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On some subvarieties of IMTn-algebras and the
partitions of the m-cube

Juan M. Cornejo and Laura A. Rueda

Abstract. The aim of this paper is to study the variety IMTn and some of its sub-
varieties. After proving some general properties of IMTn-chains, we characterize
IMT 4-chains and we provide a complete description of some subvarieties of IMT4.
We establish a relationship between totally symmetric partitions of the m-cube and
IMT 4-chains, and as a consequence of this relationship, we give a procedure to con-
struct all finite IMT 4-chains.

1. Introduction and preliminaries

A bounded, integral, residuated, lattice-ordered, commutative monoid, or

bounded residuated lattice for short, is an algebra A = 〈A,∧,∨, ∗,→,⊥,�〉 of
type 〈2, 2, 2, 2, 0, 0〉 such that 〈A, ∗,�〉 is a commutative monoid, 〈A,∧,∨,⊥,�〉
is a bounded lattice with greatest element � and least element ⊥, and the

residuation condition

a ∗ b ≤ c if and only if a ≤ b → c (1.1)

holds for any a, b, c ∈ A, where ≤ is the order given by the lattice structure.

On a residuated lattice A, we consider the unary operation ¬x := x → ⊥
for all x ∈ A.

An MTL-algebra is a bounded residuated lattice satisfying the pre-linearity

equation

(x → y) ∨ (y → x) ≈ �, (1.2)

and an IMTL-algebra is an MTL-algebra satisfying the involutive equation

¬¬x ≈ x. (1.3)

The variety of IMTL-algebras is represented by IMTL.
The variety of MTL-algebras was introduced by F. Esteva and L. Godo in

2001 as the algebraic counterpart of the logic of all left-continuous t-norms and

their residua [2]. This variety contains the variety of BL-algebras (introduced

by Hájek in 1998), corresponding to the basic fuzzy logic, and the variety
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of IMTL-algebras, the algebraic counterpart of IMTL logic or involutive t-

norm logic, which is the sentential logic with completeness relative to the class

of involutive t-norms. An interesting problem is to determine and classify

the axiomatic extensions of BL logic and IMTL logic, which is equivalent to

determining the subvarieties of the equational class of BL-algebras and IMTL-

algebras, respectively, and there is a considerable work done in the literature in

that sense (see for instance [1, 3, 5, 6, 7, 11, 12]). This paper is a contribution

to the study of some subvarieties of a particular subvariety of IMTL, namely

the variety IMTn of all IMTL-algebras that satisfy, for n ∈ ω, the equation

¬xn ∨ x ≈ �. (1.4)

The study of the subvarieties of IMTn was initiated by J. Gispert and

A. Torrens in [5], where they characterize and classify the subvarieties of the

variety IMT3, and that work is the starting point of the present paper.

This paper is organized as follows. In Section 2, we prove some general

properties of the variety IMTn. The complexity of the problem of character-

izing the subvarieties of IMTn is reflected in Section 3, where we study the

particular subvariety IMT4. We give a description of IMT 4-chains and we

provide a complete description of several subvarieties of IMT4. In Section 4,

we establish a bijective correspondence between the finite chains in IMT4 and

the totally symmetric partitions of the m-cube. This correspondence allows us

to determine the number of IMT 4-structures that can be defined over a finite

chain.

We assume that the reader has some familiarity with residuated lattices.

We recommend [4] and [9] and the references given there.

In the next lemma, we list, for further reference, some well-known proper-

ties.

Lemma 1.1. The following properties hold true in any residuated lattice A,

where a, b, c denote arbitrary elements of A:

(1) a ≤ b if and only if a → b = �,

(2) if a ≤ b, then ¬ b ≤ ¬ a,

(3) a ∗ ¬ a = ⊥,

(4) if a ≤ b, then a ∗ c ≤ b ∗ c,
(5) a → (b → c) = (a ∗ b) → c,

(6) a ∗ (a → b) ≤ b.

The following lemma will be used throughout this paper.

Lemma 1.2. Let A = 〈A,∧,∨, ∗,¬,⊥,�〉 be an algebra that satisfies the

following properties:

(1) 〈A,∧,∨,⊥,�〉 is a bounded lattice,

(2) 〈A, ∗,�〉 is a commutative monoid,

(3) ¬¬ a = a for all a ∈ A,

(4) if a ≤ b, then ¬ b ≤ ¬ a for all a, b ∈ A,
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(5) a ≤ ¬ b if and only if a ∗ b = ⊥ for all a, b ∈ A.

Then A = 〈A,∧,∨, ∗,¬,⊥,�〉 is a bounded residuated lattice, with x → y :=

¬ (x ∗ ¬ y).

Proof. We define in A the implication x → y := ¬ (x ∗ ¬ y). In order to prove

that A is a residuated lattice, it is enough to check that

a ∗ b ≤ c if and only if a ≤ b → c.

First, we are going to see that a ≤ b if and only if a → b = � for all a, b ∈ A.

Let a, b ∈ A. If we assume that a ≤ b, then by (3), we have that a ≤ ¬¬ b.

By (5), a ∗ ¬ b ≤ ⊥. Using (4), we have that ¬ (a ∗ ¬ b) ≥ ¬⊥ = �. Hence,

a → b = �. The proof is similar for the converse.

To prove the desired condition, it is enough to observe that

(a ∗ b) → c = ¬ ((a ∗ b) ∗ ¬ c) = ¬ (a ∗ (b ∗ ¬ c)) = ¬ (a ∗ ¬¬ (b ∗ ¬ c))

= a → (¬ (b ∗ ¬ c)) = a → (b → c). �

Observe that the operation → is uniquely determined by ¬ and ∗.
In this work, C = 〈C,∧,∨, ∗,→,⊥,�〉 will denote an IMTL-chain (or IMTL-

algebra totally ordered by the lattice partial order). Observe that C contains

at most one element satisfying the condition ¬ a = a; this unique element

will be represented by 0, whenever it exists. We consider the sets C+ =

{a ∈ C : a > ¬a} and C− = {a ∈ C : a ≤ ¬ a} of positive and negative

elements, respectively (see [11, Definition 3]). If S = {s ∈ C+ : s �= �} and

¬S = {s ∈ C− : s �= ⊥, 0}, then either C = {⊥} ∪ ¬S ∪ {0} ∪ S ∪ {�} or

C = {⊥} ∪ ¬S ∪ S ∪ {�}. By Lemma 1.1, for all r, s ∈ S, ¬ s ∗ ¬r = ⊥,

and we have that s ∗ ¬ r = ⊥ if and only if s ≤ r. If 0 ∈ C, then 02 = ⊥
and ¬ s ∗ 0 = ⊥. In particular, the product on an IMTL-chain C is completely

determined by its values on S ∪ {0}.

2. The variety IMTn

In this section, we prove some general properties of the variety IMTn. Recall
that the variety IMTn is the subvariety of IMTL characterized by the identity

¬xn ∨ x ≈ �.

