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a b s t r a c t

It is difficult to design electronic nonlinear devices capable of reproducing complex oscillations because
of the lack of general constructive rules, and because of stability problems related to the dynamical
robustness of the circuits. This is particularly true for current analog electronic circuits that imple-
ment mathematical models of bursting and spiking neurons. Here we describe a novel, four-dimensional
and dynamically robust nonlinear analog electronic circuit that is intrinsic excitable, and that dis-
plays frequency adaptation bursting and spiking oscillations. Despite differences from the classical
Hodgkin–Huxley (HH) neuron model, its bifurcation sequences and dynamical properties are preserved,
validating the circuit as a neuron model. The circuit’s performance is based on a nonlinear interaction of
fast–slow circuit blocks that can be clearly dissected, elucidating burst’s starting, sustaining and stopping
mechanisms, which may also operate in real neurons. Our analog circuit unit is easily linked and may be
useful in building networks that perform in real-time.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Modeling of Biological Bursting Phenomena

Oscillatory electrical activity called bursting is a common fea-
ture of single excitable cells in the brain and pancreas, and is
thought to underlie some of the normal functions of these organs.
Bursting is characterized by quiescent or quasi-stationary states
interrupted by episodes of fast spiking activity. Bursting has also
been observed in models of artificial neural networks called cen-
tral patterns generators (Wang and Rinzel, 1995; Coombes and
Bressloff, 2005). It is still unknown exactly how bursting is gen-
erated, or what causes the frequency adaptation that is seen
in inter-spike intervals during a burst. There have been two
approaches to analysis of bursting behavior. One is mathemati-
cal (Izhikevich, 2000, 2007; Guckenheimer et al., 1997), the other
has been the development of analog electronic circuits (Maeda and
Makino, 2000; Wijekoon et al., 2008). The advantages of analog
circuits are real-time action and connectivity, characteristics that
allow large scale neural network building and dynamical modeling
(Rabinovich et al., 2006).

Electronic circuits that implement two-dimensional neu-
ron models, such as the integrate-and-fire model and the
FitzHugh–Nagumo model (Fitzhugh, 1961; Nagumo et al., 1962),
are unable to produce bursting behavior because the models have
only one fast timescale closed orbit that simulates the neuron’s
action potential (AP). In spite of this significant limitation, such
circuits are used frequently as building blocks in neural networks.
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More complex circuits implementing three or higher dimensional
models can provide the additional slow timescale variable (Simoni
et al., 2004; Le Masson et al., 1999; LaFlaquière et al., 1997) and
have been successful in reproducing bursting and frequency adap-
tation patterns. However, for a long time no one was able to dissect
the circuits clearly into their interacting fast and slow parts, and
thus understand the transitions between quiescent and oscillatory
states through different bifurcation scenarios. The bifurcations are
what determine the neuron-computational properties (Izhikevich,
2000). Recently, the bifurcations were geometrically (i.e., math-
ematically) classified for the Hodgkin–Huxley model (Izhikevich,
2000, 2007). And, we succeeded in reproducing different bifur-
cation scenarios using Fig. 1 analog circuit (Savino and Formigli,
2007). The Hodgkin and Huxley model (HH) is a multi-dimensional
model based on ion channel physiology (Hodgkin and Huxley,
1952).

The goal of this communication is to describe the circuit opera-
tion, such as the slow–fast current interaction, voltage-dependence
and time-dependence of the intrinsic bursting dynamics, control
of its characteristic times, and the effects of external excitations
delivered via the input channels. We also present the basic circuit
equations for future geometrical analysis and numerical simulation.

