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Invasive alien species are one of the most severe 
threats to the conservation of biodiversity and a significant 
cause of economic losses; they also affect human health 
and welfare (Kadoya et al., 2009). From the arrival of a 
new species to its establishment and dispersal, the conse-
quences of invasions increase over time; hence, preven-
tion and conservation actions are always the most efficient 

measures (Ziller & Zalba, 2007). Furthermore, if the species 
is detected while populations are still relatively small and 
restricted in space, the chances of controlling its expan-
sion are significantly higher (Inglis et al., 2006). In such 
cases, modeling the possible distribution of the invader in 
the new region is very important not only to evaluate its 
potential impact, but also to detect environmental features 
that may limit its expansion and that will serve as the basis 
for designing actions for the prevention, early detection, and 
early control of new invasion foci (Ward, 2007).

Scientists have long made efforts to forecast the 
geographical distribution of ecological entities (species, 
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Abstract: Spontaneous populations of saltcedars are widely distributed in Argentina. The invasive behaviour of the genus has 
been documented in the USA, Mexico, and Australia, where its presence is associated with significant changes in ecosystem 
functioning and the structure of natural communities. Previous to this work there were no studies assessing the potential 
of saltcedars as drivers of ecological change in Argentina. The aim of this work was to assess the potential distribution of 
saltcedars in the country in order to provide useful information for designing management strategies to reduce the impacts 
associated with their invasion. Known occurrences of the genus in Argentina were used to predict its potential distribution 
by applying different distribution models using both presence/absence and presence-only data. The DOMAIN model was the 
model that performed best once sensitivity and omission errors were taken into account. Our results indicate the severity of 
the problem of saltcedar in Argentina, with more than three quarters of the total arid and semiarid area vulnerable to invasion. 
Our results also highlight the need to include information about the status of populations when selecting training points for 
the development of distribution models.
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Résumé : Les populations spontanées de tamaris ont une vaste distribution en Argentine. Le comportement envahissant du 
genre a été documenté aux États-Unis, au Mexique et en Australie, où sa présence est associée à des changements importants 
dans la structure des communautés naturelles et au fonctionnement des écosystèmes. Aucune étude précédente n'avait évalué 
le potentiel des tamaris comme moteurs de changements écologiques en Argentine. Le but de la présente étude était d'évaluer 
la distribution potentielle des tamaris dans ce pays afin d’apporter des informations utiles à la conception de stratégies 
d'aménagement visant à réduire les impacts de leur invasion. Les présences connues du genre Tamarix en Argentine ont 
été utilisées pour prédire sa distribution potentielle à partir de différents modèles de distribution faisant appel autant aux 
données de présence/absence qu'à celles de présence seulement. Les résultats ont montré que le modèle DOMAIN était celui 
qui offrait la meilleure performance en tenant compte de la sensibilité et des erreurs d'omission. Nos résultats mettent en 
évidence la gravité du problème posé par les tamaris en Argentine avec plus des trois quarts de toute la zone aride et semi 
aride étant vulnérable à l'invasion. Ces résultats soulignent également la nécessité d'inclure de l'information sur le statut des 
populations lors de la sélection des données qui serviront au développement des modèles de distribution.
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populations, ecosystems). Species distribution mod-
els (SDMs) have contributed to the prediction of species 
distributions by relating geo-located presence records to 
environmental variables that influence species’ survival and 
dispersal (Václavík & Meentemeyer, 2009). These models 
have been used to predict the geographic distributions of 
plants, microbial pathogens, and arthropods both under 
present conditions and under the conditions projected in 
global climate-change scenarios (Mack, Barrett & de Fur, 
2002; Guisan & Thuiller, 2005). SDMs are an increas-
ingly important tool for conservation planning and theor-
etical research on ecological and evolutionary processes 
(Giovanelli, Haddad & Alexandrino, 2008; Phillips et al., 
2009; Mezquida, Rubio & Sánchez-Palomares, 2010).

Used in combination, potential distribution algo-
rithms and habitat suitability maps can assist the design 
of strategies for the management of invasive species by 
helping to identify 1) areas where invasive species may 
already be present (but have not yet been detected) and 
2) areas where populations of invasive species may be 
established in the future (Ward, 2007; Kadoya et al., 2009; 
Gormley et al., 2011).

