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The dynamic response of a thin-walled beam with a breathing crack is studied by employ-
ing a refined one-dimensional model introduced for such purpose. It is shown that, due to
the non-linearity of breathing, some effects take place which are impossible by using a
completely open crack model. Even with the simplest of sinusoidal excitations, the system
under study reveals a rich and complex dynamics. Some of the topics emphasized in the
article are self-excitation of harmonic resonances, period doubling and the presence of
quasi-periodic motion. Furthermore, the possibility of chaotic vibrations is analyzed.
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1. Introduction

The presence of damage represents a crucial topic regarding safety of engineering structures. Since early damage detec-
tion may prevent the possibility of service failures, the development of structural health monitoring techniques has acquired
a remarkable importance in recent years [1–3]. A very common damage typology that appears in dynamic operating condi-
tion corresponds to fatigue cracks. These cracks are usually invisible to the naked eye and their identification by local
non-destructive methods, such as dye penetrant and ultrasonic testing, may be impractical if the structure must remain
in service.

These aspects lead to the need of mathematical models as interpretative tools for crack identification, which is generally
performed by solving an inverse optimization problem [4]. This problem is usually complex from a mathematical point of
view, and also must be solved quickly. Hence models must combine precision and simplicity in balanced form. For slender
structures, a beam model captures the most significant features of the structural dynamics. And at the same time it is simple
enough for extensive computational treatment, an essentially useful feature when damage diagnosis must be performed in
real time. Most studies have focused on Bernoulli–Euler beams [5–9] and, to a lesser extent, on Timoshenko beams [10–13].
Thin-walled beams have not been addressed in depth, perhaps due to their more complex dynamics, usually presenting a
strongly coupled vibrational response [14–22].

Crack models are generally assumed to be linear, with a crack remaining open during vibration. But while this hypothesis
works well for many situations, it is more realistic to consider a fatigue crack which may be open or closed during the motion
[10,23,24]. This ‘‘breathing effect’’ introduces a non-linearity in the system since the stiffness of the structure becomes time
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Nomenclature

A crack depth (also semi-major axis of the elliptic crack)
~a variable crack depth
A cross-sectional area
Af loading amplitude
b dimension of a flange
B bimomental beam force (also point B, origin of the system B: x, s, n)
c semi-minor axis of the elliptic crack
C center of gravity of the uncracked cross section
Cw warping constant
D damping matrix
E Young’s modulus
f driving frequency, expressed in Hz
fB bilinear frequency, expressed in Hz
FðeÞC flexibility matrix of the cracked element
G shear modulus
G⁄ crack mouth widening energy release rate
h dimension of the web
H point placed at the cracked branch of the cross-section
Iy, Iz second moments of area
Iyz product moment of area
Iyx, Izx product of warping
Isv Saint–Venant’s torsion constant
Iij shear coefficients of the constitutive matrix
J Rice’s J integral
J constitutive matrix of the beam
K point placed at the cracked branch of the cross-section
K0 global stiffness matrix of an intact beam
KC global stiffness matrix of a beam with a fully open crack
KB global stiffness matrix of a beam with a breathing crack
KðeÞC stiffness matrix of the cracked element
L length of the beam
Mx total torque
M inertia matrix of the uncracked beam
n coordinate normal to the cross-section middle line
N axial beam force
My, Mz bending moments

p(i) vector of nodal forces of node i
Pi nodal forces
Q vector of generalized forces
r distance in s-direction from C to a point in the cross-section middle line
s circumferential coordinate
S cross-sectional perimeter
Sy, Sz first moments of area
Sx first moment of warping
t wall thickness
Tf driving period
T transformation matrix
Tsv Saint–Venant torque
Tw Vlasov torque
u, v, w displacements of the uncracked beam centroid
ux, uy, uz displacements of any point of the beam
U strain energy of the beam
U0 strain energy of the uncracked element
UC strain energy due to the presence of a crack
V work of external loads
w(i) vector of nodal displacements of node i
x, y, z Cartesian coordinates
�xC location of the crack in the cracked element
Y, Z coordinates of a point located in the middle line of the cross-section

