxial tensile test, and CTET
with zero axial stress

ZVbl 0 0
3
bl
=1l o %2 o
[s] 3
0 0 —ﬂ
3
12 /
_ \2 J2 2
1,==2|f) ¢ 2 d 6=90°
== == =——=qp; an =
1 b fé \’Efé \}’13 b

Replacing in Eq. (13)

2, 2 2
:>§-ah-A+ g-ab-B,—E-ab~C=l (38)

Eqgs. (35)—(38) constitute a system of four linear equations
with four unknowns. The explicit expressions of the coefficients
A, B,, B,, and C, given in Egs. (18)—(21), are obtained from the
solution of this system of equations.

The equations defining the proposed performance dependent
failure criterion are summarized as follows:

Y 0°=60=60°

Fgoppp=A-rp2+B.-rp'+C-E-1=0  (39)
with

4(1 - e)cos® 0 + (2e — 1)?
1 —e?)cos 0 + (2¢ — 1)\!”4(1 —e?)cos® 0 + 5e* —de

TEeos.pp) = 2

-B,+\B’+2-A-p,-(2-A-p.+2-B,.)

CEslpp) = 1A B (40)
c
where
_ —BC+\/B§+4~A~(1—C~§)
pC(gafé»Bp) = 2.A

B,+ \B? £

. -B,+\B;+4-A-(1-C-§)
=eEspp = (41)

—BC+\/B§+4~A-(1—C-§)
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3 -\2)(1 - -
A(f’ sy=-2 1+ (m V2)( - OLbOL,)(OLb OLt) (42)
orr 2 oo (m—=2) (o, — ) + 3m]

= = (2m= 1)1 - o) (0 - a)
By pp == V3] V2 + S ——

= (43)
e~ 2)(@, ~ ) + 3m]

PPN (3 RS (Ut S (EER S
TN T e fn=\2) ey - ) + 3]
(@)

(1 - ayor,) (et — )

0‘bOLt[(m - \E) (ab - OL,) + 3m]

C(f:.»Bp) =—\3m (45)

Finally, three predictions of the compressive meridian of the
failure surface obtained with the proposed maximum strength cri-
terion, and for concretes of three different qualities are presented.
In all the three cases, the performance parameter 3, considered

was the mean value between the upper and lower limits evaluated
by Egs. (5) and (6)

(1) f.=20 MPa; Bp=0.031
-£=0.173-p>+0.851 - p—0.232
(2) f.=60 MPa; Bp=0.179
—£=0232-p>+0.659-p—0.115
(3) f.=120 MPa; B,=0.803

-£=0.182-p>+0.665 - p—0.087

Notation

The following symbols are used in this paper:
A;B,;B,;C = coefficients in the performance dependent
failure criterion equation;
e = eccentricity=p,/p;

f» = peak lateral confining pressure of the CTET
under zero axial stress or biaxial compressive
strength (MPa);

f» = proposed peak lateral confining pressure of
the CTET under zero axial stress or biaxial
compressive strength calibrated in terms of 3,
(MPa);

f! = uniaxial compressive strength (MPa);

= uniaxial tensile strength (MPa);

f; = proposed uniaxial tensile strength calibrated
in terms of Bp (MPa);

I, = first invariant of the stress tensor (MPa);

J, = second invariant of the deviatoric stress
tensor (MPa?);

J; = third invariant of the deviatoric stress tensor
(MPa?);

m = material parameter representing the friction
property empirically calibrated in terms of

Bp:

s = deviatoric stress tensor (components s;;)
(MPa);
W/B = water/binder ratio
[W=water content(kg/m?)], B=(cement
+mineral admixtures) contents (kg/m?);
o, = compressive strength ratio f,/f7;
«, = tensile strength ratio f;/f7;
B, = performance parameter;
d;; = Kronecker delta (3;=1 if i=j; ;=0 if ij);
&:p;0 = Haigh Westergaard coordinates in the
principal stress space (MPa);

p;& = normalized first and second Haigh Westergaard
coordinates in the principal stress space;

p* = shear strength (Haigh Westergaard second
coordinate) (MPa);

p. = Haigh Westergaard second coordinate for
0=m/3 (compressive meridian) (MPa);

p, = Haigh Westergaard second coordinndate for

0=0 (tensile meridian) (MPa);

Cauchy stress tensor (components ;) (MPa);

and

d, .. = maximum coarse aggregate (mm).

e
Il
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