A number of algorithms are used to generate SDMs. 
Different modeling methods may yield very different pre-
dictions, depending on the application (Pearson et al., 2006; 
Randin, Dirnböck & Dullinger, 2006), and this possibil-
ity should be taken into account in efforts to generate the 
most accurate models of species distributions (Phillips & 
Dudík, 2008). 

Potential distribution models pose challenges that may 
be particularly complex in the study of invasive alien spe-
cies. On the one hand, spatial distribution can undergo 
continuous changes (Kadoya et al., 2009). On the other 
hand, the absence of an invasive species at a given site 
does not necessarily mean that the habitat conditions at 
that site are inappropriate; the absence of the species at that 
particular location may be due to its recent introduction, 
stochastic events, geographical barriers, and/or dispersal 
constraints (Araujo & Pearson, 2005; Araujo & Guisan, 
2006). Moreover, the local presence of an invasive spe-
cies could be associated with introduction effort (prop-
agule pressure) and/or with human-induced ecological 
changes that favour invasion. Hence, new models that use 
presence-only data or pseudo-absence data generated by 
the model have been developed (Phillips & Dudík, 2008; 
Phillips et al., 2009). Because of the urgent need to design 
preventive and early intervention measures and the shortage 
of information available on the current distribution of inva-
sive species, other tools, such as regional or national data-
bases (see, for instance, the I3N initiative in the Americas 
http://i3n.iabin.net/) and other participatory programs, such 
as mail surveys (Kadoya et al., 2009; Gormley et al., 2011), 
are particularly useful.

Saltcedars (Tamarix spp.) are one of the most success-
ful groups of invasive plants in desert riparian ecosystems 
in the USA, Australia, and Mexico, where these plants 
strongly affect species composition and ecosystem pro-
cesses (De Loach et al., 2000; Australia Weeds Committee, 
2004; Hart et al., 2005). The presence of 4 Tamarix species 
has been confirmed in Argentina: T. gallica, T. ramosissima, 

T. chinensis, and T. parviflora. The former 3 grow spon-
taneously and frequently invade natural and semi natural 
environments (Natale et al., 2008). The presence of these 
species in Argentina follows a dispersal pattern similar to 
that reported for the USA, Australia, and Mexico, coloniz-
ing riparian habitats in arid and semi arid continental and 
coastal areas. Tamarix ramosissima has been shown to 
be the most aggressive saltcedar species, with the high-
est number of invading populations (Natale et al., 2010). 
Nevertheless, although arid and semiarid lands cover most 
of Argentina, to date the magnitude of the saltcedar inva-
sion does not seem to be as severe as that reported in the 
USA, Mexico, and Australia, probably because the inva-
sion process in Argentina is at an early stage, and may be 
restrained by a low number of initial invasion foci and/or a 
low density of dispersal routes (Natale, Zalba & Reinoso, 
2012). Hence, the situation in Argentina is suitable for the 
development and implementation of prevention strategies to 
reduce the chances of saltcedar expansion.

Considering the successful establishment of saltcedar 
in the USA, Mexico, and Australia, we hypothesize that 
these species have the potential to invade most of the arid 
and semiarid environments in Argentina. If this hypothesis 
is correct, species of the genus Tamarix represent one of the 
main threats to biodiversity conservation nationwide. To 
test the hypothesis, presence data of saltcedars in Argentina 
were used to predict the genus’ potential distribution by 
applying 7 distribution models and comparing their results. 

