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Abstract

The Bahı́a Blanca Estuary (38 � 500 S, and 62 � 300 W) presents salt marshes where interactions between the local flora (Sarcocornia perennis)
and fauna (Chasmagnathus granulatus) generate some kind of salt pans that alter the normal water circulation and condition its flow and course
towards tidal creeks. The crabevegetation dynamics in the salt marsh presents variations that cannot be quantified in a reasonable period of time.
The interaction between S. perennis plant and C. granulatus crab is based on simple laws, but its result is a complex biological mechanism that
causes an erosive process on the salt marsh and favors the formation of tidal creeks. To study it, a Cellular Automata model is proposed, based on
the laws deduced from the observation of these phenomena in the field, and then verified with measurable data within macroscale time units.
Therefore, the objective of this article is to model how the interaction between C. granulatus and S. perennis modifies the landscape of the salt
marsh and influences the path of tidal creeks. The model copies the basic laws that rule the problem based on purely biological factors.

The Cellular Automata model proved capable of reproducing the effects of the interaction between plants and crabs in the salt marsh. A study
of the water drainage of the basins showed that this interaction does indeed modify the development of tidal creeks. Model dynamics would
likewise follow different laws, which would provide a different formula for the probability of patch dilation. The patch shape can be obtained
changing the pattern that dilates.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Salt marshes and tidal flats are typical coastal environments
which normally develop in protected regions where tidal ampli-
tude is important and where there is high sediment input. They
are characterized by a relatively smooth topography, dif-
ferentiated by the presence or absence of halophytic plants,
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exposed to oceanographic and atmospheric activities which
give rise to fluctuations on the tidal wave propagation over the
flats. At the same time, the continuous effect of tide and rain fa-
vors the genesis and development of salt pans and tidal creeks.

The two principal physiographic features in salt marshes
are salt pans and tidal creeks (Chapman, 1960). Tidal creeks
usually originate in tidal flats and they are inherited by the
salt marshes in their process of colonization (Frey and Basan,
1985). The formation of tidal creeks is an erosive process that
transfers tidal flats and salt marshes material to the embayment
and in turn to the adjacent shelf. Furthermore, tidal creeks play
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an important role in the hydrodynamics of tidal salt marshes
by increasing drainage and flooding in their zone of hydro-
logic influence (Pestrong, 1965; Pethick, 1980; Marani et al.,
2002).

In tidal flats, the development and evolution of the creeks is
influenced by geologic, topographic and physical factors.
However, in salt marshes a strong biological control must be
added (Pestrong, 1972; Garofalo, 1980). The presence of veg-
etation on the channel banks influences their lateral migration.
In turn the channels tend to be more sinuous with marked
meandering than in more deserted zones of vegetation
(Pestrong, 1972).

The Bahı́a Blanca Estuary (38 � 500 S and 62 � 300 W;
Fig. 1) presents salt marshes where interactions between the
local flora and fauna generate some kind of salt pans that alter
the normal water circulation and condition its flow-path
(Perillo and Iribarne, 2003a,b). This estuary has a total surface
of 2300 km2, of which about 410 km2 correspond to islands
and 1150 km2 to the intertidal sector (Piccolo and Perillo,
1999). It is a mesotidal system with very little fluvial input
covered by extensive tidal flats with predominance of low
salt marshes, although a few mean and high marshes are
observed.

The particular area where this study was developed corre-
sponds to one of the few high marshes with an area of about
4.5 km2 (Fig. 1) which is covered by the tides an average of
40 times a year and whose tidal amplitude reaches 0.6 m
above the salt marsh. Waves rarely affect this zone because
of the effect of vegetation and its protected placement.

In the SW Atlantic Ocean bays and estuaries, the tidal flats
and salt marshes are dominated by the burrowing crab Chas-
magnathus granulatus (Iribarne et al., 1997; Bortolus and
Iribarne, 1999; Botto and Iribarne, 1999, 2000). This species
lives in tidal flats and marshes vegetated by the halophytic
plants of the genus Spartina and Sarcocornia (Spivak et al.,
1994; Iribarne et al., 1997; Bortolus and Iribarne, 1999).
The salt marsh under study is dominated by Sarcocornia
perennis. This is a pioneer plant that dominates the marsh in
the first successional stages; and grows forming circular clones
(Perillo and Iribarne, 2003b). The circular or even ellipsoidal
patches can reach from 0.30 to 10 m in diameter. Once the
clones are established in the marsh, they could facilitate the
activity of the burrowing crab C. granulatus which starts to
dig its burrows below the plant canopies (Bortolus and
Iribarne, 1999; Perillo and Iribarne, 2003b).