452 F.E. Dotti et al. / Applied Mathematical Modelling 40 (2016) 451–467



a damping proportionality factor
b damping proportionality factor
D vector of generalized strains
DuHK crack breathing index
hx warping variable
hy, hz bending twists
k auxiliary integration variable
n crack location (axial coordinate of the crack)
P total potential energy
- driving frequency, expressed in s�1

-B bilinear frequency, expressed in s�1

xp primary warping function associated to the uncracked cross-section
s0 time constant arbitrarily chosen to improve visualization of Poincaré maps
f damping ratio
ð�Þ0 subscript associated to the uncracked cross-section
ð�Þ~a subscript associated to the cracked cross-section (with x as integration variable)
ð�Þk subscript associated to the cracked cross-section (with k as integration variable)
tð�Þ superscript denoting time dependence
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dependent. The most extended approach is the use of a bilinear model, i.e. a piecewise linear stiffness, combining the open
crack case and the uncracked case [24,25]. The exchange strategy is based on checking the status (open or closed) of the
crack, using different control variables such as natural frequencies [26], structural damping [27], bending rotations [28–
30], displacements [21], excitation frequency (only for low frequencies) [10,31] or shaft periodicity (only in the case of
rotors) [32–34]. More sophisticated models have treated breathing as a contact problem [35–37]. These approaches are
probably more realistic, but they can also be impractical for crack detection since the computation time is often prohibitive,
especially in relatively complex structures such as thin-walled beams. Furthermore, experimental tests could be needed in
order to validate numerical methods devoted to the identification of breathing cracks [38].

This article aims to give a picture of the non-linear dynamics of thin-walled beams with breathing cracks. For such pur-
pose, a finite element is introduced as an extension of the one-dimensional formulation originally proposed in Ref. [16] for
intact beams. This is an element with two nodes and seven degrees-of-freedom per node, and accounts for shear flexibility
due to bending and warping. The breathing effect is modeled as a bilinear stiffness, employing the relative axial displace-
ments of the cracked element as closure index. Implementation is performed during the integration of the equations of
motion, through a simple adaptation of the Newmark scheme for linear systems. Using a sinusoidal excitation and taking
the driving frequency as a parameter, time history responses are obtained to search for topological changes in the vibration
motion. Since the system under study has similarities with a bilinear oscillator, these changes should be associated with the
excitation of multiples and sub-multiples of the bilinear resonances. By using tools of non-linear dynamics as bifurcation
diagrams and Poincaré maps [39], we study the possibility of period doubling, quasi-periodicity and chaotic motion in
the phase plane.
2. Beam model

2.1. A cracked thin-walled beam

Fig. 1 shows a sketch of a generic thin-walled beam with an edge crack. The points of the beam are referred to a Cartesian
coordinate system (C: x, y, z), which origin C is located at the centroid of the uncracked cross-section. An intrinsic coordinate
system (B: x, s, n) is also defined, which origin B is over the middle line of the cross-section. The coordinates of a generic point
on this middle line are Y(s) and Z(s).

A crack with depth a and location x = n is regarded as an elliptical hole (see Fig. 1). The condition c ? 0 [40–42] is strictly
necessary for the hole to actually represent a crack (with a finite value of c, it would be an elliptical notch, but not a crack).
The crack boundary can be expressed as
~aðxÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx� nÞ2

c2

s
; ð1Þ
where ~aðxÞ describes a variable cross section in the cracked zone. One can see that if c approaches to zero, then ~aðxÞ
approaches to a, and therefore the infinitesimal nature of the crack is obtained.



Fig. 1. Generic thin-walled beam with an edge crack regarded as an elliptical hole (c ? 0).
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2.2. Constitutive law

The constitutive equation for a thin-walled beam can be written as [17]
Q ¼ JD; ð2Þ
where Q is the vector of generalized beam forces, J the constitutive matrix and D the vector of generalized strains. These are
given by
Q ¼ fN;My;Mz;B;Qy;Q z; Tw; TsvgT
; ð3Þ

D ¼ @u
@x
;� @hy

@x
;� @hz

@x
;� @hx

@x
;
@v
@x
� hz;

@w
@x
� hy;

@/x

@x
� hx;