The class IMTn is a discriminator variety [8]. As in [5], if we take the term

η(x, y) = ((x → y) ∗ (y → x))n, then the sentence

∀x∀y(((x ≈ y) ⇔ η(x, y) = �)&((x �≈ y) ⇔ η(x, y) = ⊥))

holds in all IMTn-chains, and hence the interpretation of the term

t(x, y, z) = (η(x, y) ∧ z) ∨ (¬η(x, y) ∧ x)

gives a discriminator function in each IMTn-chain. Hence, subdirectly irre-

ducible algebras in IMTn are all simple, and so each IMTn-algebra is semisim-

ple. Moreover, since any IMTL-algebra is isomorphic to a subdirect product

of IMTL-chains, then the variety IMTn is generated by IMTn-chains.
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We can generalize [5, Lemma 2.4] as follows.

Lemma 2.1. If C is an IMTn-chain with |C| ≥ 4, then for all a1, a2, . . . , an−1

in C \ {�},

a1 ∗ a2 ∗ · · · ∗ an−1 �= ⊥ implies a1 ∗ a2 ∗ · · · ∗ an−1 = min(C \ {⊥}).

The element min(C \ {⊥}) will be represented by −1.

From Lemma 2.1, maxS exists and we write 1 = maxS. It is clear that

¬ 1 = −1.

Let us write IMTn− to denote the class IMTn \ IMT(n−1). If C ∈ IMTn−,
then 1n = ⊥ and 1n−1 = −1. Indeed, the first identity is a consequence of

(1.4), and since 1n−1 ∗ 1 = 1n = ⊥, we have that 1n−1 ≤ ¬ 1 = −1. But

1n−1 �= ⊥ by hypothesis, so 1n−1 = −1.

The next lemma shows that in an IMTn-chain, the powers of 1 give us some

information about the product operation. For example, for C ∈ IMTn−, if n
is even, then 1

n
2 is in the lower half of the chain, whereas 1

n
2−1 is in the upper

half of the chain. A similar result holds for n odd and the elements 1
n+1
2 and

1
n−1
2 . In addition, if r, s ∈ S but they are smaller than 1

n−1
2 , then s ∗ r = −1.

Lemma 2.2. If C ∈ IMTn−, then

(1) For n even, 1
n
2 ≤ ¬ 1

n
2 and ¬ 1

n
2−1 < 1

n
2−1.

(2) For n odd, 1
n+1
2 < ¬ 1

n+1
2 , ¬ 1

n−1
2 < 1

n−1
2 , and if r, s ∈ S, s ≤ 1

n−1
2 , and

r ≤ 1
n−1
2 , then s ∗ r = −1.

(3) For 1 < m < n, 1n−m ≤ ¬ 1m < 1n−m−1.

Proof. (1): If n is even, ⊥ = 1n = 1
n
2 ∗ 1n

2 , and so 1
n
2 ≤ ¬ 1

n
2 . If we suppose

that ¬ 1
n
2−1 ≮ 1

n
2−1, then 1

n
2−1 ≤ ¬ 1

n
2−1, and by Lemma 1.1, we have

1n−2 = ⊥, and then C ∈ IMT(n− 2), a contradiction.

(2): If n is odd, ⊥ = 1n = 1
n−1
2 ∗ 1

n+1
2 , and then 1

n−1
2 ≤ ¬ 1

n+1
2 . Since

1
n+1
2 < 1

n−1
2 , it follows that 1

n+1
2 < ¬1n+1

2 .

In order to prove that ¬ 1
n−1
2 < 1

n−1
2 , suppose that ¬ 1

n−1
2 ≮ 1

n−1
2 . Then

1
n−1
2 ≤ ¬ 1

n−1
2 . So −1 = 1n−1 = 1

n−1
2 ∗ 1n−1

2 = ⊥, a contradiction.

From s ≤ 1
n−1
2 and r ≤ 1

n−1
2 , we have s ∗ r ≤ 1

n−1
2 ∗ 1n−1

2 = 1n−1 = −1.

As r, s ∈ S and s ∗ r �= ⊥, so we have that s ∗ r = −1.

(3): The proof is similar. �

We shall write a ≺ b (or b � a) whenever a < b and there is no element c in

C with a < c < b. For any real number α, we write [α] to denote the greatest

integer which is less than or equal to α.

Remark 2.3. Let C ∈ IMTn− such that 1k ≺ 1k−1 ≺ · · · ≺ 12 ≺ 1, k ≤ [n−1
2 ];

then −1 = 1n−1 ≺ 1n−2 ≺ · · · ≺ 1n−k+1 ≺ 1n−k. Indeed, if for some t with

1 ≤ t < k, we have 1n−t < a < 1n−t−1, then ¬ 1n−t−1 < ¬ a < ¬ 1n−t, and

since 1n−t−1 ∗ 1t+1 = ⊥, we have that 1t+1 ≤ ¬ 1n−t−1, so 1t+1 < ¬ a, a

contradiction.
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The converse of the previous remark does not hold, as the following example

shows.

Example 2.4. Let C = 〈C,∧,∨, ∗,¬,⊥,�〉 ∈ IMT4−, such that 1 ∗ ¬ 12 =

13 = (¬12)2 = ¬ 1, see Figure 1.

�

�

�

�

�

�

⊥
¬ 1

12
¬ 12
1

�

Figure 1

We have that 13 ≺ 12 (14−1 ≺ 14−2), but 12 ⊀ 1.

Observe that for each k ≥ n+ 1 for n odd, there exists a unique k-element

chain in IMTn with 1
n−1
2 ≺ 1

n−3
2 ≺ · · · ≺ 12 ≺ 1, since by Lemma 2.2 (b), the

product s ∗ r is uniquely determined for s, r ≤ 1
n−1
2 .

Proposition 2.5. If C ∈ IMTn, |C| ≥ 4, a, b ∈ C, and a ≺ b, then ¬ a ∗ b =
−1.

Proof. Since a < b, we have that ¬ a ∗ b �= ⊥. Let us see that ¬ a ∗ b ≤ −1.

First observe that b ∗ 1 < b. Indeed, we know that b ∗ 1 ≤ b. If we suppose

that b ∗ 1 = b, then b ∗ 12 = b ∗ 1 = b, and so b ∗ 1n = b ∗ 1n−1 = · · · = b, so

b = ⊥, which is not possible since a ≺ b. Now, from b ∗ 1 < b, since a ≺ b, it

follows that b ∗ 1 ≤ a. Then ¬ a ∗ b ∗ 1 ≤ ¬ a ∗ a = ⊥, and this implies that

¬ a ∗ b ≤ −1. �

Corollary 2.6. Let C ∈ IMTn with |C| ≥ 4.

(1) If 0 ∈ C and 0 ≺ s, then 0 ∗ s = −1.

(2) If ¬ s ≺ s, then s2 = −1.

In [5, Lemma 2.7], J. Gispert and A. Torrens proved that the variety IMT3
is locally finite. This result is no longer true for n ≥ 4, as has been proved in

[6, Theorem 4.31], where the authors construct an infinite 2-generated chain.

In the following example, we provide an infinite 1-generated IMT 4-chain.

Example 2.7. Consider the chain B = {bi : i ∈ ω} ∪ {1} ordered by

· · · < b6 < b4 < b2 < b1 < b3 < b5 < · · · < 1.

Let −B = {−b : b ∈ B} and define an order in D = {⊥}∪−B ∪{0}∪B ∪{�}
as follows: for c ∈ D, let ⊥ ≤ c ≤ �, and for bi, bj ∈ B, let 0 < bi, −bi < 0,

−1 < −bi, −bi < bj , and let −bi ≤ −bj if bj ≤ bi. We define on D the

operations ¬, ∗ and →.
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(¬): For all b ∈ B, let ¬� = ⊥,¬ b = −b,¬ 0 = 0,¬(−b) = b, ¬⊥ = �.