The bioturbation effects (feeding and burrowing activities)
of crabs under the plants could generate changes in the sedi-
ment structure which affect plant growth. The primary patches
start to sink and becomes slightly depressed due to the remo-
tion of sediment by crabs and groundwater erosion. Thus, the
central individuals of Sarcocornia perennis die due to
sediment structure loss and inundation. As a consequence,
a depressed ring is formed (called ‘‘ring salt pan’’), which con-
tinues growing outwards enclosing a population of crabs
which in turn continues displacing the inner ring (Perillo
and Iribarne, 2003a,b). In a more advanced state of growth,
the rings will reach a diameter of 10 m being up to 1.5 m
wide. Eventually in the proximity of another ring, they may
join forming ‘‘8-like’’ figures or still more complex ones
(called patch salt pan).

When there are isolated patches (ring salt pan structure) or
several integrated patches (patch salt pan structure) near the
arm of a creek, they behave like a concentrator of water
when the tide ebbs or after rainfall, through which all the water
is discharged to the creek. Because these pans are composed
by a softer material with a high density of burrows (up 50 to
per square meter) (Perillo and Iribarne, 2003b) they are easily
eroded and become a new tributary of the creek where they
drain. In all the salt marsh those pattern of ring salt pans
and patch salt pans are associated with the formation of new
creek tributaries.

These patch salt pans drain for a period of up to 2 h after the
tide has retreated depending on their size. The erosive effect of
water flow on the salt marsh is not as significant as when it
Fig. 1. (a) Bahı́a Blanca Estuary. The salt marsh under study is highlighted. (b) Air photography of the salt marsh where the distribution of patches of Sarcocornia
perennis plants can be observed.
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arrives at the creek where all the flow is concentrated in
a smaller area, generating truly important currents (up to
10e20 cm s�1). The water drains mainly among the creek
heads forming small waterfalls and by groundwater flow be-
tween the crab burrows next to the heads. The result is that
the creek head retreats by means of different erosive mecha-
nisms, namely headward erosion and sediment slumping with
rates of growth between 4 and 50 cm month�1, respectively.

The crabevegetation dynamics in the salt marsh presents
variations that cannot be quantified in a reasonable period of
time. To study it, a conceptual model is proposed based on
the laws deduced from observation of these phenomena in
the field, and then verified with measurable data within macro-
scale time units (Perillo and Codignotto, 1989). The model is
used to simulate marsh topography and the effects of the
crabevegetation interaction.

The interaction between the Sarcocornia perennis plant and
the Chasmagnathus granulatus crab is based on simple laws,
but it results in a complex biological mechanism that causes
an erosive process on the salt marsh and favors the formation
of tidal creeks. These types of processes based on simple laws
have been accurately modeled with good precision by Cellular
Automata models (Dunkerley, 1997; Matsinos and Troumbis,
2002; Aassine and El Jai, 2002; Bandini and Pavesi, 2002).
It is particularly desirable to recreate the observed and mea-
sured laws in order to obtain an automatic way of reproducing
the biological disturbances in the field and to analyze their
effect on the generation of tidal creeks on the basis of the
resulting digital terrain model (DTM).

Most models to generate DTMs proposed initially were
based on purely mathematical criteria, both for topography
generation with all the mathematical variants, and river and
channel path (Fournier et al., 1982; Voss, 1985; Miller,
1986; Mastin et al., 1987; Kelley et al., 1988). Others, how-
ever, apply basic physical equations on the DTM, but they
are purely conceptual and generally applied to landscape
and photorealism activities (Miller, 1986; Muagrave et al.,
1989). Later on, models incorporated more complex physical
equations attempting to simulate the evolution of the land
morphology under hydraulic conditions (Howard et al.,
1994; Smith et al., 1997; Fagherazzi et al., 1999; Rinaldo
et al., 1999a,b; Wei luo, 2001; D’Ambrosio et al., 2001; El
Yacoubi et al., 2003).