@/x

@x

� �T

: ð4Þ
The following generalized beam forces defined in Eq. (3) are: the axial force N, the bending moments My and Mz, the bimo-
ment B, the shear forces Qy and Qz, the Vlasov torque Tw and the Saint–Venant torque Tsv. The generalized strains in vector D
are defined in terms of the generalized displacements: u is the axial displacement, v and w are the displacements in direc-
tions y and z, respectively, hy and hz are the bending rotations, hx is the warping variable and /x is the torsional twist. The
constitutive matrix J is given by
J ¼

EA ESy ESz ESx 0 0 0 0
EIy EIyz EIyx 0 0 0 0

EIz EIzx 0 0 0 0
ECw 0 0 0 0

GI55 0 GI57 0
GI66 GI67 0

GI77 0
GIsv

2
66666666666664

3
77777777777775
; ð5Þ
where Isv is the Saint–Venant’s torsion constant. In Eq. (5) the following cross-sectional magnitudes have been defined
A ¼ t
Z

S
ds; Sy ¼ t

Z
S

Zds; Sz ¼ t
Z

S
Yds; Sx ¼ t

Z
S
xpds;

Iy ¼ t
Z

S
Z2ds; Iz ¼ t

Z
S

Y2ds; Iyz ¼ t
Z

S
YZds;

Iyx ¼ t
Z

S
Zxpds; Izx ¼ t

Z
S

Yxpds; Cw ¼ t
Z

S
x2

pds;

ð6Þ
and the shear coefficients [15–17], given by
I55 ¼ t
Z

S

dY
dS

� �2

þ dZ
dS

� �2
" #

ds; I66 ¼ t
Z

S
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ds;

ð7Þ
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where t is the wall thickness, xp is the primary warping function [17] and r = �ZdY/ds + YdZ/ds. S denotes the contour
perimeter of the cross-section. It becomes S0, constant, if reference is made to the intact cross-section or S~a, dependent on
x, if the cross-section contains the elliptical crack.

2.3. Energy release rate due to widening of crack mouth

The strain energy related to the generic beam in Fig. 1 can be expressed as
U ¼ 1
2

Z n�c

0
Q T J�1

0 Q dxþ
Z nþc

n�c
Q T J�1

~a Qdxþ
Z L

nþc
Q T J�1

0 Q dx
� �

; ð8Þ
where J~a and J0 are the constitutive matrices associated to the cracked and uncracked cross-section, respectively. J~a depends
on x through Eq. (1). Then, neglecting the small alterations generated in the beam forces by the presence of the crack, Eq. (8)
can be reformulated as
U ¼ 1
2

Z n�c

0
Q T J�1

0 Q dxþ cQ T
���

x¼n

Z 1

�1
J�1
k dkQ jx¼n þ

Z L

nþc
Q T J�1

0 Q dx
� �

; ð9Þ
where an additional integration variable k = (x � n)/c has been defined.
From Clapeyron’s theorem, the work of external loads is V = 2U. The potential energy is given by P = U � V, therefore

P = �U. Then the crack surface widening energy release rate [40–44] can be expressed as
G� ¼ lim
c!0

@U
@c
¼ 1

2
@

@c

Z n�c

0
Q T J�1

0 Q dxþ
Z L

nþc
Q T J�1

0 Q dx
� �

þ Q T jx¼n

Z 1

0
J�1
k dkQ jx¼n: ð10Þ
This expression can be rearranged by applying the fundamental theorem of calculus to give
G� ¼ Q T jx¼n

Z 1

0
J�1
k dk� J�1

0

� �
Q jx¼n: ð11Þ
3. Numerical implementation

3.1. Cracked finite element

Consider a generic thin-walled beam segment containing a crack at one of its branches at x ¼ �xC , as shown in Fig. 2. This
segment is represented by a beam element with two nodes, N1 and N2, and seven degrees of freedom per node, similarly as
the original element for intact beams [16]. Nevertheless, the stiffness matrix must be different from that corresponding to an
intact element, since it must take into account the coupling phenomena due to the presence of the crack. This element with
modified stiffness matrix is then introduced into a conventional finite element assembly, which is used in subsequent
analyses.