(∗): For all c, d ∈ D, bi, bj ∈ B, and e ∈ D with e �= �, let c ∗ d = d ∗ c,

c ∗ � = c, ⊥ ∗ c = −bi ∗ −bj = 0 ∗ 0 = −1 ∗ e = −bi ∗ 0 = ⊥, 0 ∗ bi = −1,

12 = bi ∗ 1 = 0, −bi ∗ bj =
{
−1 if bi < bj ,

⊥ if bj ≤ bi;

if i ≤ j, bi ∗bj =
{
−bj+1 if (j odd and i �= j − 1) or (j even and i = j),

−bj−1 if (j even and i �= j) or (j odd and i = j − 1).

(→): For all c, d ∈ D, let c → d = ¬ (c ∗ ¬ d).

It is not difficult to check that D = 〈D,∧,∨, ∗,→,⊥,�〉 ∈ IMT4. Observe that

for all n ∈ ω, we have that bn+1 = ¬b2n, and D is generated by the element b1.

3. The variety IMT4

The objective of this section is to characterize all the chains of the variety

IMT4. We also study some important subvarieties of IMT4 and their lattice

of subvarieties.

The following is a typical example of an IMT 4-chain, in the sense that all

chains in IMT4 are of this form.

Example 3.1. Let S = 〈S,�, 1〉 be a totally ordered set with greatest element

1 and let {⊥,�, 0} ∩ S = ∅.
Step 1. Consider −S = {−s : s ∈ S} and Λ(S) = {⊥} ∪ −S ∪ {0} ∪ S ∪ {�}.

We define a total order and a negation on Λ(S). For all a ∈ Λ(S), and all

r, s ∈ S, let ⊥ ≤ a ≤ �, r ≤ s if r � s, 0 ≤ s, −s ≤ 0, −s ≤ r, −s ≤ −r if

r � s. For all s ∈ S, let ¬� = ⊥, ¬ s = −s, ¬0 = 0, ¬(−s) = s, ¬⊥ = �.

Then Λ(S) = 〈Λ(S),∧,∨,¬,⊥,�〉 is a chain with an involutive negation. Now

we define a product for all a, b ∈ Λ(S) and r, s ∈ S:

(a) a ∗ b = b ∗ a.
(b) a ∗ � = a, ⊥ ∗ a = ⊥.

(c) Any product of elements in −S ∪{0} gives ⊥, that is, −r ∗−s = 0 ∗ 0 =

−s ∗ 0 = ⊥.

(d) 0 ∗ s = −1, s ∈ S.

(e) The product of an element in −S and an element in S is given by:

−r ∗ s =
{
−1 if r < s,

⊥ if s ≤ r.

(f) The product between elements s and r of S is: s ∗ r ∈ −S ∪ {0}, such
that (s ∗ r) ∗ t = ⊥ ⇔ s ∗ (r ∗ t) = ⊥ must hold for every t ∈ S.

It is easy to see, by Lemma 1.2, that Λ(S)
∗
= 〈Λ(S),∧,∨,¬, ∗,⊥,�〉 is a chain

of IMT4.

Step 2. Observe that in Λ(S)
∗
, if 12 < 0, then s ∗ r < 0 for all s, r ∈ S. In this

case, if we consider Ω(S) = Λ(S) \ {0}, then Ω(S) is a subuniverse of Λ(S),
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and we will write Ω(S)
∗
= 〈Ω(S),∧,∨,¬, ∗,⊥,�〉 to denote the corresponding

subalgebra of Λ(S)
∗
.

If in the previous example, instead of the condition “s ∗ r ∈ −S ∪ {0} such

that (s ∗ r) ∗ t = ⊥ ⇔ s ∗ (r ∗ t) = ⊥” we put “s ∗ r = −1”, we have the unique

product such that Λ(S)
∗
is an IMT 3-chain.

Consider � = 〈{ 1
k : k ∈ ω, k ≥ 1},≤〉, and for m ∈ ω with m ≥ 1,

m = 〈{ 1
m , 2

m , . . . , m
m = 1},≤〉 where ≤ is the usual order. If S = ∅, Ω(∅)∗ will

be denoted by Ω(0)∗ and is isomorphic to the two element Boolean algebra.

Also, Λ(∅)∗ = Λ(0)∗ is isomorphic to the three-element MV-chain, and Ω(1)∗

is isomorphic to the four-element IMT3-chain. If |C| > 4, there exists more

than one product operation that can be defined to obtain a structure of IMT4-

chain on C.

Let us see now that all the chains in IMT4 are as in the previous example.

Let C be a chain in IMT4. Recall that 14 = ⊥ and 13 = ⊥ if and only

if C ∈ IMT3, and so if s ∈ S = {s ∈ C+ : s �= �}, then s3 ∈ {⊥,−1}. In

addition, 12 ≤ ¬ 12, and for all r, s ∈ S, s ∗ r ≤ ¬(s ∗ r).

Lemma 3.2. Let C ∈ IMT4 with |C| > 4. Let r, s ∈ S.

(1) If r < s, then ¬ r ∗ s = −1.

(2) If 0 ∈ C, then 0 ∗ s = −1.

Proof. (1): Since 12 ≤ ¬ 12, we have that 12 ≤ r. Then ¬ r ∗ 12 ≤ ¬ r ∗ r = ⊥.

Therefore, ¬ r ∗ 1 ≤ −1 and consequently ¬ r ∗ 1 = −1 since 1 � r. As well as

s ≤ 1, then ¬ r ∗ s ≤ ¬ r ∗ 1 = −1. So ¬ r ∗ s = −1 because s � r.

(2): From 12 ≤ ¬0, we have 12 ∗ 0 = ⊥. Thus, 1 ∗ 0 = −1. Since s ∈ S, we

have that 0 ∗ s = −1. �

Theorem 3.3. If C ∈ IMT4, then there exists a totally ordered set S such

that C is isomorphic to either Λ(S)
∗
or Ω(S)

∗
.

Observe that in order to construct a structure of an IMT4-algebra over a

totally ordered set, it is enough to define an operation ∗ over the set S that

satisfies s∗r ∈ −S∪{0} with (s∗r)∗t = ⊥ ⇔ s∗(r∗t) = ⊥ (see Example 3.1).

In the next subsections, we shall study three subvarieties of IMT4 and their

corresponding lattices of subvarieties.

3.1. The subvariety MIMT4. We consider now the subvariety MIMT4 of

IMT4 characterized within IMT4 by the equation

¬x2 ∨ (¬x2 → x2) ≈ �. (3.1)

Lemma 3.4. Let C ∈ IMT4 such that |C| > 4. The following conditions are

equivalent:

(1) C ∈ MIMT4.
(2) 0 ∈ C and s ∗ r = 0 for all s, r ∈ S.
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Proof. (2) implies (1): It is clear that if 0 ∈ C and s ∗ r = 0 for all s, r ∈ S,

then C satisfies (3.1).

