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Abstract—This paper introduces the PN-PEM framework.
It is based on the representation of an algorithm with Petri
Nets. Frequently, a real algorithm needs a large Petri Net to
be represented. We present a way to model an algorithm with
Colored Petri Nets that simplify the model. After that, this
high level model is transformed into a low level but executable
model, preserving its semantics. The execution also needs other
components of the framework, as the involved processors, data
used and executable kernels. The combination of these elements
is described in order to obtain a parallel execution. Some tests
are also presented as a testbed of the framework in symmetric

multiprocessors. Usability, as well as good performance, confirm
the quality of the framework.

Keywords—Parallel Programming - Asynchronous Parallel Ex-
ecution - Petri Nets - Framework.

I. INTRODUCTION

Synchronicity is a strategy to facilitate parallel program-
ming. It is simple for programmers that all processors in
a parallel program reach a point after which they complete
a certain number of tasks. Nevertheless, synchronicity is a
factor that is unfavorable for the overall performance of the
algorithm: in a barrier, faster processors are forced to remain
idle while waiting for slower ones.

The tiled algorithms emerge as a solution to the problem of
load balance for dense linear algebra algorithms on multicore
processors [4]. This type of algorithms is an evolution from
rectangular block-based algorithms, in which data reusability
was the concept to optimize. However, now the key concepts
are fine granularity and asynchronicity to achieve better thread
level parallelism.

Tiled algorithms divide data in square blocks that allow
“out of order” computing, thus increasing the number of tasks
that can be run in parallel. As with block-based algorithms,
classical factorizations and updates consist in applying the
proper routines (“kernels”) from the BLAS [1] and LAPACK
libraries [2]. Block sizes are tweaked to achieve good execution
performance for the kernels involved in the algorithm.

Since the number of tasks available to run in parallel
exceeds the number of processors, different tasks can be
selected to define the scheduling of the parallel algorithm.
Static scheduling is defined prior the algorithm execution.
Common examples are left looking (LL) and right looking

(RL) scheduling, which differ based on whether priority up-
dates are on the left or on the right of the current factorization
panel [11], [14]. Task scheduling plays a significant role in the
performance achieved.

An asynchronous execution is complex to model and to
execute. The main advantage of this model is that there are no
idle processors if there are tasks that can be executed and that
are waiting for a free processor. When the program has differ-
ent tasks, or task with divergences, load unbalancing occurs,
causing idleness in processors when execution is synchronous.

On the other hand, a coordination element must be present
in the asynchronous model, to manage tasks execution. In this
case, the programmer does not have absolute control over
the execution because each processor behave independently.
Therefore, guidelines should be provided to select tasks to
execute, in a way that is independent of the progress of
processing.

The ”Master / Slave“ model is an example of this kind
of parallel programming [13]. In the same line is the ”Peer
to Peer“ model, which has a non-centralized administration of
tasks, distributed between the peers involved in the execution.

Both models, ”Master / Slave“ and ”Peer to Peer“, were de-
signed to be run on a distributed system using message passing
communication. An implementation on a multiprocessor with
shared memory, should simulate that message passing model
using shared variables.

By other side, Petri Nets is a mathematical and graphical
model that allows to represent a concurrent process. It is a
bipartite graph formed by a set of Places, a set of Transitions,
and Tokens, that are found only in Places. It is bipartite because
a Place can be only linked to Transitions and Transitions can
be only linked to Places. Transition ”firing” is the concept
that allows representing the execution of the model. As many
Transitions can be fired simultaneously, the concurrency of the
model is represented naturally.

Since the execution of a program is a process, the repre-
sentation of a parallel execution of a program by a Petri Net
is easily modeled. There are many examples of representation
of a program with Petri Nets [6], [10], [12], mainly oriented
to the study of properties of the algorithm or to simulate its
execution. But when it comes to executing the PN model on a
real computer, a gap between both stages emerges. To the best
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of our knowledge, nobody uses PNs model to run a parallel
program.

The objective of this paper is to introduce the PN-PEM
framework that allows to model a parallel program using Petri
Nets and to run it without using any other tools, addressing
the gap mentioned above. It is based on the research that lead
to the PhD dissertation of one of the authors [20].

II. THE PN-PEM MODEL

A. Petri Nets Context

A Petri Net (PN) is a bipartite directed graph that con-
sists of nodes called Places and Transitions. Usually, Places
represent “states“ and Transitions represent “actions“. The
set of Places is denoted by P and the set of Transitions is
denoted by T [5]. The PN has tokens, which only exist in
Places, and usually represents “facts“. The marking function
is, µ : P → N and defines the number of tokens belonging
to each Place. The set of Places whose arcs are directed to a
Transition t is called Input Places of t. In the same sense,
the set of Places whose arcs come from a Transition t is
called Output Places of t. A Marking Vector is denoted by
M ∈ N

1×|P | where M [i] denotes the number of tokens in the
place i. Tokens are indistinguishables from each other. The
initial state of the marking vector is denoted by M0.