The cracked element stiffness matrix is obtained similarly as proposed in Ref. [32] for rotors, but considering specific
aspects of thin-walled beams. The element, of length LC, is loaded with axial forces P1 and P8, shear forces P2, P4 and P9,
P11, bending moments P3, P5 and P10, P12, torques P6 and P13, and bimomental forces P7 and P14. The crack is located at a dis-
tance �xC from node N1. From Castigliano’s theorem, the displacements of node N1 can be expressed as follows
wð1Þ ¼ @ðU0 þ UCÞ
@pð1Þ

; ð12Þ
Fig. 2. Generic thin-walled cracked beam element with applied nodal forces and local coordinate system.
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where U0 is the strain energy of the uncracked element and UC is the strain energy due to the presence of the crack. In Eq.
(12), displacement and force vectors have been defined respectively for the node N1 as
wð1Þ ¼ uð1Þ;v ð1Þ; hð1Þz ;wð1Þ; hð1Þy ;/ð1Þx ; hð1Þx

n oT
; ð13Þ
and
pð1Þ ¼ fP1; P2; P3; P4; P5; P6; P7gT
: ð14Þ
Nodal forces can be expressed in terms of generalized beam forces. From Fig. 2 one can obtain
N ¼ P1; Q y ¼ P2; Mz ¼ P3 � �xCP2; Q z ¼ P4;

My ¼ P5 � �xCP4; Tsv ¼ P6a; Tw ¼ P6b; B ¼ P7 � �xCP6b;
ð15Þ
where P6 = P6a + P6b since the total torque is given by Mx = Tsv + Tw [13,14].
The strain energy due to the crack can be derived from concepts of fracture mechanics [45,46] by considering the relation

J = pG⁄ and Eq. (12). That is
UC ¼
Z a

0
Jda ¼ p

Z a

0
G�da ¼ pQ T jx¼n

Z a

0

Z 1

0
J�1
k dkda� aJ�1

0

� �
Q jx¼n: ð16Þ
Now, employing Eqs. (12) and (15), and taking into account that U0 is given by
U0 ¼
1
2

Z LC

0
Q T J�1

0 Q dx; ð17Þ
the vector of nodal displacements can be expressed in terms of the vector of nodal forces as
wð1Þ ¼ FðeÞC pð1Þ; ð18Þ
where FðeÞC is the flexibility matrix of the cracked element. Since static equilibrium must be fulfilled within the element, the
stiffness matrix can be obtained as [32]
KðeÞC ¼ TT FðeÞC

� 	�1
T; ð19Þ
where a transformation matrix T has been defined as
T ¼

1 0 0 0 0 0 0 0 �1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 �1 LC 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 �1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 �1 LC 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 �1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 �1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 �1 LC

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 �1

2
66666666666664

3
77777777777775
: ð20Þ
In order to properly use the stiffness matrix KðeÞC into the conventional finite element assembly, columns and rows asso-
ciated with P6a and P6b must be condensed.

3.2. Breathing effect

The presence of a breathing crack causes the global stiffness matrix to be time dependent. In a similar manner as it has
been considered in previous models [24], breathing is simulated with a bilinear stiffness scheme. Thus, the stiffness is piece-
wise constant and the global stiffness matrix is obtained by conveniently exchanging the one associated to the intact beam
(K0) with the one obtained by considering a fully open crack (KC). Therefore, the global stiffness matrix of the beam with a
breathing crack is expressed as
KB ¼
K0 if tDuHK < 0
KC if tDuHK P 0

�
: ð21Þ
The crack is assumed to be closed if the breathing index tDuHK is negative, and open if it is positive. The index tDuHK is
given by the difference among the axial displacements of the points H and K, shown in Fig. 2. That is
tDuHK ¼ tuðKÞx � tuðHÞx : ð22Þ
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Displacements tuðHÞx and tuðKÞx are obtained from the displacement field of the beam model [16], having the following
expressions
tuðHÞx ¼ tuðxHÞ � yH
thzðxHÞ � zK

thyðxHÞ �xthxðxHÞ; ð23Þ

tuðKÞx ¼ tuðxKÞ � yK
thzðxKÞ � zK

thyðxKÞ �xthxðxKÞ; ð24Þ
where fxH ¼ n� �xC ; yH; zHg and fxK ¼ nþ LC � �xC ; yK ; zKg are the coordinates of the points H and K respectively. The super-
script t on the left of the displacement magnitudes denotes time dependence.