2. The Circuit and Its Dynamical Behavior

Our circuit is shown in Fig. 1. The values of the electronic compo-
nents are given in the legend. The circuit consists of three sections,
an input, modulator, and generator. The input section is merely a
way to link multiple circuits or to apply external stimuli, and is not
necessary for the generation of intrinsic burst dynamics. Details of
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Fig. 1. The bursting and spiking analog circuit. The “frequency adaptation loop” includes C3, R4, Q2 base-collector junction, C2, Q1 emitter–collector junction and R2. Transistors
Q1 (reverse-biased) and Q2 are 2N2222 type, battery E = 10 V, resistance value in K� and capacitances in �F: R1 = 3.3, R2 = 0.1, R3 = 100, R4 = 1, Rb = 50, C1 = 1, C2 = 10 C3 = 2.

an example of intrinsic bursting behavior exhibited by the circuit
is shown in Fig. 2. Bursting is seen at the V1 node, V2 node, and the
Q2 collector. The voltage at the V3 node displays bursting superim-
posed on a fluctuating baseline, resulting in a staircase-like pattern.
The entire range of bursting behavior possible with the circuit is
shown in Fig. 3 with V2 and Q2 node voltages omitted for clarity.
The different dynamics are all produced by changing the variable
resistor R3, which changes the intensity of the coupling current I(t)
between the generator and modulator. The range of bursting behav-
iors possible is also summarized in the bifurcation diagram plotted
against R3 values in Fig. 4. We emphasize here that the role of the
coupling current is remarkably non-trivial. It does not merely seg-
ment the fast periodic generator oscillation into bursts and pauses,
but produces variable inter-spike interval sequences and frequency
adaptation patterns (Fig. 5) that are similar to those of real neurons.

3. The Generator Circuit

When isolated, i.e., when I(t) = 0, the generator is a classical
threshold-negative-resistance oscillator. The negative conductance
is implemented by the reverse bias transistor Q1 collector–emitter

Fig. 2. Typical bursting waveform at nodes 1, 2, 3, and Q2 collector. Times Tr and
Td are the durations of the burst and quiescent phases respectively, and Ti is the
variable inter-spike interval during a burst. Transistor Q1 triggers a pulse or spike
each time V1 > Vth during Tr meanwhile transistor Q2 switches between reverse and
cutting after the first burst spike and remains saturate (0.3 < V3 < 0.5 V) during the
pause Td. The staggered voltage V3 remains below 0.5 V having the inflection point
IP.

Fig. 3. The range of dynamical behaviors exhibited by the circuit (from top to bot-
tom), as R3 is reduced from 400 to 20 K� and when R4 = 10 K� are shown by the
voltage V1 at node 1 and voltage V3 at node 2, range from astable, to bursting (many
to two to single spike), to spiking, to quiescent but excitable. IP indicates the V3
voltage inflection in each behavior.

characteristic curve Vec = Vec(In) with an avalanche threshold Vth of
≈9.5 V. This is a two-dimensional nonlinear dynamical system in
the phase-plane (V1, In) with the equations:

L · dIn

dt
= V1 − Vec(In)

C1 · dV1
dt

=
(

E − V1
R1

)
− In

(1)

Fig. 4. Codimension-one bifurcation diagram for resistor R3 parameter controlling,
at the same time, the coupling strength and the burst duration Tr.
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Fig. 5. Stable frequency adaptation patterns: (A) increasing, (B) diminishing, (C)
constant and (D) parabolic. In the bottom panel, averages of ten consecutive bursts
were plotted against interval number.

where Rb is not connected and L is the distributed inductance. The
generator might be regarded as an electronic implementation of the
FitzHugh–Nagumo system (Fitzhugh, 1961; Nagumo et al., 1962)
or any other threshold-based two-dimensional excitable system.
Although there are differences, it may be helpful to recognize that
the reverse-biased transistor Q1 collector–emitter current–voltage
curve Vec = Vec(In) (the In nullcline from dIn/dt = 0 of Eq. (1)) corre-
sponds to the “activation” cubic parabola (flipped N-shape) of the
FitzHugh–Nagumo system, and that the straight line V1 = E − R1·In
(the V1 nullcline from dV1/dt = 0 of Eq. (1)) corresponds to the “resti-
tution function”.