(1) implies (2): Suppose that ¬ a2∨(¬ a2 → a2) = � for every a ∈ C. Since

|C| ≥ 5, there exists d �∈ {⊥,−1, 1,�} such that ¬ d ≤ d. If ¬ d2 = �, then

d ≤ ¬ d, and thus d = 0. If ¬ d2 → d2 = �, then d2 = 0. So 0 ∈ C. Now

let s, r ∈ S such that s ≤ r. Then s2 ≤ s ∗ r. Since ¬ s2 �= �, we have that

¬s2 → s2 = �, and consequently 0 = ¬ s2 = s2 = s ∗ r. �

Observe that there is just one structure of an IMTn-algebra for chains C
with |C| ≤ 4, namely the 2-element Boolean algebra Ω(0)∗, the three-element

MV-chain Λ(0)∗, and the four-element IMT 3-chain Ω(1)∗. We have that

Ω(0)∗ and Λ(0)∗ belong to MIMT4, whereas Ω(1)∗ does not.

If C is a chain with |C| > 4, there is just one product ∗0 that can be defined

on C such that C ∈ MIMT4; C is of the form Λ(S)
∗0 , with s ∗0 r = 0 for all

s, r ∈ S.

Observe that MIMT4 is a locally finite variety.

For all k > 0, we consider the term Sk (x0, . . . , xk) =
∨

i<k (xi → xi+1).

The following result follows from [5, Lemma 3.11].

Lemma 3.5. For each C ∈ IMTL, |C| ≤ k if and only if Sk (a0, . . . , ak) = �
for all a0, . . . , ak ∈ C.

It is easy to see that for any m ∈ ω, Λ(m)
∗0 is a subalgebra of Λ(�)∗0 .

From this and the above, the next result follows immediately, where V(K)

denotes the variety generated by a class K of algebras and T is the trivial

variety.

Theorem 3.6. The variety MIMT4 is the variety generated by Λ(�)∗0 , and
the proper nontrivial subvarieties of MIMT4 are V(Ω(0)

∗
) and V(Λ(m)

∗0)
for m ∈ ω. They are axiomatized within MIMT4 by the equation ¬x ∨ x ≈ �
and by S2m+3 (x0, . . . , x2m+3) ≈ � for m ∈ ω, respectively. The lattice of

subvarieties of MIMT4 is the following (ω + 1)-type chain:

T ⊂ V
(
Ω(0)

∗) ⊂ V
(
Λ(0)

∗) ⊂ V
(
Λ(1)

∗0) ⊂ · · · ⊂ MIMT4 = V(Λ(�)∗0).

Remark 3.7. It is known ([5]) that there is just one structure of an IMT 3-

algebra definable on each chain Λ(S). Let ∗3 denote the product operation such

that Λ(S)
∗3 ∈ IMT3, and where ∗ is any product such that Λ(S)

∗ ∈ IMT4.
Recall that ∗0 is the unique product such that Λ(S)

∗0 ∈ MIMT4. Then for all

a, b ∈ Λ(S), we have a ∗3 b ≤ a ∗ b ≤ a ∗0 b.

3.2. The subvariety IIMT4. Recall that C denotes an IMTL-chain; let T =

{s ∈ C : ¬ s ≤ s, s �= �}, that is, T = S ∪ {0} if 0 ∈ C, and T = S, otherwise.

We are going to consider the subvariety of IMT4 generated by the chains C in

which T has least element i and s ∗ r = ¬ i for all r, s ∈ T \ {i}.

Lemma 3.8. Let C ∈ IMT4 such that |C| ≥ 4. If T has least element i, then

s ∗ i = −1 for all s ∈ S.
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Proof. From 14 = ⊥, we have 12 ≤ ¬ 12, so ¬ 12 ∈ T . Then i ≤ ¬ 12, thus

⊥ = 12 ∗ i = 1 ∗ 1 ∗ i. Hence, as 1 ∗ i �= ⊥, we have that 1 ∗ i = −1. But s ≤ 1

for all s ∈ S, and ¬ i < s, so we get s ∗ i = −1. �

Lemma 3.9. Let C ∈ IMT4 with |C| ≥ 5. The following conditions are

equivalent:

(1) T has least element i and s ∗ r = ¬ i for all r, s ∈ T \ {i}.
(2) C satisfies the identity

x∨y∨z∨¬x2∨¬ y2∨[(z → ¬ z)∧¬η(z,¬ z)]∨t1(x, y, z)∨t2(x, y, z) ≈ � (3.2)

with t1(x, y, z) = [(x → z) ∨ (y → z)] ∧ [(x ∗ y) → ¬ z],

t2(x, y, z) = [¬ z → (x ∗ y)] ∧ [¬ η(x ∗ y,¬ z) ∨ (z → (x ∧ y))].

Proof. (1) implies (2): Let a, b, c ∈ C. If � ∈ {a, b, c} and a ≤ ¬ a, b ≤ ¬ b,

or c < ¬c, it is easy to check (3.2). So we choose a, b ∈ S and c ∈ T . If we

consider a = i, by Lemma 3.8, a ∗ b = i ∗ b = −1. Note that in this case,

¬ c ≥ −1 = a∗ b and a = i ≤ c. Hence, t1(i, b, c) = �. For b = i, we can prove,

in a similar way, that t1(a, i, c) = �.

Therefore, we can take a, b ∈ T \ {i} and c ∈ T . By hypothesis, a ∗ b = ¬ i.

Then ¬ c ≤ ¬ i = a∗b. If c = i, then c ≤ a∧b, and if c �= i, then ¬ c < ¬ i = a∗b.
Consequently, t2(a, b, c) = �.

(2) implies (1): Consider C ∈ IMT4 that satisfies (3.2). Suppose that

C ∈ IMT3 and consider x = y = 1 and z = d ∈ T with d �= 1. Since |C| ≥ 5,

we have that ¬12 �= �. Using that d ∈ T , (d → ¬ d) ∧ ¬η(d,¬ d) �= �.

Hence, t1(1, 1, d) = � or t2(1, 1, d) = �. Since d �= 1, so t1(1, 1, d) �= �.

Therefore, t2(1, 1, d) = �. Thus, ¬ d ≤ −1, a contradiction. Then C /∈ IMT3.
Let a ∈ T and take x = y = 1 and z = a. Since a, 1 �= �, so 12 �= ⊥,

a ≥ ¬ a, and t1(1, 1, a) ∨ t2(1, 1, a) = �. Assume that t1(1, 1, a) = �. Hence,

12 ≤ ¬ a ≤ −1, and thus 13 = ⊥, a contradiction since C /∈ IMT3. Then

t2(1, 1, a) = �. Observe that ¬ a ≤ 12. This is equivalent to a ≥ ¬ 12, and

therefore ¬ 12 is the least element of T .

Let a, b ∈ T \ {¬ 12}. Then we can take x = a, y = b, and c = ¬ 12.

Therefore, t2(a, b,¬ 12) = �. Hence, 12 ≤ a∗b, and consequently a∗b = 12. �

Let IIMT4 be the subvariety of IMT4 characterized by (3.2) and let ∗i
be the unique product that can be defined on a chain C in such a way that

C ∈ IIMT4.
Observe that if C has a middle element 0, then s∗i r = 0 for all r, s ∈ S, and

consequently ∗i = ∗0 (Λ(S)
∗i = Λ(S)

∗0). In particular, MIMT4 ⊆ IIMT4. If

C has no 0, then C is of the form Ω(S)
∗i , where S has least element i and

r ∗i s = −i for all r, s ∈ S \ {i}, and s ∗i i = −1 for all s ∈ S. Observe also

that IIMT4 does not contain IMT3 as a subvariety.