Therefore, the objective of this article is to model how the
interaction between Chasmagnathus granulatus and Sarcocor-
nia perennis modifies the landscape of the salt marsh and in-
fluences the path of tidal creeks. The model copies the basic
laws that rule the problem based on purely biological factors.
Hence the problem has been subdivided into three differenti-
ated topics each associated with a distinct methodology.

2. Methods

2.1. Model

The first phase is the generation of a DTM representing the
marsh surface without the disturbances proper of the problem,
namely the plants and crabs. A midpoint displacement algo-
rithm with random additions in two dimensions adapted to
the typical topography of the salt marshes is used. The second
phase is to reproduce the landscape that generates the vegeta-
tive dynamics in the marsh together with the bioturbating
effect of the crabs employing a Cellular Automata model.
The basic laws of the problem are deduced from field measure-
ments. Model results are verified with a second field data set.

Then, the final topography is a linear combination of results
of the first and second phase of the problem. The topography is
further analyzed to establish trapping conditions for the water
when the tide ebbs or after rainfall. Finally, tidal channel
evolution in the original terrain was contrasted with the terrain
modified by biological factors.

2.2. Generation of undisturbed topography

The generation of the digital terrain model was based on
the midpoint displacement algorithm with random additions
in two dimensions, due to its ample acceptance and diffusion
(Fournier et al., 1982; Mandelbrot, 1982). Many modifications
of this algorithm can be found (Saupe, 1988), but the original
introduced by Fournier et al., 1982 was employed here. This
algorithm is based on purely mathematical principles and car-
ries out a recursive process from the external edges of the grid
inward that composes the land to model. In each point of the
grid the assigned height depends on the height of the neigh-
bouring points plus a random addition.

The fractal dimension of the DTM is 3-H, where H is the
Hurst coefficient (Fournier et al., 1982; Mandelbrot, 1982).
In this work, we adopted a Hurst coefficient equal to 0.8. In
order to adapt the DTM to the characteristics of the salt marsh
a lowpass filter was applied. The filter consists in averaging
each point of the grid with a square subgrid of the original
matrix of 13 cells to each side.

2.3. Evolution of the biological factors

Basically, Cellular Automata (CA) models are idealizations
of real systems, applied in a dimension lattice, where the space
and time are discrete variables. The laws that they represent are
simple, can be deterministic or stochastic, and are applied
simultaneously to all points of the grid. Definitions of CA are
given by Wolfram (1984, 1994) and Sipper (1997) and a com-
plete description can be found in Worsch (1999). Formally,
they can be summarized by considering CA as a set of rules (A):

A¼ ðL;S;N; f Þ

where L is a grid of d dimensions with cells c depending on the
shape of the grid, S is the finite set of values that a cell can
take, N(c) is the neighbourhood of cells that interact with c,
and f is the transition function that defines the dynamics of
the CA. Thus the state:

stþ1 ¼ f ðstðNðcÞÞÞ ð1Þ
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That is, at any point of the grid, the state of the following
step depends on the application of the transition function in
the neighbourhood that interacts with it in the present step.
In addition, initial and boundary conditions must be estab-
lished for each problem.

The bidimensional CA model proposed is based on the
bidimensional neighbourhood scheme of Moore (El Yacoubi
et al., 2003) with a 5 cm resolution. The transfer functions
are deduced by the rate of growth of the external and internal
diameter of the rings, the internal vs external diameter relation
and the accretion of the salt pan vs the external diameter. To
simplify the problem, we suppose that the diameters corre-
spond to circles with area equal to that of the patches. The
initial condition is a random and uniform distribution of plant
seeds. The distribution of external and internal diameters, the
relation between the internal and external diameters and
a power law between the area and perimeter of plant patches
obtained from an aerial photography are controlling parame-
ters for the model.