The bilinear model represented by Eq. (21) preserves the properties of two linear models: fully open crack and intact
beam. All the nonlinear features of the model are derived from the crack breathing mechanism. This form of considering
breathing is easily adaptable to a finite element model, capturing the main source of nonlinearity of a fatigue crack at a rel-
atively low computational cost.

3.3. Damping

The damping matrix D is assumed to be proportional to a combination of the mass and the stiffness matrices correspond-
ing to the case of the intact beam, namely
D ¼ aMþ bK0; ð25Þ
where a and b are proportionality factors which can be evaluated if the damping ratios associated with two specific modes
are known [46]. Because detailed information about the variation of damping ratio with frequency is not available, we
assume that the same damping ratio, f, applies to two control frequencies: the fundamental frequency, -1, and the higher
frequency which contributes significantly to the dynamic response, -n. Thus, a and b are calculated approximately by using
the following formula given by Clough and Penzien [46]
a
b

� �
¼ 2f

-1 þ-n

-1-n

1

� �
: ð26Þ
Although this way of considering damping is very simple and usually employed [9,10], it is in fact a rough approximation.
First of all, an important matter is missed: the presence of fatigue cracks cause an increase of damping. This increase is
mainly due to the energy dissipated by elasto-plastic deformations in the vicinity of the crack tip and, in a lesser extent,
to friction among the crack surfaces [47,48]. This energy dissipation is was shown to be proportional to the thickness
[47,49], which is a small magnitude in thin-walled beams. Besides, in the range of stresses of interest in engineering, the
increase of damping due to the crack must be studied regarding damping as a function of the amplitude of vibration.

The damping level of the system was found to have considerable influence on the harmonic resonances and bifurcation
phenomena of cracked structures [33,50]. Therefore damping must be carefully determined before employing the present
model as a tool for damage detection. Consequently, more experimental and analytical research is needed to quantify the
increase of damping by the presence of a fatigue crack in thin-walled beams.

3.4. Note on the solution of the dynamic equilibrium equation

In a general case, the equation of forced vibrations of a beam with a breathing crack is non-linear [51]. But if the crack is
small to moderate, the nonlinearity introduced by the breathing effect can be considered as weak since the percentage
change in the components of the stiffness matrix is small [52]. Thus, instead of solving the nonlinear equation of motion,
the linear equation can be solved considering this small variation of the stiffness [10]. The dynamic equilibrium equation
is then solved using the classic Newmark implicit integration scheme for linear systems. Using this technique, a small error
is introduced during the process of change of state of the crack (open to closed and vice versa). This is due to the imbalance
between internal and external forces generated by the sudden change of the stiffness matrix. This error decreases to the
point of being negligible if a relatively small time step is used in the integration, keeping the advantage of solving an almost
entirely linear problem.

4. Numerical results and discussion

4.1. Overview

In this section, we examine the nonlinear vibratory behavior of a cracked thin-walled beam. Numerical calculations are
performed for a cantilever beam with U-shaped cross-section, as shown in Fig. 3, with dimensions: h = 0.2 m, b = 0.1 m,
t = 0.01 m and L = 2 m. We consider a crack located at one flange of the cross-section, which results in the coupling of flexural
and torsional motion. Crack location and depth are n/L = 0.1 and a/b = 0.5 respectively. The beam is made of carbon steel with
the following material properties: Young modulus E = 210 GPa, shear modulus G = 80.76 GPa, Poisson ratio m = 0.3 and mass
density q = 7830 kg/m3. Five frequencies are considered to contribute significantly to the dynamic response and 1 is assumed



Fig. 3. (a) Cross sectional shape under study with its corresponding crack disposition. (b) Location of the point Pf = {L, �b2/(2b + h), 0} where displacements
are measured.
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to be 0.02, as in Ref. [9]. The free end of the beam is loaded with a shear sinusoidal force given by Qy(L) = 5000 Nsin(- t) and
f = -/(2p) is defined in order to express the driving frequency in Hz. We arbitrarily chose the forcing amplitude ensuring that
there is no evidence of geometric nonlinear response in the undamaged case. It is assumed that, within the loading history,
the crack remains stable and no propagation takes place.