Let �i = 〈{i} ∪ { 1
k : k ∈ ω, k ≥ 1},≤〉 be ordered by i < 1

k for all k ∈ ω

with ≤ the usual order on { 1
k : k ∈ ω}.
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The variety IIMT4 is locally finite. If C is a finite chain in IIMT4, then
there exists an m ∈ ω such that C is isomorphic to Λ(m)

∗i or Ω(m)
∗i . If C is

finitely generated, then C is finite and is isomorphic to a subalgebra of Λ(�)∗i

or Ω(�i)
∗i . It is also clear that IIMT4 = V(Λ(�)∗i ,Ω(�i)

∗i).
It is easy to see that for a chain C ∈ IMT4, 0 /∈ C if and only if the identity

¬η(x,¬x) ≈ � holds in C.
So we have the following result which is similar to [5, Theorem 3.13]. We

write Sr to abreviate Sr(x0, . . . , xr).

Theorem 3.10. Every proper nontrivial subvariety of IIMT4 is of one the

following types with the identities that characterize them within IIMT4:

(1) MIMT4 and its subvarieties.

(2) V(Ω(�i)
∗i), characterized by ¬η(x,¬x) ≈ �.

(3) V(Λ(�)∗i ,Ω(k)
∗i) for some k ∈ ω, characterized by

(¬x2 ∨ (¬x2 → x2)) ∨ (S2k+2 ∧ (¬η(x,¬x))) ≈ �.

(4) V(Λ(m)
∗i ,Ω(�i)

∗i) for some m ∈ ω, characterized by

(S2m+3 ∧ (¬x2 ∨ (¬x2 → x2))) ∨ ¬η(x,¬x) ≈ �.

(5) V(Λ(m)
∗i ,Ω(k)

∗i) for some k,m ∈ ω, characterized by

(S2m+3 ∧ (¬x2 ∨ (¬x2 → x2))) ∨ (S2k+2 ∧ (¬η(x,¬x))) ≈ �.

In Figure 2 we can see the lattice of subvarieties of IIMT4, where we have

omitted the superscript ∗i and where Vmk = V(Λ(m)
∗i ,Ω(k)

∗i).

3.3. The subvariety CIMT4. Our objective in this subsection is to study

the subvariety of IMT4 in which the product on the chains behaves as the one

in the IMT3-chains, except for the element 1, in which 12 �= −1. Recall that

in an IMT3-chain, s ∗ r = −1 for all r, s ∈ S (see the observation following

Example 3.1).

Lemma 3.11. Let C ∈ IMT4 with |C| ≥ 4. If −1 ≺ 12, then for all r, s ∈ S,

s ∗ r = 12 if s = r = 1 and s ∗ r = −1 otherwise.

Proof. Suppose that r < 1. Then r ≤ ¬ 12, and so

s ∗ r ≤ 1 ∗ ¬12 = 1 ∗ (1 → ¬ 1) ≤ ¬ 1.

Since s ∗ r �= ⊥, it follows that s ∗ r = −1. �
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V11 V02

V12

Figure 2. Lattice of subvarieties of IIMT4

Lemma 3.12. Let C ∈ IMT4, such that |C| > 4. Then, −1 ≺ 12 if and only

if C satisfies the identity

t1(x, y) ∨ t2(x) ∨ t3(x, y) ∨ t4(x, y) ≈ �, (3.3)

where

t1(x, y) = (x → ¬x) ∨ (y → ¬ y) ∨ x ∨ y,

t2(x) = ¬x3 ∧ η((¬x2)3, x2),

t3(x, y) = [(y ∗ ¬x3) → (¬x3)2] ∧ [¬ η(y ∗ ¬x3, (¬x3)2)]

∧ [¬ η(y,¬x3)] ∧ [¬ η(x3,⊥)] ∧ [η(y ∗ ¬x3, x3)],

t4(x, y) = [η(y,¬x3)] ∧ [x3 → (y ∗ ¬x3)] ∧ [¬ η(x3, y ∗ ¬x3)] ∧ [¬ η(x3,⊥)].

Proof. Suppose that −1 ≺ 12. Let a, b ∈ C.

If a = � or b = � or a ≤ ¬ a or b ≤ ¬ b, then t1(a, b) = �. Hence, we can

assume that a, b �= �, ¬ a < a, and ¬ b < b.

If a �= 1, by Lemma 3.11, we have that a2 = −1. Hence, a3 = ⊥. Conse-

quently, (¬ a2)3 = 13 = −1 = a2 and t2(a) = �.

Assume that a = 1. If b = 1, then we have that ¬ a3 = 1 = b. Since

b ∗ ¬ a3 = 12 � −1 = a3, so a3 → (b ∗ ¬ a3) = � and η(a3, b ∗ ¬ a3) = ⊥.

It is clear that η(a3,⊥) = ⊥ because 13 = −1. Then t4(a, b) = �. Now
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we consider the case in which b < 1. By Lemma 3.11, we can prove that

b ∗ ¬ a3 = b ∗ 1 = −1 < 12 = (¬ a3)2. Hence, (b ∗ ¬ a3) → ((¬a3)2) = � and

η(b ∗ ¬ a3, (¬ a3)2) = ⊥. So, η(a3,⊥) = ⊥, ¬ a3 = 1 > b, and consequently,

η(b,¬ a3) = ⊥. Finally, b ∗ ¬ a3 = b ∗ 1 = −1 = a3. Hence, t3(a, b) = �.

Let C ∈ IMT4 and suppose that C ∈ IMT4 satisfies (3.3). If we consider

the element 1 ∈ C, then t1(1, 1) ∨ t2(1) ∨ t3(1, 1) ∨ t4(1, 1) = �. It is clear

that t1(1, 1) �= �. Now we will prove that it is not possible to have t2(1) = �.

If t2(1) = �, then ¬ 13 = � and (¬ 12)3 = 12. Moreover, since 13 = ⊥, so

12 ≤ −1. If 12 = ⊥, then ⊥ = 12 = (¬ 12)3 = �3 = �, and if 12 = −1, then

−1 = 12 = (¬ 12)3 = 13 = ⊥. Then t2(1) �= �. This shows that t3(1, 1) = �
or t4(1, 1) = �. Then we have that ¬ η(13,⊥) = �. So, 13 = −1. Hence,

1∗¬ 13 = 12 = (¬ 13)2. Consequently, η(1∗¬ 13, (¬ 13)2) = �. So, t3(1, 1) �= �.

Therefore, the only possible case is to have the condition t4(1, 1) = �, and thus

we have that 13 → (1 ∗ ¬ 13) = � and ¬ η(13, 1 ∗ ¬ 13) = �. Hence, we have

−1 = 13 < 1 ∗ ¬ 13 = 12. Now we consider the elements a = 1, b ∈ C such

that b ≺ 1 in (3.3). As before, we have that t3(1, b) = � or t4(1, b) = �. Since

¬ a3 = 1 �= b, we have that η(b,¬ a3) = ⊥. Hence, t3(1, b) = �. Moreover,

since η(b ∗ ¬ a3, a3) = �, so b ∗ 1 = b ∗ ¬ 13 = b ∗ ¬ a3 = a3 = 13 = −1. Then

b ∗ 12 = (−1) ∗ 1 = ⊥. By residuation, 12 ≤ ¬ b. Therefore, −1 ≺ 12. �

Let CIMT4 denote the subvariety of IMT4 characterized by the equation

(3.3). Observe that the Boolean algebra Ω(0)
∗
and the 3-element MV-chain

Λ(0)
∗
belong to CIMT4, whereas the 4-element chain Ω(1)

∗
does not.