2.4. Cellular Automata model construction

As a first step in the model application, the external ring
growth is studied by applying a transfer function where each
cell that represents a portion of the plant (Fig. 2a) is trans-
formed into a cell array (Fig. 2b) with a given probability dis-
tribution as the model iterates. This operation is known as
dilation (González and Woods, 1992; Haralick and Shapiro,
1992) but it is conditioned to the probability distribution.
The shape of the resulting array represents a circle formed
by a small number of cells. The probability distribution may
or may not be constant and must satisfy the law of real plant
growth according to the external diameter, which was found to
follow a law of percentage growth (Fig. 3a) that is well repre-
sented by a reciprocal function of the external diameter Dt e

(in m) of the type measured at time t:

Ce%¼ aþ b

Dt e

ð2Þ

where Ce% is the expected percentage growth for the sam-
pling period. The periods between samplings were 30� 10
days. In this case, the function obtained applying Eq. (2) to
the data of Fig. 4a results (ANOVA F1,98¼ 608.72, p< 0.01,
Zar, 1999):

Ce%¼�2:6391þ 20:1662

Dt e

ð3Þ

This percent growth is:

Ce%¼ Dt eþ1�Dt e

Dt eþ1

ð4Þ

where Dt e þ 1 is the external diameter measured after a given
period of time.

Since the transfer function is probabilistic, a series of sim-
ulations of plant growth employing 20 plants for the set of
probabilities (0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15,.,0.95)
and 35 iterations were made. The results indicate that the
area of the patch follows a different parabolic law for each
probability as a function of the number of iterations
(Fig. 4a), whereas the diameter follows a linear law for each
probability, also as a function of the number of iterations
(Fig. 4b) meaning that:

Dt eþ1�Dt e

DI
¼ a ð5Þ

where DI is the number of iterations to pass from Dt e to
Dt e þ 1 and a is a constant corresponding to the slope of
a straight line. Regrouping Eq. (5) we obtain:

Dt eþ1�Dt e

Dt eþ1

¼ aDI

Dt eþ1

ð6Þ

We assumed that DI is constant with unitary value, imply-
ing that one iteration of the model is equivalent to 30 days of
patch growth. Being a and DI are constants, the probability for
each percentage growth is a reciprocal of the diameter. Thus,
curves of percentage growth were simulated according to the
external diameter for different probabilities (Fig. 4c). These
curves are also well represented by reciprocal functions of
the type:
Fig. 2. Array by which a cell (a) can be dilated by an arrangement of cells (b).
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Fig. 3. Measured variables in the salt marsh with which functions of transition the Cellular Automata model was calculated. (a) Percentage growth of the external

ring vs the external diameter of the Sarcocornia perennis ring for a sampling period, (b) percentage growth of the internal ring vs the internal diameter of the

S. perennis ring for a sampling period, (c) relation between the internal diameter vs the external diameter of S. perennis rings and (d) accretion of the plant patch

vs the external diameter of S. perennis rings.
Dt eþ1 ¼ api
þ bpi

Dt e

ð7Þ

where api
and bpi

are coefficients for the different probabilities
pi (Table 1).

The points through which the resulting curve of variable
probabilities would have to pass are those where the curves
of percentage growth for different probabilities cross the curve
of real percentage growth. Equalling and clearing Eqs. (2) and
(7) the diameters can be determined at the points where the
curves cross (Table 1):

Dt e ¼
b� bpi

api
� a

ð8Þ

Finally, we find that this relation of probabilities (Table 1,
row 1) vs diameters (Table 1, row 7) is very well fitted by
an asymptotic exponential curve (ANOVA F1,16¼ 3012.08,
p< 0.01, Zar, 1999):

Pr Dt e ¼ 0:005427þ 0:6623e
�Dt e
1:5841 ð9Þ

With Pr_Dt e being the probability whereupon the process of
expansion in a cell can take place, so that in an iteration the
model simulates the growth in a sampling period.