The isolated (I(t) = 0) generator oscillates with fixed period and
does not burst. Similarly, when resistor R3 is greater than about
350 K�, current I(t) is lower than the minimal for bursting, and
the weakly coupled generator–modulator ensemble oscillates with
fixed period and does not burst. This is the astable behavior
shown at the top of Fig. 3 and far right of Fig. 4. In this regime,
for each oscillation, the capacitor C1 is charged exponentially by
the battery E through resistor R1, with a time constant �1 = R1C1
and activation time ta ≈ 10 ms, and C1 discharges through resis-
tor R2 each time V1 exceeds Vth, with �2 = R2C1 and excursion
time te ≈ 1 ms. Times ta and te are named from analogy with the
neuron action potential excitable period (ta) and the refractory
period (te). For weak coupling, the capacitor C2 charge does not
change significantly because transistor Q2 remains in its cutting
(no conduction) state all the time. The period of the oscillations is
fixed at To = ta + te ≈ 11 ms.

The triggering condition V1 > Vth provides the voltage depen-
dent mechanism (VDM) which initiates or ends a burst, and resides
in the generator. Bursts begin when V1 > Vth triggers the first spike
and end when V1 < Vth fails to trigger a spike after the last burst
spike. Voltage V1 can approach threshold Vth in different ways
depending on circuit parameters. This gives rise to the different
bifurcation scenarios for burst starts and ends as reported in our
original paper (Savino and Formigli, 2007). Bifurcations always
involve a transition from equilibrium to a limit cycle and vice-versa.
Three scenarios are shown in Fig. 7. For the circuit parameter values
used for figures in this paper, the bifurcation type was a saddle-node
on an invariant circle, because it includes the pause or rest potential
(Izhikevich, 2000) (Fig. 7A).

4. The Modulator Circuit

Unlike most previous electronic designs, our modulator circuit
when isolated, is not self-oscillating. The modulator provides a time
dependent mechanism (TDM) and a graduated coupling current I(t)
intensity for the generation of the dynamics of Fig. 3. This may be
best understood by studying Fig. 2. The behavior of voltage V3 con-
trols the burst duration Tr as follows. Since V3 is the capacitor C3
charge level, its duration and inflection point (IP) location result
from the balance between the C3 charging current I3 = (V1 − V3)/R3
and the C3 discharging current I4. During a burst, V3 displays a saw-
tooth pattern since current I3 and I4 alternate, driven by transistor
Q1. At the start of the burst, the Q2 saturating voltage V3 is 0.5 V,
but V3 begins to decrease with the first spike. The burst duration
Tr is determined by the time it takes V3 to saturate Q2 again, caus-
ing the burst to end. Thus Tr is determined by the V3 recovery rate,

Fig. 6. Effects of an external train of pulses of period T = 0.1 (s), amplitude 1.5 (V)
and variable duty cycle on the burst duration Tr.
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Fig. 7. Burst starting and ending bifurcations: (A) saddle-node on the invariant
circle (the same as Figs. 2 and 3), (B) saddle-homoclinic orbit, (C) subcritical and
supercritical Andronov–Hopf.

which is a function of the I3 and I4 current balance. I3 and I4 are
in turn determined by R3. Fig. 4 shows the dependence of Tr on R3.
A smaller R3 leads to a larger I3, which speeds up the V3 recovery
rate and shortens Tr.

Resistance R3 has simultaneously two functions. It controls the
burst duration Tr by the TDM as explained above. It also con-
trols the generator–modulator coupling current I(t). This is because
I(t) = I2 + I3 where I3 = (V1 − V3)/R3 while I2 has weak dependence
on R3. We mentioned in Section 3 that high R3 (>350 K�) inhibited
bursting. In contrast, when R3 ≈ 50 K�, coupling strength is strong
and the two spike burst changes to a period Ts spiking. We note that
the two spike bursts and one spike bursts alternate in the region of
R3 ≈ 90 K�. Further R3 reductions lead first to an increase in the
spiking period Ts, before it becomes non-periodic at R3 ≈ 35 K�.
When R3 < 20 K�, spiking stops, and the circuit becomes excitable
(is quiescent in the absence of external stimulation).