If ∗c denotes the product of the Lemma 3.12 in a chain C, it is clear that

the chains in the variety CIMT4 are of the form Λ(S)
∗c or Ω(S)

∗c , where

S = {. . . , a, 1} is a totally ordered set with greatest element 1, a ≺ 1, and

s ∗c r =

{
¬ a if s = r = 1,

¬ 1 otherwise,

for all r, s ∈ S.

Observe that the only chain in CIMT4 in which the condition ¬ 12 = 12

holds is the 5-element chain Λ(1)
∗c .

CIMT4 is locally finite. For allm ∈ ω, V(Λ(0)
∗c) ⊆ V(Λ(m)

∗c), andΛ(1)
∗c

is not a proper subalgebra of any CIMT4-chain. Moreover, for 2 ≤ k ≤ m,

we have that V(Ω(k)
∗c) ⊆ V(Ω(m)

∗c), V(Ω(k)
∗c) ⊆ V(Λ(m)

∗c) and that

V(Λ(k)
∗c) ⊆ V(Λ(m)

∗c). It is also clear that CIMT4 = V(Λ(�)∗c ,Λ(1)
∗c)

and that V(Ω(�)∗c) ⊆ V(Λ(�)∗c).
In order to characterize by equations all the subvarieties of CIMT4 we state

the following lemma.

Lemma 3.13. Let C ∈ CIMT4 such that |C| > 4. Then |C| > 5 if and only

if C satisfies the identity ¬η(¬x2, x2) ≈ �.
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Proof. Suppose that |C| > 5 and let a ∈ C, a �= �. Since C ∈ CIMT4,
−1 ≺ 12, and by Lemma 3.11, either −1 ≺ a2 or a2 ≤ −1. So a2 �= 0 for all

a ∈ C, that is ¬ a2 �= a2. So, η(¬ a2, a2) = ⊥, and then ¬η(¬ a2, a2) = �.

Suppose now that C satisfies the identity ¬η(¬x2, x2) ≈ �. If we take x = 1

in this identity, we get (¬ 12 → 12) ∗ (12 → ¬ 12) = ⊥, so ¬ 12 �= 12, that is,

¬ 12 �= 0. As in addition, −1 ≺ 12, we have that |C| > 5. �

In the following theorem, we denote the term Sr(x0, . . . , xr) by Sr.

Theorem 3.14. Every proper nontrivial subvariety of CIMT4 is of one of the

following types, given with the identities that characterize them within CIMT4:

(1) V(Λ(l)
∗c) for 0 ≤ l ≤ 1, characterized by S2l+3 ≈ �.

(2) V(Λ(m)
∗c) for m ∈ ω with m ≥ 2, characterized by

S2m+3 ∧ ¬η(¬x2, x2) ≈ �.

(3) V(Λ(�)∗c), characterized by ¬η(¬x2, x2) ≈ �.

(4) V(Ω(�)∗c), characterized by ¬η(x,¬x) ≈ �.

(5) V(Ω(k)∗c) for k ∈ ω with k �= 1, characterized by

S2k+2 ∧ ¬η(x,¬x) ≈ �.

(6) V(Λ(1)
∗c ,Λ(m)

∗c) for m ∈ ω with m ≥ 2, characterized by

S2l+3 ∨ (S2m+3 ∧ ¬η(¬x2, x2)) ≈ �.

(7) V(Λ(l)
∗c ,Ω(�)∗c) for 0 ≤ l ≤ 1, characterized by

S2l+3 ∨ ¬η(x,¬x) ≈ �.

(8) V(Λ(l)
∗c ,Ω(k)∗c) for 0 ≤ l ≤ 1 and k ∈ ω, k �= 1, characterized by

S2l+3 ∨ (S2k+2 ∧ ¬η(x,¬x)) ≈ �.

(9) V(Λ(m)
∗c ,Ω(�)∗c) for m ∈ ω with m ≥ 2, characterized by

(S2m+3 ∧ ¬η(¬x2, x2)) ∨ ¬η(x,¬x) ≈ �.

(10) V(Λ(m)
∗c ,Ω(k)∗c) for m ∈ ω and m ≥ 2 and for k ∈ ω with m < k

and k ≥ 3, characterized by

(S2m+3 ∧ ¬η(¬x2, x2)) ∨ (S2k+2 ∧ ¬η(x,¬x)) ≈ �.

(11) V(Λ(1)
∗c ,Λ(m)

∗c ,Ω(�)∗c) for m ∈ ω with m ≥ 2, characterized by

S5 ∨ (S2m+3 ∧ ¬η(¬x2, x2)) ∨ ¬η(x,¬x) ≈ �.

(12) V(Λ(1)
∗c ,Λ(m)

∗c ,Ω(k)∗c) for m ∈ ω and m ≥ 2 and for k ∈ ω with

m < k and k ≥ 3, characterized by

S5 ∨ (S2m+3 ∧ ¬η(¬x2, x2)) ∨ (S2k+2 ∧ ¬η(x,¬x)) ≈ �.

Figure 3 depicts the lattice of subvarieties of CIMT4.

3.4. Other subvarieties of IMT4. For each k ∈ ω with k ≥ 2, consider the

term S2
k (x0, . . . , xk) =

∨
i<k

(
x2
i → x2

i+1

)
and the subvariety IMT4k charac-

terized within IMT4 by the identity S2
k (x0, . . . , xk) ≈ �. If a chain C ∈ IMT4

satisfies the identity S2
k (x0, . . . , xk) ≈ �, then {x ∈ C : x = y2, y ∈ C} has at

most k elements.
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Figure 3. Lattice of subvarieties of CIMT4

We have the following chain of subvarieties of IMT4:

IMT42 ⊂ IMT43 ⊂ · · · ⊂ IMT4k ⊂ · · · ⊂ IMT4.

Observe that IMT42 = V(Ω(0)). But IMT43 = MIMT4 ∨ IMT3. Indeed,

if C ∈ IMT43 and C /∈ MIMT4, then |C| ≥ 4 (Ω(0) and Λ(0) belong to

MIMT4) and 12 < ¬ 12. Since 1 ∗ ¬12 ≤ 1 ∗ 1 = 12 = ¬ (¬ 12), it follows that

1 ∗ (¬ 12)2 = ⊥. Thus, 12 = (¬ 12)2 ≤ −1, and than 12 = −1. So C ∈ IMT3.
We also have IIMT4 ⊂ IMT44 and CIMT4 ⊂ IMT44.
Finally, consider the subvarieties V1 and V2 characterized within IMT4 by

the identities ¬ η(x,¬x) ≈ � and ¬ η(x2,¬x2) ≈ �, respectively.

V1 and V2 are not locally finite, since we can construct in a similar way as in

the example 2.7 an infinite 1-generated chain that belongs to both V1 and V2.