The same procedure was applied for the inner part of the ring
colonized by crabs. In this case, the function of percentage
growth fitted was (ANOVA F1,99¼ 264.77, p< 0.01, Zar,
1999):

Ci%¼ 22:049

Dt i

ð10Þ

where Dt i is the internal diameter measured at time t.
When repeating the procedure to equalize the growth func-
tions for each probability found from the model iteration, no
coherent association between the dependent and independent
variable was found. Therefore, it was not possible to fit a prob-
ability function in this way. However, the Ci% curve adjusted
well enough to the simulated curves of high probability. If one
of these curves was adopted to iterate the model, the internal
diameter would lose randomness in its shape. For this reason
the former shape would look very much like the arrangement
of cells which would replace it. Finally, a variable probability
of the following type was adopted:

Pr Dt i ¼ 0:3þ 0:3h ð11Þ

where h is an uniform random number in the range [0,1]
The internal diameter vs external diameter relation

(Fig. 3c), was adjusted according to the curve (ANOVA
F1,99¼ 95.97, p< 0.01, Zar, 1999):

Dt i ¼ 0:600þ 0:706Dt e for Dt i > 0:85 m ð12:1Þ

Dt i ¼ 0Dt e for Dt i � 0:85 m ð12:2Þ

So far the growth laws of internal and external diameters of
plant patches were the only ones found. Still to be determined
the position that the external diameters will have to adopt in
the terrain when Sarcocornia perennis germinates and when
the crabs begin to colonize the plant patches so that the mea-
sured histograms (Fig. 5a, b) can be adjusted. For an arbitrary
number N of plants their position was randomly and uniformly
distributed on the land surface. The diameters must fit their
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respective histogram, that is to say, each fraction ni that oc-
cupies a frequency rank ienth of classes i is:

ni¼ iN ð13Þ

The external diameter according to the iteration number is
a biunivocal function. This is obtained by simulating the
growth of 10 plant seeds during a larger number of iterations.
Finally, the diameter was recorded as a function of the itera-
tion number. Therefore, the percentage of seeds is known,

Fig. 4. (a) Simulated growth of the area of patches of Sarcocornia perennis for

different probabilities according to the iteration number, (b) simulated growth

of the diameter of patches of S. perennis for different probabilities according to

the iteration number and (c) simulated percentage growth of the diameter of

patches of S. perennis for different probabilities according to the iteration

number.
Table 1

Coefficients for the regression of simulations of percentage growth of external

diameters of patches for different probabilities pi. Row 7 contains the results of

the Eq. (8) in correspondence with the different probabilities in row 1. * indi-

cates highly significant regressions with F increasing

Probability

(pi)

ai bi Fstat Pstat Degrees

freedom

Dt e

0.01 0.4627 0.9477 42.6 <0.01 1-758 6.1958

0.02 0.4410 2.0175 331.7 <0.01 1-299 5.8923

0.03 0.6789 2.6626 608.0 <0.01 1-1267 5.2754

0.04 0.6736 3.6309 1067.0 <0.01 1-1300 4.9915

0.05 1.9640 3.7421 109.0 <0.01 1-321 3.5681

0.10 1.0196 8.2817 1313.0 <0.01 1-449 3.2483

0.15 1.2550 10.3941 3040.0 <0.01 1-541 2.5094

0.20 0.6859 13.2707 9020.0 <0.01 1-594 2.0738

0.25 0.8511 14.1703 9908.0 <0.01 1-592 1.7179

0.30 0.5326 16.0430 19170.0 <0.01 1-618 1.3000

0.35 0.5775 16.7497 36052.0 <0.01 1-619 1.0621

0.40 0.3670 17.8883 56284.0 <0.01 1-642 0.7578

0.45 0.2938 18.5397 * * * 0.5546

0.50 0.2164 19.1648 * * * 0.3507

0.55 0.3256 19.2012 * * * 0.3255

0.60 0.2596 19.6201 * * * 0.1884

0.65 0.1720 20.0671 * * * 0.0352

0.70 0.1974 20.1508 * * * 0.0054

0.75 0.1336 20.4496 * * * �0.1022

0.80 0.0722 20.7373 * * * �0.2106

0.85 0.0743 20.7964 * * * �0.2322

0.90 0.0532 20.9009 * * * �0.2729

0.95 0.0234 21.0245 * * * �0.3224

Fig. 5. Distribution histograms of diameters of patches of Sarcocornia peren-

nis measured at the salt marsh. (a) External diameters and (b) internal

diameters.
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and also how many iterations must be made to fit the measured
histogram.