Newmark implementation is based on the procedure in Ref. [53], with a slight adaptation: at each time step, expression
(21) is evaluated to determine the global stiffness matrix, without the need of iterations. The robustness of this numerical
procedure is checked in all the performed analyses. Although time histories can be obtained with acceptable accuracy using
25 elements and 40 calculations per loading period, a total of 35 elements and 120 calculations are employed to obtain very
accurate results in the phase plane and bifurcation diagram. Displacements, velocities and accelerations are observed at the
point Pf, which is defined in Fig. 3.

4.2. Validation of the model

To validate the model, we compare time histories of motion with results obtained from a shell model, programmed in
ABAQUS. This shell model is a higher hierarchy model, in which breathing effect is modeled as a contact problem. The crack
is modeled as a couple of contact interfaces, with duplicated nodes. We consider edge-to-edge contact with the following
conditions: Hard contact for normal interaction, which allows total transmission of pressure when the surfaces are in con-
tact; after contact, separation is allowed, taking place if the contact pressure is reduced to zero. Tangential behavior is mod-
eled with the rough friction formulation, which prevents sliding once contact has occurred [54]. This procedure is similar to
that employed in Ref. [35,36] for Euler–Bernoulli beams. Time histories of the shell model are obtained with the ⁄DYNAMIC
procedure of ABAQUS/Explicit [55].

Fig. 4 shows a comparison among shell and beam models. A very good agreement can be noted for displacements ux and
uy, i.e. axial displacement and displacement in the direction of the load, respectively. Some minor differences can be
observed for the transversal displacement, uz, but the results are also fairly good. Of course, it may be taken into account
that in real physics, as has been pointed by Brandon and co-workers [28,56], there is no unique instant of closure.
Indeed, it has been shown [57] that minor variations in the modeling of the crack transition (open to closed, and vice versa)
Fig. 4. Time history of displacements for the point Pf, comparison with ABAQUS. Excitation frequency: f = 10 Hz.
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Fig. 5. Phase plane portrait of the relative axial motion among the free ends of the crack. Excitation frequency: f = 10 Hz.

(a) (b)

Fig. 6. Amplitude vs. driving frequency for displacements (a) uy (s0 = 0.75Tf) and (b) uz (s0 = 0.75Tf). Time discarded to reach steady state: 2.6 s.

(a) (b)

Fig. 7. Bifurcation diagram of displacements (a) uy (s0 = 0.75Tf) and (b) uz (s0 = 0.75Tf). Time discarded to reach steady state: 2.6 s.
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(a) (b) (c)

Fig. 8. (i) Orbit plots and Poincaré maps (points in red) for displacement uy and (ii) associated time histories of motion. Excitation frequency: (a)
f = 10.66 Hz, (b) f = 10.96 Hz, (c) f = 11.17 Hz. s0 = 0.75Tf. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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can result in significant discrepancies in simulated time domain records. Hence, we consider the result of the comparison as
highly satisfactory. However, laboratory experiments must be performed in order to confirm the closure hypotheses of both
models. Besides the results of Fig. 4, other comparisons were performed yielding similar results.

The impulsive behavior of breathing is an event which can be observed within the shell model. Fig. 5 shows the phase
plane portrait of the relative axial motion among the free ends of the crack. An abrupt change in relative velocity is observed
at the moment of closure, which evidences a ‘‘quasi-impulsive’’ behavior, in concordance with the results in Ref. [36] for
Euler–Bernoulli beams.

Calculations were performed employing a regular desktop PC. It is worth noting that the beam model takes around one
hundred seconds for the simulation of three seconds (this varies with the driving frequency, since the amount of calculations
per loading period is fixed). Meanwhile, the shell model requires about two days of computing, for an equivalent simulation.
This feature clearly shows the importance of simplified models in the field of structural health monitoring, where calcula-
tions must be performed in real time.