Indeed, consider the set S = {i} ∪ {bi : i ∈ ω} ∪ {1} ordered by

i < · · · < b6 < b4 < b2 < b1 < b3 < b5 < · · · < 1,
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and the chain Ω(S)
∗
where ∗ is defined over S by: 12 = bi ∗ 1 = −i for all

bi ∈ S, i ∗ b = −1 for all b ∈ S, and for all bi, bj ∈ S such that i ≤ j,

bi ∗ bj =
{
−bj+1 if (j odd and i �= j − 1) or (j even i = j),

−bj−1 if (j even and i �= j) or (j odd and i = j − 1).

It is clear thatΩ(S)
∗
belongs to IMT4, satisfies the identities ¬ η(x2,¬x2) ≈ �

and ¬ η(x,¬x) ≈ �, and is generated by the element b1.

4. Finite chains in IMT4 and partitions of the m-cube

The purpose of the next results is to investigate the structure of the finite

chains in the variety IMT4. In the first place, form = 〈{ 1
m , 2

m , . . . , m
m = 1},≤〉,

we shall find a method for constructing all possible products on Λ(m) and then

we shall determine how many IMT 4-structures can be defined on the finite

chain Λ(m).

For m ≥ 1, we say that the finite set Π ⊆ {1, 2, . . . ,m}3 is a totally sym-

metric plane partition in the m-cube (TSPP) ([13]) if it satisfies the following

conditions:

(P1) If 〈i, j, k〉 ∈ Π and i′ ≤ i, j′ ≤ j, k′ ≤ k, then 〈i′, j′, k′〉 ∈ Π.

(P2) If 〈i, j, k〉 ∈ Π, then 〈j, i, k〉 ∈ Π.

(P3) If 〈i, j, k〉 ∈ Π, then 〈j, k, i〉 ∈ Π.

We will denote by πij the cardinal of the set {k : 〈i, j, k〉 ∈ Π}.
We are going to give a relationship between the totally symmetric plane

partitions in the m-cube and the products definable over a finite chain Λ(m).

To begin with, let us see that starting from a TSPP we can get a totally

ordered IMT4-algebra with an odd number of elements.

Consider a totally symmetric plane partition Π in the m-cube. Recall that

a product operation on Λ(m) is uniquely determined if we define it over the

“upper half” of the chain, that is, over the set { 1
m , 2

m , . . . , m
m = 1}. Thus, we

define the following operation ∗Π:
i

m
∗Π

j

m
= −πij

m
,

where 0 = − 0
m . And we define the operation in the rest of the chain Λ(m) as

in example 3.1.

Lemma 4.1. Λ(m)
∗Π ∈ IMT4.

Proof. First observe that ∗Π is commutative, so it is enough to prove that

∗Π is associative, that is, let us see that for i
m , j

m , k
m ∈ { 1

m , 2
m , . . . , m

m = 1},(
i
m ∗Π j

m

)
∗Π k

m = ⊥ if and only if i
m ∗Π

(
j
m ∗Π k

m

)
= ⊥. Suppose that(

i
m ∗Π j

m

)
∗Π k

m = ⊥. Hence, −πij

m ∗Π k
m = ⊥ and, consequently,

πij

m ≥ k
m ,

that is, πij ≥ k. Since Π is decreasing, we have that 〈i, j, k〉 ∈ Π. Using

(P3), 〈j, k, i〉 ∈ Π. Therefore, πjk ≥ i. Consequently, j
m ∗Π k

m ≤ − i
m and

i
m ∗Π

(
j
m ∗Π k

m

)
= ⊥. The converse is similar. �
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Let us see the previous construction in an example. For m = 2, the totally

symmetric plane partitions in the 2-cube {1, 2}3 are

• Π1 = ∅,
• Π2 = {〈1, 1, 1〉},
• Π3 = {〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 1〉, 〈2, 1, 1〉},
• Π4 = {〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 1〉, 〈1, 2, 2〉, 〈2, 1, 1〉, 〈2, 1, 2〉, 〈2, 2, 1〉},
• Π5 = Π4 ∪ {〈2, 2, 2〉}.
From these TSPP’s we can define the following products on Λ(2) to obtain

different structures of IMT4-algebras Λ(2).

Λ(2) : ⊥ < −1 < −1

2
< 0 <

1

2
< 1 < �

Let Ti denote the table operation associated to the TSPP Πi (recall that it is

enough to define the operation for
{

1
2 , 1

}
).

T1

* 1 1
2

1 0 0
1
2 0 0

T2

* 1 1
2

1 0 0
1
2 0 − 1

2

T3

* 1 1
2

1 0 − 1
2

1
2 − 1

2 −1

T4

* 1 1
2

1 − 1
2 −1

1
2 −1 −1

T5

* 1 1
2

1 −1 −1
1
2 −1 −1

Figure 4. The operations associated to the TSPP Πi

Now we study the inverse problem, that is, we want to find a procedure to

build a TSPP from a finite IMT4-chain with an odd number of elements.

Lemma 4.2. Let Λ(m)
∗ ∈ IMT4. If we define

Π∗ =
{
〈i, j, k〉 :

(
i

m
∗ j

m

)
∗ k

m
= ⊥

}
,

then Π∗ is a TSPP in the m-cube.

Proof. Assume that 〈i, j, k〉 ∈ Π∗ and that i′ ≤ i, j′ ≤ j and k ≤ k′ with
1 ≤ i, j, k ≤ m. By properties of the operation ∗, we have that(

i′

m
∗ j′

m

)
∗ k′

m
≤

(
i

m
∗ j

m

)
∗ k

m
= ⊥.

Then we have that 〈i′, j′, k′〉 ∈ Π∗, proving condition (P1). Conditions (P2)

and (P3) follow from the commutativity and associativity of ∗. �

For example, if we start from Λ(2)
∗
, where ∗ is the product given by the

table operation T3, it is easy to see that

Π∗ = Π3 = {〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 1〉, 〈2, 1, 1〉}.
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In Lemmas 4.1 and 4.2, we have shown a procedure to construct a TSPP

from an IMT4 chain with an odd number of elements, and conversely, we

can construct such a chain from a TSPP. We are going to prove that this

correspondence is bijective.

Lemma 4.3. Let Π be a TSPP in the m-cube. Then Π = Π∗Π .

Proof. Consider 〈i, j, k〉 ∈ Π. By definition of ∗Π, we have that i
m∗Π j

m = −πij

m .

From k ≤ πij it follows that i
m ∗Π j

m ≤ − k
m . Then

(
i
m ∗Π j

m

)
∗Π k

m = ⊥, and

thus, 〈i, j, k〉 ∈ Π∗Π .
Assume now that 〈i, j, k〉 ∈ Π∗Π . Hence, −πij

m ≤ − k
m , and consequently,

k ≤ πij . Observe that πij �= 0 since 1 ≤ k. Then using that 〈i, j, πij〉 ∈ Π and

k ≤ πij , we have that 〈i, j, k〉 ∈ Π by (P1). �

Lemma 4.4. Let Λ(m)
∗ ∈ IMT4. Then Λ(m)

∗ ∼= Λ(m)
∗Π∗ .