When the internal diameter begins to grow according to
Eq. (11) but conditioned by Eq. (12), that is to say, when
Dt e>0.85, then, Dt i does not depend on its measured real
histogram. Finally, the accretion of the patches vs the external
diameter was adjusted with the curve (ANOVA F1,48¼ 53.6,
p< 0.01, Zar, 1999):

h¼ 1:859� 0:498Dt e ð14Þ
This depression is the level value measured in the center of

the ring. The patch pan formed within the ring is assumed to
have a form of revolution paraboloid, whose maximum
depression agrees with h in the midpoint of the ring.

2.5. Tidal creek evolution

In this step, the salt marsh is represented by the sum of
the DTM topography plus the resulting topography for the
plantecrab interaction. In the DTM are the typical depressions
of the land that form small pans plus the ring salt pans and
patch salt pans. In the following analysis, the three types of
pans are considered to be only one, called pan. The next
step is to find out how the pans drain when the tide is ebbing
or after rains. Pans are analyzed from the point of view of their
interconnection and their outflow pattern over the boundaries
of the simulated field. The runoff model adopted here is not
hydrodynamic since it does not consider the effect of the tidal
water slope. The main process of channel growth in the stud-
ied marsh is due to the water discharge from the subbasins
formed by the patch salt pans and the ring salt pans that drain
the water once the tide is below the marsh level.

The delimitation of the pans is determined by analyzing
the route of a drop of water placed at each grid point. We
assume that the drops will move from the starting point
following the path where the topographic slopes are larger.
Therefore, the trajectories indicate those paths which are
taken by a larger quantity of water drops, and those which
are more likely to be eroded. All the water drops that drift
to a common point will share the same pan. Analysis of
these pans in the whole matrix results in a drainage basin
map of the DTM.

The interconnection of these pans will define resultant
basins where the tidal creek will grow. Each pan drains off
from the Lowest Basin Border Point (LBBP) towards its adja-
cent pan and this in turn from its LBBP towards another neigh-
bour pan. The LBBP, as its name indicates, is the point along
the pan border having the absolute minimum elevation. When
two adjacent pans have opposite exit points, they turn into an
endorreic pan (without water outflow). In this case, two pans
are taken as only one and the analysis continues until the basin
drains from the border of the matrix.

We assume that the amount of water that drains from each
pan is proportional to its area. Each pan that receives water
keeps the information on the quantity of accumulated water
that brings its tributary pans. Thus, the amount of water that
overflows the matrix and flows outwards is known. Finally,
for each basin, the creek grows following the pans which con-
tribute the larger flows. The creek starts in a pan at the edge of
the matrix and grows towards the interior of the matrix.

The path that the channels follow is obtained in the follow-
ing way:

� By connecting the points where the pans overflow with
those of minimum level.
� Then from these points towards the point where the tribu-

tary pan overflows.
� This procedure is applied to all pans in the DTM and the

creek follows the path that is crossed by the largest quan-
tity of water drops.
� Secondary creeks in each basin are not considered in the

analysis.

3. Results and model verification

One simulation was made on a rectangular matrix of 1240
cells (10 cm cell�1) for the DTM. Two simulations were made
for the plantecrab interaction on a rectangular matrix of 2480
cells (5 cm cell�1) plus the DTM. The simulated area is square
of 124 m on the side for all cases. In the two plantecrab inter-
action simulations the model generated 343 patches. The
distribution histograms of the obtained external diameters
(Fig. 7a, c) were compared with the real data (Fig. 5a) by
a test of goodness of fit c2 (Montgomery and Runger,
1996). Since the number of external original diameters mea-
sured (deo) was lower than the amount of simulated diameters
(des), the sample was normalized by dividing the frequency of
the latter by the factor des/deo to be able to make the test. In all
the cases, the simulated distribution is similar to the original
distribution (Table 2).

Furthermore, the relation between internal vs external
diameter remains inside the cloud of points of the original
information and they are distributed evenly on both sides of
the regression line (Fig. 6). With a Student t-test (Zar, 1999)
we compared the line slope of di vs de in the series of simu-
lated and real data. In the both cases the straight line slopes
were statistically similar to the original data (Table 3).