4.3. Analysis of topological stability

Using the driving frequency as a parameter, the topological stability of the system is studied. Amplitude–Frequency
graphics are observed and then bifurcation diagrams are constructed from Poincaré maps. These maps are obtained by using
the sampling rule tn = Tf + s0, where Tf is the period of the driving motion and s0 is a constant arbitrarily chosen in order to
improve visualization [39].

The study focuses mainly on the excitation of harmonic resonances, which is a common feature of non-linear systems. As
the system under study is similar to a bilinear oscillator, these harmonics are located approximately at multiples and
sub-multiples of each bilinear frequency, given by:
-B ¼ 2-0-C=ð-0 þ-CÞ; ð25Þ



(a) (b) (c)

Fig. 9. (i) Orbit plots and Poincaré maps (points in red) for displacement uz and (ii) associated time histories of motion. Excitation frequency: (a)
f = 10.66 Hz, (b) f = 10.96 Hz, (c) f = 11.17 Hz. s0 = 0.75Tf. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

(a) (b)

Fig. 10. Amplitude vs. driving frequency for displacements (a) uy (s0 = 0.5Tf) and (b) uz (s0 = 0). Time discarded to reach steady state: 2.5 s.

F.E. Dotti et al. / Applied Mathematical Modelling 40 (2016) 451–467 461
where -0 and -C are generic natural frequencies of the two sub-models: intact beam and open crack, respectively [23,36].
From (25) the first four bilinear frequencies expressed in Hz, fB = -B/(2p), of the system under study are calculated to give:
22.09 Hz, 30.77 Hz, 72.48 Hz and 131.33 Hz.



(a) (b)

Fig. 11. Bifurcation diagram of displacements (a) uy (s0 = 0.5Tf) and (b) uz (s0 = 0). Time discarded to reach steady state: 2.5 s.

(a) (b) (c)

Fig. 12. (i) Orbit plots and Poincaré maps (points in red) for displacement uy and (ii) associated time histories of motion. Excitation frequency: (a)
f = 43.02 Hz, (b) f = 43.77 Hz, (c) f = 44.66 Hz. s0 = 0.5Tf. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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First we study the response over a driving frequency range of 9–12 Hz (Figs. 6–9). Displacements uy and uz of the point Pf

are obtained by solving the equations of motion with increments of 0.0025 Hz. For the main displacement (uy), Fig. 6a shows
a pronounced peak almost at 11 Hz. This is very close to the sub-harmonic of order 1/2 of the first bilinear resonance,



(a) (b) (c)

Fig. 13. (i) Orbit plots and Poincaré maps (points in red) for displacement uz and (ii) associated time histories of motion. Excitation frequency: (a)
f = 42.67 Hz, (b) f = 43.77 Hz, (c) f = 44.66 Hz. s0 = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

(a) (b)

Fig. 14. Amplitude vs. driving frequency for displacements (a) uy (s0 = 0) and (b) uz (s0 = 0). Time discarded to reach steady state: 3.5 s.
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corresponding to 11.044 Hz. For the transverse displacement (uz) Fig. 6b shows a higher amplitude peak at approximately
10.2 Hz; this is next to the sub-harmonic 1/3 of the second bilinear resonance, which is 10.256 Hz. The second resonance
has a flexural motion on xz plane, with the consequent strong influence in uz and low influence in uy. The first resonance
is mainly flexural on xy plane, hence it has an important influence in uy.



(a) (b)

Fig. 15. Bifurcation diagram of displacements (a) uy (s0 = 0) and (b) uz (s0 = 0). Time discarded to reach steady state: 3.5 s.

(a) (b) (c)

Fig. 16. (i) Orbit plots and Poincaré maps (points in red) for displacement uy and (ii) associated time histories of motion. Excitation frequency: (a)
f = 91.27 Hz, (b) f = 92.30 Hz, (c) f = 94.00 Hz. s0 = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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As the driving frequency increases, the motion reveals as synchronous with period one in bifurcation diagrams of Fig. 7.
For some values of the parameter, orbit plots with superimposed Poincaré maps are presented in Figs. 8 and 9. The pertur-
bation in the curve of Fig. 7a is given by a swirl, but maintaining period one, as can be seen clearly in Poincaré maps of Fig. 8.