Proof. For i
m , j

m ∈ { 1
m , 2

m , . . . , m
m = 1} we verify that i

m ∗ j
m = i

m ∗Π∗ j
m . By

definition of ∗Π∗ , we have i
m ∗Π∗ j

m = −π∗ij
m . We consider the following cases.

π∗ij = 0: Then there is no k with 1 ≤ k ≤ m such that 〈i, j, k〉 ∈ Π∗. Thus,(
i
m ∗ j

m

)
∗ k

m = −1 for all 1 ≤ k ≤ m. Hence, i
m ∗ j

m > − k
m for all 1 ≤ k ≤ m.

Then i
m ∗ j

m = 0 = i
m ∗Π∗ j

m .

π∗ij > 0: Then 〈i, j, π∗ij〉 ∈ Π∗. Consequently,
(

i
m ∗ j

m

)
∗ π∗ij

m = ⊥. Hence,

we have that i
m ∗ j

m ≤ −π∗ij
m . Suppose now that there exists 1 ≤ d ≤ m such

that i
m ∗ j

m = − d
m with d > π∗ij . Then 〈i, j, d〉 ∈ Π∗, a contradiction. Hence,

i
m ∗ j

m = −π∗ij
m = i

m ∗Π∗ j
m . �

From the previous results, we have the following theorem.

Theorem 4.5. There exists a bijective correspondence between the TSPP’s in

an m-cube and the IMT4 chains with 2m+ 3 elements.

With TS(m) denoting the number of totally symmetric plane partitions in

the m-cube, J. R. Stembridge proved in [13, Corollary 5.2] that for m ≥ 1,

TS(m) =
∏

1≤i≤j≤k≤m

i+ j + k − 1

i+ j + k − 2
.

Then by Theorem 4.5, we have the following result.

Corollary 4.6. In IMT4, there are∏
1≤i≤j≤k≤m

i+ j + k − 1

i+ j + k − 2

non-isomorphic chains with n = 2m+ 3 elements, for m ≥ 1.

For n = 5, 7, 9, 11, 13, 15, 17, 19, this formula gives 2, 5, 16, 66, 352, 2431,

21760, and 252586, algebras respectively.

In the following lemmas, we will see that the formula of the previous corol-

lary also applies to chains with an even number of elements. In fact, we will
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prove that there exists a bijective correspondence between the chains Λ(m)
∗

and Ω(m+ 1)
∗
with m ≥ 1.

Some of the proofs of the next lemmas are long but computational, and will

be omitted.

Lemma 4.7. Let Λ(m)
∗ ∈ IMT4 with m ≥ 1. If � is defined on m+ 1 by

i

m+ 1
�

j

m+ 1
=

⎧⎪⎪⎨
⎪⎪⎩
− k+1

m+1 if 2 ≤ i, j ≤ m+ 1, i−1
m ∗ j−1

m = − k
m �= 0,

− 1
m+1 if 2 ≤ i, j ≤ m+ 1, i−1

m ∗ j−1
m = 0,

−1 if i = 1 or j = 1,

then Ω(m+ 1)
� ∈ IMT4.

Lemma 4.8. Let Ω(m+ 1)
∗ ∈ IMT4 with m ≥ 1. If × is defined on m by

i

m
× j

m
=

{
−k−1

m if i+1
m+1 ∗ j+1

m+1 = − k
m+1 , 2 ≤ k ≤ m+ 1,

0 if i+1
m+1 ∗ j+1

m+1 = − 1
m+1 ,

then Λ(m)
× ∈ IMT4.

Lemma 4.9. If Λ(m)
∗ ∈ IMT4 with m ≥ 1, then Λ(m)

∗ ∼= Λ(m)
×
.

Proof. We have to prove that i
m ∗ j

m = i
m × j

m for all i
m , j

m ∈ m. If i
m ∗ j

m =

− k
m �= 0, then i+1

m+1 �
j+1
m+1 = − k+1

m+1 , and
i
m× j

m = − (k+1)−1
m . And if i

m ∗ j
m = 0,

then i+1
m+1 � j+1

m+1 = − 1
m+1 , and by definition, i

m × j
m = 0. �

Lemma 4.10. If Ω(m+ 1)
∗ ∈ IMT4 with m ≥ 1, then we have Ω(m+ 1)

∗ ∼=
Ω(m+ 1)

�
.

Proof. Let us see that i
m+1 ∗ j

m+1 = i
m+1 � j

m+1 for all i
m+1 ,

j
m+1 ∈ m+ 1.

By Lemma 3.8, if i = 1 or j = 1, then i
m+1 ∗ j

m+1 = −1, and by definition,
i

m+1 �
j

m+1 = −1. If 2 ≤ i, j ≤ m+1 and i
m+1 ∗

j
m+1 = − k

m+1 for k ≥ 2, then
i−1
m × j−1

m = −k−1
m and i

m+1 � j
m+1 = − k

m+1 . Finally, if 2 ≤ i, j ≤ m+ 1 and
i

m+1 ∗ j
m+1 = − 1

m+1 , then
i−1
m × j

m = 0 and i
m+1 � j

m+1 = − 1
m+1 . �

From Lemma 4.9 and 4.10, we obtain the following theorem.

Theorem 4.11. There exists a bijective correspondence between the sets O =

{Λ(m)
∗
: Λ(m)

∗ ∈ IMT4} and E = {Ω(m+ 1)
∗
: Ω(m+ 1)

∗ ∈ IMT4} for

m ≥ 1.

Now consider the set

O′ = {Λ(m+ 1)
∗
: Λ(m+ 1)

∗ ∈ IMT4 and 12 < 0}.

We are going to provide a procedure to obtain all the chains Λ(m+ 1)
∗
with

12 < 0 from the chains Λ(m)
∗
. In addition, we will establish a bijection

between the sets O and O′.
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Lemma 4.12. Let Λ(m)
∗ ∈ IMT4 with m ≥ 1. If × is the binary operation

on m+ 1 defined by

i

m+ 1
× j

m+ 1
=

⎧⎪⎪⎨
⎪⎪⎩
− 1

m+1 if 2 ≤ i, j ≤ m+ 1, i−1
m ∗ j−1

m = 0,

− k+1
m+1 if 2 ≤ i, j ≤ m+ 1, i−1

m ∗ j−1
m = − k

m �= 0,

−1 if i = 1 or j = 1,

then Λ(m+ 1)
× ∈ IMT4.

Lemma 4.13. Let Λ(m+ 1)
∗ ∈ IMT4 with m ≥ 1 and 12 < 0. If ⊗ is the

binary operation defined on m by

i

m
⊗ j

m
=

{
0 if i+1

m+1 ∗ j+1
m+1 = − 1

m+1 ,

−k−1
m if i+1

m+1 ∗ j+1
m+1 = − k

m+1 �= − 1
m+1 ,

then Λ(m)⊗ ∈ IMT4.

Then we have the following theorem.

Theorem 4.14. There exists a bijection between the sets O and O′.

Observe that there is a bijection between the set of IMT 4-chains Λ(m+ 1)
∗

with the property that 1 ∗ i
m+1 = 0 for all i

m+1 ∈ m+ 1 and the set of

TSPP’s of the m-cube. Thus, we have the same number of IMT 4-chains with

2m+ 3 elements as chains with 2m+ 5 elements such that 1 ∗ i
m+1 = 0 for all

i
m+1 ∈ m+ 1.
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