However, the histograms of distribution of simulated inter-
nal diameters (Fig. 7b, d) show differences with respect to the
measured histogram. This is because they are generated by
Eq. (12), which cannot reproduce the variance of the original

Table 2

Results of for the test of goodness of fit of the histograms of external and in-

ternal diameters, respectively. The histograms of the external simulated diam-

eters fitted well to the real measured histogram, while the histograms of the

internal diameters did not fit well to the real measured histogram

Sim 1 Sim 2

df 9 9

c2-de 2.53 2.04

a-de 0.975 0.975

c2-critic de 2.7 2.7

c2-di 61.41 57.24

a-di 0.05 0.05

c2-critic di 2.7 2.7
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sample. A test of goodness of fit was performed to establish
whether the simulated histogram fits the real one, but in
both cases there was no significant statistical evidence to
accept the hypothesis (Table 2). Nevertheless, a test of com-
parison of means concluded that the averages of the real and
simulated internal patches are equal (ANOVA F2,783¼ 0.094,
p> 0.91, Zar, 1999)

In order to compare the shape of a real plant patch with the
simulated patches, we compared their fractal dimension. A to-
tal of 27 plant patches was obtained from aerial photographs
(Fig. 1b) and another 27 were chosen randomly from the
model applying the relation (Hastings and Sugiahra, 1993;
Turner, 1989):

P¼ KAD=2 ð15Þ

where P is the perimeter of the patch, K is a proportionality
constant, A is the patch area and D is the fractal dimension
of P.

For the regression with the original data, we found that
K¼ 4.850 and D¼ 0.943 (ANOVA F1,25¼ 282.8, p< 0.01,
Zar, 1999) whereas for the regression of patches generated
by the model we estimated that K¼ 2.912 and D¼ 1.088
(ANOVA F1,25¼ 1764.9, p< 0.01, Zar, 1999). For both
regressions the tendencies were similar; however, the interval
of confidence of the simulated patches was within the interval
of confidence of the real patches (Fig. 8), which may indicate
that the dispersion of the real data does not allow us to find
significant differences between both regressions.

The DTM was generated for a region coincident with the
dimensions of the area where the patches of plants were

Fig. 6. Real and simulated relation between the internal diameters and external

diameters. The straight line is the regression of the real data.

Table 3

Results of the comparison of the real and simulated straight lines of regression

between external and internal diameters. Both simulated relations turned out to

be equal to the real relation measured in the salt marsh

Sim 1 Sim 2

t 0.644 0.261

df 439 439

a 0.1 0.1

t-critic 1.2 1.2
simulated. The application of a lowpass filter allowed the
adaption of the original model generated by the fractal algo-
rithm to the characteristic of the salt marsh. Then we added
the effects of two simulations of the terrain for plants and
crabs. Therefore, we had three land situations, one with the
DTM without biological disturbances (case 1, Fig. 9a) and
two with the DTM including these disturbances (cases 2 and
3, Fig. 9d, g).

Finally, the resulting salt pans for the three land situations
were analyzed. For case 1 (control) 205 pans were obtained,
whereas for cases 2 and 3, 726 and 744 pans were obtained,
respectively. The basins were different for the three modeled
situations (Fig. 9b, e, h). Also the trajectories of the tidal
creeks were totally altered by the additional effect of the plants
with crabs in the salt marsh (Fig. 9c, f, i). The tidal creeks de-
viated from their trajectories towards these patch-pans. In
some cases, tidal creeks different from the original ones
were generated by a combination of trajectories, whereas in
other cases new creeks were generated unaffected by the orig-
inal topography.

4. Discussion and conclusions

The Cellular Automata model proves to be adequate in re-
producing the interaction effects between plants and crabs in
the salt marsh. The histogram of external diameters, the rela-
tions between diameters and the power law correlation be-
tween the area and the perimeter were statistically identical
to the measured data. However, the histogram of internal di-
ameters was not reproduced satisfactorily; although the model
has been able to reproduce its mean and variance. Neverthe-
less, the internal diameter only has a landscape importance,
because it does not become involved in the modification of
the topography, since the depression and shape of the patches
are a function of the external diameter.

Although most of the flow associated with tidal channels
and coastal wetlands is driven by the energy slope induced
by the tide, as it occurs in our marsh when it is inundated,
most of the erosion and stream retreat observed in the study
site is produced by the continuous discharge of water accumu-
lated on the pans either as retained from a previous tidal event
or from rainfall. As this marsh is only covered by the tides
about 40 times a year, rainfall and even some groundwater out-
flow through the crab burrows concentrated in the pans play
the main role in shaping the streams by simply gravitational
circulation.