Methods
ColleCtioN of saltCedaR PReseNCe/abseNCe data

The available information on saltcedar occurrences 
(Natale et al., 2008) was updated by revising herbaria at 
the Universidad Nacional del Sur (HBBB), the Universidad 
Nacional de Córdoba (HMBC), the Universidad Nacional 
de Río Cuarto (RCV Natural Sciences Department and 
FAV), and the Darwinian Institute (SI). To complement 
this information, field surveys were conducted covering 
arid and semi arid regions and areas of adjacent biomes in 
Argentina, driving along paved and dirt main and secondary 
routes and local roads. A total of 13 256 km were surveyed 
between the years 2005 and 2009; 2663 km belonged to the 
Pampas eco-region (grasslands), 2180 km to the Espinal 
(temperate deciduous forest), 3734 km to the Monte (dry 
steppe), 3598 km to the Patagonian desert, and 1588 km to 
the Chaco (savanna) (Burkart et al., 1996). Saltcedars grow-
ing isolated or in groups were spotted by direct observation. 
We then determined their location using a GPS receiver and 
recorded the area covered by the trees, their population size 
structure, evidence (if any) of spontaneous recruitment, the 
phenological status of the trees, and relevant environmental 
features (soil texture, salinity, ground water level, distance 
from watercourse). In addition, following the participa-
tory program method presented by Kadoya et al. (2009), 
electronic surveys were submitted to scientists, techni-
cians, and park-rangers using structured questionnaires. The 
questionnaire elicited information on 1) population loca-
tion and size; 2) presence of originally planted individuals; 
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3) spontaneous recruitment; 4) presence of seedlings more 
than 20 m from the main population nucleus; 5) seed pro-
duction; and 6) population structure. We assigned a geor-
eference to the populations cited in the questionnaires and 
in herbarium records to build up a distribution layer for 
saltcedar in Argentina.

Of the 297 recorded saltcedar populations (165 from 
field surveys, 55 from the questionnaires, and 77 from herb-
aria), 223 that contained sufficient information were classi-
fied into 4 categories according to the state of the invasion 
process (Natale, Zalba & Reinoso, 2012): 1) Contained: 
populations composed of originally planted individuals, 
mainly adults (80–100%). 2) Detected in nature: individ-
uals growing in natural and semi natural habitats that had 
not achieved successful reproduction or did not constitute 
an invasion at the time of observation. These kinds of 
populations were mainly composed of young individuals 
(80–100%). 3) Established: individuals found in natural 
or semi natural habitats that were successfully spreading, 
although not widely, to their immediate environment. These 
populations were 50–80% adults and 20–50% young indi-
viduals or seedlings. Finally, 4) Invasive: populations 
showing extensive dissemination far from the original 
introduction site and a very heterogeneous structure mostly 
(20–50% adults, 30–80% young individuals, and 10–40% 
seedlings). These categories were taken from the IABIN 
Invasives Information Network (I3N, http://i3n.iabin.net/), 
and are those employed in the national databases on bio-
logical invasions of most countries in the Americas.

For the algorithms using presence/absence data, the 
sites of saltcedar occurrence were classified into 2 categor-
ies: absences corresponded to “contained” populations 
(47 records), i.e., populations present at a site but showing 
no evidence of invasion processes, and presences corres-
ponded to populations classified as “detected in nature”, 
“established”, or “invasive” (176 records), i.e., foci with 
confirmed capacity to colonize natural environments. Thus, 
we minimized the problem of absences that might cor-
respond to sites where the species has not yet been intro-
duced. For complementary purposes, another set of absence 
data was generated; these records (n = 122), here referred 
to as “ecological absences”, corresponded to sites with 
environmental characteristics that, as indicated in the avail-
able literature on habitat requirements and life history of 
Tamarix spp. (Australia Weeds Committee, 2004; Glenn & 
Nagler, 2005; Chambers & Hawkins, 2004), would not be 
suitable for species survival. 

sPeCies distRibutioN models
Models using presence/absence data

For the presence/absence model a product developed 
by Porcasi et al. (2005) was used. This product is based on 
a multi-dimensional map in which each geographic area is 
characterized by a fixed set of 7 variables. To predict the 
potential distribution range, Porcasi et al. (2005) used the 
maximum likelihood algorithm, which was run on the ENVI 
4.2 platform (Research Systems Inc., Boulder, Colorado, 
USA) using the supervised classification method. The max-
imum likelihood algorithm estimates the probability that a 
pixel belongs to a specific class (presence/absence), with 

a pre-specified error (0.05). Thus, each pixel is assigned 
to the class to which it is most likely to belong and those 
pixels that are below the pre-specified likelihood value are 
not classified (Chuvieco, 2002). To construct the model the 
following environmental variables were compiled in a geor-
eferenced environmental database:

1) Precipitation: A latitude–longitude rasterized grid 
of monthly mean rainfall data over 30 y (1930–1960) with 
a spatial resolution of 30 min (Leemans & Cramer, 1991; 
Cramer & Leemans, 2001) (IIASA database, Laxenburg, 
Austria; available from http://www.daac.ornl.gov).