5. The Burst Frequency Adaptation Mechanism

Frequency adaptation patterns of Ti intervals are shown in Fig. 5.
Experimentally we found each to be determined by the I3 and I4
current balance. Each Ti is determined by the amount of charge C2
lost during the spike. The current I2 partially discharges the capac-
itors C2 and C3 through the “frequency adaptation loop” (indicated
in Fig. 1) when Q1 is in the avalanche conduction. But C2 does not
recover its charge during a burst because Q2 remains cutting or
reverse bias.

6. Effect of Excitatory and Inhibitory Inputs

Regardless of whether excitatory or inhibitory input is used,
moderate-amplitude (1 V) and duration (10−3 s) pulses modify the
voltage V3 recovery rate and therefore the TDM. Fig. 6 shows how
the burst duration Tr is shortened and lengthened by a train of pos-
itive pulses. Also, brief (relative to Ti) and high amplitude (>1 V)
pulses applied at the right moment during the burst may shorten
or lengthen Ti according to which input is used to modify the
free-running frequency adaptation pattern. This suggests that some
information can be encoded into the burst instantaneous frequency
fi = 1/Ti.

7. The Generator–Modulator Ensemble Equations

The essential circuit equations of Fig. 1 are:

L · dIn

dt
= V1 − Vec(In)

C1 · dV1
dt

=
(

(E − V1)
R1

)
− In − I(t)

C2 · dVC2

dt
= I2

C3 · dVC3

dt
= I3 − I4,

(2)

where I(t) = I2 + I3, R4 is assumed to be zero, Rb to be infinite, and
inductance L, the same as in Eq. (1), is the distributed inductance.
VC2 and VC3 are the capacitors C2 and C3 voltages, respectively. From
Eq. (2) it is obvious that the circuit is a four-dimensional nonlinear
dynamical system in the dynamical variables V1, In, VC2 and VC3.

In order to solve Eq. (2) numerically, the transistor Q1 avalanche
current–voltage characteristic Vec = Vec(In) curve can be obtained by
adjusting a mathematical function to the measured experimental
data of the particular NPN type transistors 2N2222 and BC547 that
we used, whereas for transistor Q2 the basic Ebers and Moll model
(Ebers and Moll, 1954; Getreu, 1978) may be adopted. Although the
numerical results of Eq. (2) have not been included in this paper,
they reproduce all of the circuit dynamics of Fig. 3, the frequency
adaptation patterns of Fig. 5 and the bifurcations in Fig. 7.

8. Discussion and Conclusions

Our circuit, created from an unusual utilization of the nonlin-
earity of bipolar transistors, has a wealth of advantageous features
compared to previous circuits modeling intrinsic bursting and spik-
ing neurons, although there do exist mathematical and electronic
models that reproduce neuronal bursts more faithfully in other
respects (Simoni et al., 2004; Le Masson et al., 1999; LaFlaquière
et al., 1997; Maeda and Makino, 2000). For one, our circuit is
simple, yet dynamically robust. No fine-tuning of its parame-
ters is needed to make it burst. It is easily reproduced for the
purpose of studying the dynamics of a single unit, or the dynam-
ics of a network of them in any desired topology. The brain is
thought to be composed of individual neurons with dendritic con-
nections to other neurons numbering on the order of 10,000.
The outstanding connectivity of our circuit could be useful in
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studying the role of bursting in fundamental functions of the
brain such as information transmission, encoding and process-
ing.

Secondly, our circuit is the first intrinsic burster in the litera-
ture that displays a stable burst with frequency adaptation patterns
similar to those reported in real neurons (Connors and Gutnick,
1990; Izhikevich, 2007). For example, a decrease in spiking fre-
quency as a burst progresses, or spike-frequency adaptation, is a
prominent feature of cortical pyramidal neurons of the regular
spiking type (Connors and Gutnick, 1990). Alternatively, some neu-
rons display an increase in spiking frequency as a burst progresses,
or spike-frequency acceleration, for example, cortical fast spiking
interneurons (Gibson et al., 1999). Our circuit is capable of exhibit-
ing both types of adaptation and also more complex ones (Fig. 5). In
both the neuron and our circuit, the frequency pattern depends on
the strength and nature of the slow current(s), and how the spiking
limit cycle of the fast subsystem is affected.