The water drainage study of the basins showed that this in-
teraction does indeed modify the development of tidal creeks.
Creeks were attracted towards the pans generated by the crabs
(Fig. 9c, f, i). The resultant basins modified their shape and in-
creased their area of contribution due to the presence of the
ring salt pans and patch salt pans. In the simulations with veg-
etation, the disturbance in the topography generated tidal
creeks totally unrelated from those generated in the original
marsh. These mechanisms control the spatial and temporary
growth dynamics of the tidal creeks. Spatially, they form the
path where the channel will develop, and temporally, we
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Fig. 7. (a) Histogram of the simulated external diameters of Sarcocornia perennis and (b) histogram of the simulated internal diameters of S. perennis.
observed that the mean retreat length rate is proportional to its
drainage subbasin. These factors exert a greater influence than
the water surface gradient, which has seen that dominates in
the intertidal ambient (Rinaldo et al., 1999a,b; Fagherazzi
and Sun, 2004).

The model was thought only to reproduce the effects of the
interaction between the plants and the crabs in the topography
in the present state of the salt marsh. The model is not biolog-
ically complete because we did not contemplate the natality
and mortality rates of the patches of plants and crabs. The
landscape and the bioturbation are reproduced correctly in
the last iterations because it is the point where the conditions

Fig. 8. Relations between area and perimeter of the patches of Sarcocornia

perennis simulated and real. Units are in cells. The interval of confidence of

the simulated patches is inside the interval of confidence of the real patches.
measured in the land are fulfilled. However, the early stages of
the model not necessarily reflect what actually happened in the
marsh as we lack the adequate data to compare. Furthermore,
maintaining the model running forward will result in a salt
marsh completely covered by plants and crabs due to the
lack of the natality and mortality controls.

These laws can be easily added and the model could then
provide extended information about how the system behaves
under different events on the salt marsh (Wiegand pers.
com.). Also, if the natality or mortality of only one species
is known, it is possible to deduce the mortality or natality
rates of the other in order to balance the system. In the present
case, we did not include the seasonal variability of these
processes either. The modeled processes occur in the warm
period for the Southern Hemisphere, mainly from December
to March. In order to reach the present state, the model
made 182 iterations, which means a time interval of 45 years.
Field data were gathered in the period 2001e2003. Actually
the patches were discovered in 2001, so there is no previous
information of status of the salt marsh to calibrate the model
in its first iterations. Therefore, the simulation coincides with
the current state of the marsh and does not determine what
occurred before.

At this stage it is not possible to quantify the erosion pro-
duced by the mechanism of creek formation promoted by the
biological interaction. Nevertheless, it is possible to make an
adaptation to quantify how much sediment has been removed
due to the depression effect that occurs at the patches in the
whole marsh in order to make a short term prediction. Finally,
the methodology developed has proved to be an excellent tool
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Fig. 9. Level curves of the digital terrain model: (a) simulation 1: digital terrain model without added disturbances. (d) Simulation 2: terrain resulting of simulation

1 plus the accretion of the patches of the simulation 2. (g) Simulation 2: terrain resulting from simulation 1 plus the accretion of the patches of the simulation 3.

Resultant drainage basins of the DTM: (b) simulation 1: drainage basins of the DTM without added disturbances. (e) Simulation 2: drainage basins of the terrain

resulting from simulation 1 plus the accretion of the patches of the simulation 2. (h) Simulation 3: drainage basins of the terrain resulting from simulation 1 plus the

accretion of the patches of the simulation 3. Resulting paths of simulated tidal creeks. (c) Simulation 1: paths of simulated tidal creeks without added disturbances.

(f) Simulation 2: paths of simulated tidal creeks resulting from simulation 1 plus the accretion of the patches of the simulation 2. (i) Simulation 3: patches of

simulated tidal creeks resulting from simulation 1 plus the accretion of the patches of simulation 3.
for patch growth simulation. The model dynamics can be
adapted to different laws (i.e. processes), which would provide
a different formula for the probability of patch dilation. The
shape can be obtained changing the dilative pattern.
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