2) Vegetation Index: A 1982–1992 time series of 
Normalized Difference Vegetation Index (NDVI) data from 
the National Oceanic and Atmosphere Administration’s 
Advanced Very High Resolution Radiometer (NOAA/
AVHRR) meteorological satellite with a pixel size of 
8 × 8 km. NDVI = (Ch2 – Ch1)/(Ch2 + Ch1), where Ch is 
the AVHRR sensor channel. This index represents greenness 
but does not distinguish between primary, agricultural, or 
disturbed habitats.

3) Land Surface Temperature (LST): Another 
temporal series collected by the AVHRR sensor. 
LST = Ch4 + 3.33(Ch4 – Ch5) (Price, 1984).

4) Digital Elevation Model (DEM): 1- × 1-km spatial 
resolution data collected by the AVHRR sensor (provided 
by the USGS Eros Data Center). 

These environmental data were resampled using the 
nearest neighbour algorithm to adjust the pixel sizes to 
1- × 1-km. The resulting 737- × 1037-pixel raw data set 
covers South America between 13° and 56°s and 33° and 
82°w. For this product the authors use the standardized 
principal component analysis (PCA), because it decom-
poses the time-series into a sequence of spatial and temporal 
components that may often be interpreted as corresponding 
to particular environmental features or events. Typically, 
the first component indicates the characteristic value of 
the variable, whereas subsequent components represent 
change elements of decreasing magnitude. In PCA, spatial 
variation is registered by the first component and temporal 
variation is represented by the second and third compon-
ents. The first 2 components of each environmental variable 
accounted for more than 99% of the total variance of each 
series. Thus, both the first and the second components of 
each environmental variable and DEM were used in the 
classification analysis. The product generated by princi-
pal component analysis is one that is finally used for the 
presence/absence model.

In order to model saltcedar distribution, 3 data sets 
were used: 1) presences and confirmed absences; 2) pres-
ences and ecological absences, and 3) presences and 
combined (confirmed and ecological) absences. The 
Jeffries–Matusita separability test (Richards, 1994) was 
applied to all 3 data sets to determine similarity or diver-
gence between selected training points. The distance cal-
culated by this index ranges from 0 to 2; if the distance 
between them is equal to or greater than 1.9, the use of 
2 areas or regions as classification types is recommended 
(Jensen, 1996). This analysis was also performed with the 
ENVI 4.2 satellite imagery processor. 
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presence-only Models

These models were developed using 3 different algo-
rithms: BIOCLIM, DOMAIN, and MAXENT. BIOCLIM 
uses a climate envelope (a rectilinear volume in environ-
mental space) to summarize the climatic data at sites where 
a species has been recorded. BIOCLIM predicts suitable 
conditions for a species where values of the climate vari-
ables fit within the extreme values determined by the set 
of known locations. Locations where the values lie within 
the 5–95th percentile of the climate envelope are tradition-
ally classified as “core” suitability regions (Nix, 1986). 
DOMAIN (Carpenter, Gillison & Winte, 1993) uses a 
distance-based method (the Gower metric) to assess new 
sites according to their environmental similarity to sites of 
confirmed presence. This model generates an index of habi-
tat suitability on a continuous scale (0–100), in which high 
scores (e.g., >90) are considered highly suitable. Both the 
BIOCLIM and DOMAIN modelling methods were imple-
mented using DIVA-GIS software (version 5.2, http://www.
diva-gis.org). (Hijmans et al., 2001). MAXENT, developed 
for use in statistical mechanics, seeks to estimate a target 
probability distribution by finding the probability distribu-
tion of maximum entropy (Phillips, 2006), subject to the 
constraint that the expected value of each feature under this 
estimated distribution matches its empirical average. This 
analysis was performed with the software MAXENT 3.3.1 
(Phillips, Dudík & Schapire, 2004). 