(a) (b) (c)

Fig. 17. (i) Orbit plots and Poincaré maps (points in red) for displacement uz and (ii) associated time histories of motion. Excitation frequency: (a)
f = 91.27 Hz, (b) f = 92.30 Hz, (c) f = 94.00 Hz. s0 = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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This loop initiates at approximately 10.06 Hz and ends at 11.70 Hz, characterizing the strong sub-harmonic behavior [58]
associated to the crack closing event. This ‘signature’ of the breathing crack is evidenced as a perturbation in time histories
of Fig. 8. For Euler–Bernoulli beams, this was shown experimentally by Prime and Shevitz [59].

Some minor perturbations are present in the response curve of uz, as can be seen in the bifurcation diagram of Fig. 7b.
These correspond to instabilities which happen within a narrow range of the parameter. In practical terms, the period of
the response do not change. This is shown in Fig. 9, as Poincaré maps give a point denoting period one. Orbits present many
loops due to the important torsional contribution to displacement uz.

Results in Figs. 10–13 are employed to study the response over the excitation range 42–48 Hz. Amplitude–Frequency
graphics of Fig. 10, obtained by solving with increments of 0.005 Hz, reveal amplitude peaks in the region of 44 Hz. This
is approximately twice the first bilinear resonance, i.e. 44.18 Hz. This is a super-harmonic resonance which is accompanied
by period doubling, as evidenced by the bifurcation diagrams of Fig. 11 and Poincaré maps of Figs. 12 and 13. The motion
bifurcates from period one to period two when the driving frequency reaches 42.47 Hz and then returns to period one at
44.75 Hz.

Finally, we study the response in the neighborhood of super-harmonic 3/1 of the second bilinear frequency, which is
located at 92.31 Hz. Amplitude peaks are located at a frequency slightly higher, 93 Hz (refer to Fig. 14), the system maintain-
ing its analogy with the bilinear oscillator. Equations of motion are solved in this case for the range 85–100 Hz, with incre-
ments of 0.01 Hz. As can be seen in bifurcation diagrams of Fig. 15, the vibrating beam enters into an intricate motion at
approximately 91.2 Hz. This motion results to be quasi-periodic as we observe the associated Poincaré maps of
Figs. 16(i)–17(i). Quasi-periodicity is reached directly from period one, as can be seen in Figs. 16a(i) and 17a(i) which rep-
resent the onset of the quasi-periodic motion. Poincaré maps give in these cases an ‘elliptic point’ as transition among period
one (point) and quasi-period motion (elliptic orbit). The motion leaves quasi-periodic motion at approximately 95.1 Hz. We
observe, within the range of quasi-periodicity, that the characteristic toroidal structure is never broken and hence chaos is
not reached. Quasi-periodicity appears to be a not so uncommon phenomenon, as is also observed in other harmonic
resonances.
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5. Conclusions

In this article, we introduce a refined one-dimensional model to study the dynamics of thin-walled beams with breathing
cracks. By virtue of its combination of accuracy and simplicity, this model represents an interesting tool with potential appli-
cations to damage identification in slender structures. The breathing effect is modeled with the classic bilinear stiffness,
employing the relative axial displacements of the nodes of a cracked finite element as closure index. Implementation is per-
formed during the integration of the equations of motion, through a simple adaptation of the Newmark scheme for linear
systems.

Using the driving frequency as a parameter, the non-linear features derived from the breathing effect are studied in a can-
tilever beam with a crack at one of its flanges. Even with a simple sinusoidal excitation, a variety of topological changes are
observed in the vibration motion. These changes are observed at multiples and sub-multiples of the bilinear resonances,
showing the similarity of the system under study with a bilinear oscillator. Period doubling and quasi-periodic motion
are evidenced by using bifurcation diagrams and Poincaré maps. Although quasi-periodicity can be a route to chaos, we
observe in this case that the characteristic toroidal structure is never broken and hence chaos is not reached.

Although model accuracy is tested against a higher hierarchy model, numerical studies presented must be compared with
experimental results in order to perform a stronger validation.
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