Thirdly, our circuit is the simplest circuit designed to date
that allows a study of the dynamics of the classical phenomeno-
logical HH equations. The generator replicates the dynamics of
two-dimensional mathematical approximations (Izhikevich, 2000)
of the HH equations. Namely, it has the same bifurcation types
(Savino and Formigli, 2007) as the HH equations, some of which
are shown in Fig. 7. Its real-time performance may eliminate the
need for current efforts to reduce the HH equation among others,
to two-dimensional maps that preserve the dynamics (Channell et
al., 2007; De Vries, 2005). Also the circuit Eq. (2) can be used for
theoretical studies.

We hypothesize the following correspondences between sec-
tions of our circuit and neuronal structure: the generator with the
soma, the modulator with the dendrite, the input block with the
synapse. In both systems, the fast–slow current interaction oper-
ates with strength and characteristics that are modified in some
way by the system components and the inputs arriving at the input
block. Based on similar work with cardiac cells (Padmanabhan,
1977), we can make detailed analogies for components of the
generator block. The reverse-biased transistor Q1 with its low-
threshold voltage avalanche region corresponds to the transient
negative conductance displayed by sodium current when neuronal
voltage threshold is reached and triggers cell depolarization. The
Q1 base lead further provides weak capacitive coupling, which
allows synchronization of multiple units. C1 and V1 can be seen to
correspond to cell-membrane capacitance and potential without
much effort, as are R1 and R2 to the extracellular and intracel-
lular resistance, respectively. Currents In and I1 correspond to
the depolarizing (activation) sodium current, and the polarizing
(recovery) potassium current, respectively. The pulse V2 that devel-
ops across R2 corresponds to the neuronal action potential or
spike.

Likewise, we hypothesize that components of the modulator
block have close correspondences with dendritic components. Cur-
rents I2 and I3 represent the sum of all currents at the soma
and dendrite, respectively. Capacitor C2 represents the concen-
tration of intracellular ions, mostly Ca2+, and transistor Q2 drives
current I2, which represents Ca2+-gated current. Capacitor C3 rep-
resents capacitance of the dendritic compartment where many
synaptic arriving inputs are integrated, changing the free-running
time dependent voltage V3 and current I3, and therefore burst
features.

Whether one accepts these fairly straightforward correspon-
dences between constituent components of our circuit and the
neuron or not, we can and do draw analogies between the cir-
cuit and neuron in the following respects. The isolated generator
has fast intrinsic periodic oscillations. The modulator injects slow
(longer characteristic timescale) currents into the fast subsystem
similar to the modification of the soma by dendritic slow cur-

rents, and gives rise to bursting, and the frequency adaptation of
burst. Our circuit also has in its dynamics, an excitable regime,
like that of excitable biological cells. Thirdly, in neuronal physiol-
ogy, characteristics of bursting such as its timing and frequency
are widely attributed to voltage and time dependent mecha-
nisms. Our circuit depends on voltage (VDM) and time (TDM)
dependent mechanisms to generate various bursting characteris-
tics.

To summarize, we believe that our circuit provides a valuable
tool for answering various biological and mathematical questions.
Examples of the latter, enunciated by Izhikevich (2007), for burst-
ing HH neuron models are: What initiates sustained spiking during
the burst? and What terminates sustained spiking temporally and
ends the burst? The answers are immediate for our circuit. Bursts
are initiated and terminated by the VDM, and bursts are sus-
tained for duration Tr by the TDM. We also mention that in the
past, a spike and burst were considered different dynamic enti-
ties. In our circuit dynamics, an isolated spike can be seen to
be nothing more than a single spike burst. In other words, sin-
gle isolated spikes have the same starting and ending bifurcation
sequence as bursts, and do not require special scenarios. As for
applications to biology, the simplicity and connectivity of our cir-
cuit, together with the hypothesized correspondences between
circuit components and neuronal components allow the construc-
tion of virtual experiments, whether of networked neurons, or of
mechanisms underlying pathological dynamics in bursting neu-
rons.
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