For presence-only models, environmental data were 
obtained from WORLDCLIM (version 1.3, http://www.
worldclim.org) (Hijmans et al., 2005), taking values of 
total and average monthly precipitation and minimum and 
maximum temperature with a spatial resolution of 30 arc 
seconds (about 1 × 1 km) obtained by interpolation of cli-
mate station records from 1950 to 2000. From this climate 
data, 19 bioclimate variables were derived (Table I), repre-
senting a combination of annual trends, seasonality, and 
extreme environmental conditions.

One of the methodological challenges in the use of 
these models is to determine the number of variables to 
be used. To explore the influence of the number of cli-
mate variables on model performance, climate data were 
generated for each species record in DIVA-GIS. PCA was 
used to assess the similarity between climate variables. 
Co-linearity was explored through a Pearson correlation 
matrix, and subsets of variables with a high average correla-
tion (>90%) were reduced to a single variable (Ward, 2007). 
Both analyses were performed with the software SPSS 
11.5.1 (IBM Company, NY, USA).

Unlike the maximum likelihood model, which uses 
presence/absence data, these models only consider pres-
ence data. However, BIOCLIM and DOMAIN require 
absence data to evaluate model accuracy. For that purpose, 
the program generated random points across the study area, 
known as “pseudo-absences”. These points were produced 
in a 1:1 proportion with respect to the presence records 
and were then contrasted by the model with 25% of the 
presence records entered initially, which had been reserved 
for testing. 

MAXENT used presence-only data and divided the set 
of occurrence data into 2 subsets. In this case, 75% of the 
data were used as training data and the remaining 25% were 
used for testing (Phillips, Anderson & Schapire, 2006). For 
BIOCLIM and DOMAIN, the True/False option provided in 
the DIVA-GIS program was used, with the aim of generat-
ing a binary (presence/absence) prediction comparable to 
the presence/true absence model output. MAXENT’s logis-
tic output (ranging from 0 to 1, with 0 indicating absence 
and 1 indicating presence) was used (Giovanelli, Haddad & 
Alexandrino, 2008; Sobek-Swant et al., 2012).

The area under the receiver operating characteristic 
curve (AUC) was also used to examine model perform-
ance. AUC measures the ability of a model to discriminate 
between sites where a species is present and those where 
it is absent and provides a single measure of overall accur-
acy that is not dependent on a particular threshold. AUC 
ranges from 0 to 1, where a score of 1 indicates perfect 
discrimination and 0.5 implies discrimination that is no 
better than random (Ward, 2007; Giovanelli, Haddad & 
Alexandrino, 2008).

Overall, 6 potential distribution maps were generated, 
2 per model used, one of them using all the variables (19) 
and the other one using the variables obtained from PCA 
and Pearson correlation. In addition, another map was 
obtained with MAXENT by adding the variable “altitude” 
to the bioclimate variables (20 variables). 

Results
PReseNCe/abseNCe models

According to the Jeffries–Matusita test, the pres-
ence/confirmed absence data resulted in very similar 
classes (<1.65), indicating that the values of the absence 
points were very similar to presence data (Pinillas, 
1995). Therefore, they were discarded. By contrast, the 
presence/ecological absence data and presence/combined 
absence data yielded high separability values (>1.88); 
hence, both sets were used.

Table I. Climatic variables used in BIOCLIM, DOMAIN, and 
MAXENT distribution models for Tamarix spp. (Hijmans et al., 
2005). Variables used in the 12-variable models are shown in bold. 
STD = Standard deviation.

Climatic   
variables	 Definition	 Calculation
Bio1 Annual mean temperature 
Bio2 Mean monthly temperature range Monthly maximum
  – mean monthly minimum
Bio3 Isothermality (Bio2/Bio7)100
Bio4 Temperature seasonality SDT·100
Bio5 Max temperature of warmest month 
Bio6 Min temperature of coldest month 
Bio7 Annual temperature range Bio5 – Bio6
Bio8 Mean temperature of wettest quarter 
Bio9 Mean temperature of driest quarter 
Bio10 Mean temperature of warmest quarter 
Bio11 Mean temperature of coldest quarter 
Bio12 Annual precipitation 
Bio13 Precipitation of wettest month 
Bio14 Precipitation of driest month 
Bio15	 Precipitation	seasonality	 Variation	coefficient
Bio16 Precipitation of wettest quarter 
Bio17 Precipitation of driest quarter 
Bio18 Precipitation of warmest quarter 
Bio19 Precipitation of coldest quarter 
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The whole set of presence/ecological absence data 
showed an AUC value of 0.790, whereas the presence/
combined absences data sets yielded an AUC value of 
0.860. The presence/ecological absence model showed only 
a 50% fit to the current saltcedar distribution, whereas the 
presence/combined absences model included 84.6% of the 
points (Table II).

PReseNCe-oNly models 
selection of variables

The first 3 principal components (PC) of the PCA 
accounted for more than 80% of variation among climatic 
variables. The first PC accounted for 40% and was mainly 
represented by temperature variables; the second PC (34.5% 
of variation) was represented by variables mostly related 
to precipitation. The third PC accounted for less than 10%; 
however, it grouped variables related to limiting factors 
for saltcedar survival (Young, Clements & Harmon, 2004; 
Natale et al., 2010), such as precipitation of the driest tri-
mester and of the coldest year (Table III). 

Based on the results of the PCA and the Pearson cor-
relation analysis, 12 variables were selected: 1) annual 
mean temperature, 2) mean monthly temperature range, 
3) isothermality, 4) temperature seasonality, 5) minimum 
temperature of coldest month, 6) mean temperature of wet-
test quarter, 7) mean temperature of driest quarter, 8) annual 
precipitation, 9) precipitation seasonality, 10) precipitation 
of driest quarter, 11) precipitation of warmest quarter, and 
12) precipitation of coldest quarter.

biocliM and doMAiN
With the presence data, the DIVA-GIS software gener-

ated 252 presence training points and 412 test points, 374 of 
which were pseudo-absence points. The BIOCLIM model 
resulted in an AUC score of 0.782 when run with 19 vari-
ables and 0.779 when run with 12 variables. The DOMAIN 
model showed good predictive power, with an AUC score 
of 0.850 when run with 19 variables and 0.860 when run 
with 12 variables (Table II). 

Although the number of variables did not influence the 
fit of the model, it did have a slight influence on prediction 
of distribution (specificity): the model using 19 variables 
had a 75.6% fit to the current distribution points, whereas 
the 12-variable model fit was 78.4%. Hence, both model 
sensitivity and specificity were higher with the model that 
used a lower number of variables (12) than with the model 
that included 19 variables. The results obtained with the 
DOMAIN algorithm were identical, indicating a good fit of 
the model for both situations (Table II). 

MaXent
MAXENT used 126 presence training records and 

46 test records. The model using 19 variables yielded an 
AUC score of 0.935, suggesting a very good fit; a similar 
value was obtained when the model was run with 20 vari-
ables (19 bioclimatic variables + altitude). When the model 
was run with the 12 variables selected, a slightly higher 
score was obtained, with an AUC of 0.943 (Table II).

Regarding potential distribution, the fit of the predic-
tion to the current distribution of the genus decreased with 
decreasing number of variables and increasing AUC. The 
12-variable model had a 73.9% fit to the current distribu-
tion points, whereas the other models had an 86.3% fit 
(Table II).

PoteNtial distRibutioN of saltCedaR iN aRgeNtiNa

The models generated using the maximum likelihood 
algorithm suggested that the central-western and southern 
areas of the country would be suitable for the presence of 
the genus, while the model using the presence/true absence 
data set predicted the largest area (Figure 1a,b). The latter 
model was the only one that predicted the presence of the 
genus in the eastern area of the country (Figure 1b).

The maps generated by BIOCLIM showed minor dif-
ferences, the 12-variable model being the one that pre-
dicted the largest area suitable for the presence of the genus 
(Figure 2a,b). The 2 maps produced with the DOMAIN 
algorithm did not show important differences between 
them, predicting very similar areas. Unlike the other algo-
rithms analyzed, DOMAIN showed new areas suitable for 

Table III. Correlations between climatic variables and principal 
components from the PCA performed to determine the number of 
variables to be used in the species distribution models (BIOCLIM, 
DOMAIN, and MAXENT).

Climatic   Principal components
variables 1 2 3 4
Bio1 0.814 0.558 –0.016 0.040
Bio2 –0.387 0.753 0.295 0.063
Bio3 –0.675 –0.193 0.613 –0.145
Bio4 0.169 0.853 –0.334 0.280
Bio5 0.619 0.731 –0.153 0.176
Bio6 0.927 –0.127 –0.187 0.064
Bio7 –0.014 0.929 –0.030 0.150
Bio8 0.669 0.513 0.022 –0.435
Bio9 –0.050 –0.009 0.379 0.857
Bio10 0.719 0.674 –0.103 0.106
Bio11 0.897 0.349 0.087 –0.047
Bio12 0.819 –0.498 0.165 –0.008
Bio13 0.842 –0.397 0.322 0.003
Bio14 0.482 –0.761 –0.196 0.118
Bio15 0.206 0.539 0.692 –0.016
Bio16 0.829 –0.399 0.349 0.001
Bio17 0.422 –0.776 –0.353 0.094
Bio18 0.862 –0.108 0.293 –0.205
Bio19 0.192 –0.786 0.098 0.350

Table II. Performance of all species distribution models run for 
Tamarix spp. AUC: Area under the Receiver Operating Character-
istic curve.

Maximum Model evaluation
likelihood algorithm Sensitivity (%) AUC Omission error (%)
Ecological absences 50.0 0.790 42.86
Combined absences 84.6 0.860 5.71
BIOCLIM   
   19 variables 75.6 0.782 25.30
   12 variables 78.4 0.779 24.00
DOMAIN   
   19 variables 98.3 0.850 1.30
   12 variables 98.3 0.860 1.30
MAXENT   
   20 variables 86.3 0.931 38.00
   19 variables 86.3 0.935 28.60
   12 variables 73.9 0.943 16.00
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saltcedar presence, such as the northwest, central-east, and 
southeast of the country (Figure 3a,b).

The model generated with MAXENT using 12 vari-
ables predicted a smaller area with suitable conditions, both 
in the south and the north of the country. Like DOMAIN, 
the other models (using 19 and 20 variables) revealed pot-
entially suitable areas in the north of Argentina. The only 
visible difference was that the model using 20 variables pre-
dicted a larger suitable area in the south of the country than 
the 19-variable model (Figure 4a,c).

Discussion
The results of our study confirm the severity of the 

problem of saltcedar dissemination in Argentina, with suit-
able potential distribution areas ranging between 1 452 954 
and 1 654 127 km2, i.e., between 52% and 59.5% of the total 
surface land of the country and more than three quarters of 
the arid and semiarid areas in Argentina.

The high similarity found between the presence data 
and the confirmed absence data used in the maximum 

likelihood analysis may mean that most of the environments 
where contained populations are present (i.e., environments 
where the species is present but has not yet successfully 
invaded) are suitable for the establishment and spread of the 
species, but external factors are preventing this from occur-
ring. This would be consistent with the findings of Natale, 
Zalba, and Reinoso (2012), who reported a close association 
between contained populations and populations used to pro-
vide benefits to humans, e.g., as shade and ornamental trees.

In agreement  with the resul ts  reported by 
Evangelista et al. (2008), who compared different distribu-
tion models for Tamarix chinensis in central and southern 
Utah (USA), we found that the greatest AUC was achieved 
with MAXENT. Our results are also consistent with data 
reported for other taxa (Loiselle et al., 2003, Elith et al., 
2006; Ward, 2007).

However, overall accuracy as reflected by AUC is 
not the only important parameter in model selection. It 
is also important to minimize the risk of false negatives, 
which is especially relevant in studies of invasive alien 
species. Assuming that an invasive species will colonize 
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figuRe 1. Potential distribution of saltcedar using the maximum likelihood algorithm: a) presence/ecological absence data set; b) presence/combined 
(ecological and confirmed) absence data set. 
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an area that it will not is preferable to predicting that an 
invasion will not advance over a region where it actually 
might. For this reason, preference should be given to 
models with both a high proportion of correctly predicted 
presences (i.e., models of high sensitivity) and low omis-
sion error (low number of false negatives) (Ward, 2007; 
Kadoya et al., 2009; Gormley et al., 2011). From this per-
spective, although MAXENT is the model that performed 
best in our analysis, its omission error rates (the highest of 
all models) are unacceptably high. When both of these par-
ameters (AUC and omission error) are taken into account, 
DOMAIN is the most appropriate model for predicting 
the potential distribution of Tamarix spp. in Argentina. 
Furthermore, the MAXENT model’s results varied increas-
ingly as more variables were incorporated into the analysis. 
In this respect, our results do not fully agree with those of 
Elith et al. (2006), who reported a general progression of 
performance (poor to best) from BIOCLIM to DOMAIN to 
MAXENT. In our study, DOMAIN was consistently one of 
the best performing models. Because of these differences, 
we believe that in order to select the most appropriate tool 
for modelling potential distribution in a particular area, it is 

important to first compare the results obtained using a var-
iety of different models. 

With respect to the use of absence data, Václavík and 
Meentemeyer (2009) demonstrated that the models incor-
porating confirmed absence data and factors that restrict 
species dispersal are the most accurate and efficient. 
Kadoya et al. (2009), however, suggested that including 
absence data restricts the analysis because those absences 
may be due to historical restrictions, spread limitations, 
local extinctions, and/or biological interactions rather than 
problems related to low habitat suitability for the spe-
cies. Thus, care should be taken to avoid regarding the 
mere absence of the species at a site as a valid indicator 
of environmental unsuitability; the distribution of an inva-
sive species is determined by the combination of environ-
mental factors and dispersal processes (Fukasawa et al., 
2009). Accordingly, we believe that the use of sites with 
contained populations as “absences” is an important step 
to avoid considering unsuitable those sites that might be 
suitable, increasing omission errors. This strategy proved 
to be highly effective in the present work with a maximum 
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likelihood algorithm calculated using both ecological 
absences and confirmed absences (contained populations), 
which resulted in a fit of more than 80% and a very low 
omission error, very close to that obtained with DOMAIN.

In addition, the mere presence of the species at a site 
does not imply that such site can be invaded, because the 
species can survive at a site where environmental condi-
tions prevent their establishment and dissemination (Ziller 
& Zalba, 2007). Thus, a model considering a mere presence 
as an occurrence of the species at a site might overesti-
mate the area of potential invasion. To avoid this problem, 
we considered as presences those sites at which saltcedar 
populations had shown their potential to colonize natural 
environments, besides the original plantation sites. We 
strongly recommend following this criterion (i.e., consid-
ering sites with old presence of the species but without 
evidence of invasion as absences and invaded sites as pres-
ences) in data selection so that more robust data are used in 
invasion modelling. 

Finally, it should be noted that, because of the difficul-
ties involved in species identification (especially in infor-
mation obtained through surveys) the models generated in 

the present work used a combination of data of the different 
Tamarix species that show invasive behaviour in Argentina. 
Crawford and Hoagland (2009) stand out the similarity of 
Tamarix species in terms of ecological requirements and 
also propose potential distribution models at the genus 
level. However, the several Tamarix species exhibit varia-
tions in invasive behaviour in different regions worldwide 
(ARMCANZ, 2000; De Loach et al., 2000; Australia Weeds 
Committee, 2004; Chambers & Hawkins, 2004; Hart et al., 
2005; Whitcraft et al., 2007; Natale et al., 2008). It would 
be useful to compare the results of the models generated 
in this work with similar tools applied at the species level 
when a higher number of records of species distribution 
are available.

Using participatory surveys proved to be a powerful 
tool in our study, in agreement with the results reported by 
Kadoya et al. (2009). Structured questionnaires provided 
ca 25% of the data we used to build the models. Regional 
initiatives aimed at improving and systematizing informa-
tion about invasive species occurrences and population 
status should be encouraged as a means to develop sound 
predictive analysis.
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