A transition t is said to be enabled when all its input Places
have tokens. The weight of an arc w(a) can be greater or equal
to one. The execution of the net occurs when a transition t
is ”fired“, moving tokens from its input Places to its output
Places. When firing a transition, the Marking Vector is updated,
subtracting values in the positions that represent the Input
Places of t and adding values to the positions of its output
Places. This net is also known as Token Petri Net (TPN).

The set of arcs A can represented by a matrix, called
Incidence Matrix D ∈ N

|P |×|T |, where rows represent places
and columns represent transitions. The values in the matrix
are w(a) or 0 depending on whether arc a = (p, t) or
a = (t, p) belongs to A or not. Two Incidence Matrices are
defined: D− and D+, the Negative and Positive Incidence
Matrices respectively, representing weight valuesfor the Input
and Output Places.

Colored Petri Nets (CPN) are a class of High Level Petri
Nets [5] that allow modeling complex problems in a compact
form. Their most notorious property is that tokens may have
differences between them. The mathematical concept of do-
main is used to define the “color” in the CPN. In this model,
each Place is related to one domain; thus, colors represent the
domain of a place and tokens must be linked to a color, so as
not to be fungible as in TPNs.

Two additional concepts are used in CPN. First, multisets
are required to represent the stock of tokens in each Place; this
is done using a < color, quantity > pair. Second, the guard
is a boolean expression that determines when a transition is
enabled and which are the tokens absorbed from each input
place. CPNs are not usually represented using matrices due to
their complexity.

B. The PN-PEM process to Model the algorithm

Once the programmer has analyzed the algorithm and has
determined the tasks and the number of data divisions, it
must represent the algorithm in a CPN with the following
conditions:

• Each task of the algorithm is represented by one and
only one Transition.

• Each data argument of each task is represented by an
input Place of the corresponding Transition. In other
words, a Transition has as many input places as data
parameters the represented routine has.

• No other Places and Transitions are defined.

• Each Transition is linked to its output Places, which
are some of the input Places defined before. This
represents data dependency, because the output of a
Transition is used as input for another.

• The domains of each place are determined in order to
represent the algorithm conditions in the net.

• The initial mark, 0, is defined. It has positions with
zero, the ones that represent intermediate states of the
algorithm, and other positions with the label of the
data blocks that represent the initial values of the data
used by the algorithm.

The key point in the process is to correctly define the
domain of each Place and the guard functions. Since each
Place represents an input parameter for a task, the domain of
each Place is the naming assigned to the data division where
data are partitioned for parallel execution. The domain may be
restricted by the same conditions that the task imposes on each
parameter. For example, in the linear algebra tiled algorithms
[4], the domain of each Place should be a pair < row, col >,
denoting the position of the block inside the matrix. The next
subsections show examples of the models of two algorithms
built in this way.

This high level model is usually used to represent algo-
rithms and simulate their execution. It has the major drawback
that it cannot be executed directly on a parallel computer.
The overhead necessary to abstractly represent domains and
function arcs is expensive in terms of high performance
computing.

On the other hand, a CPN developed in this way fulfill
the definition of well-formed CPNs [5]. These nets are easily
transformed into TPNs, by unfolding thr CPN into a TPN. The
latter has a computational implementation that is simple and
light to execute.

The TPN obtained by unfolding a CPN is produced as
follows:

• Each place in the CPN is replaced by a set of Places
in the TPN, one for each value in the domain of the
original Place, preserving the number of repetitions of
each color, due to its multiset model representation,
the same as each Place represents a value of a token
in the CPN.

• Each Transition in the CPN is replaced by a set of
Transitions in the TPN, one for each combination of
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Fig. 1. Execution steps for the Cholesky algorithm, with n = 5

colors in the Cartesian product of the input Places of
the CPN, restricted to the cases that its guard function
evaluates as true. The input Places of the unfolded
Transition are the corresponding Places generated
above.

It should be noted that the unfolded TPN represents the
algorithm because it preserves the semantics of the CPN
through construction. Thus, each Transition in the unfolded
represents each task, and each Place, to each data parameter.

Before continuing describing the rest of the PN-PEM
framework, two sample algorithms generated like this are
presented.

C. The Cholesky Factorization Algorithm

The Cholesky factorization algorithm is a classical problem
of linear algebra, in which a square, symmetric and positive
defined matrix A, with range r, is factorized as A = L ∗ LT ,
where L is a triangular matrix. The values of L are calculated
with the following formulas, using the lower portion of the
triangular matrix:

lij =

(
aij −

j−1∑
k=1

lik ∗ ljk

)
/ljj 1 ≤ j < i ≤ r (1)

lii =

√√√√aii −
i−1∑
k=1

l2ik 1 ≤ i ≤ r (2)

where a hard data dependency can be observed, since, to
calculate the values on the main diagonal, the values on the
same row are required, which, in turn, needs the values from
the previous rows.

The parallel implementation used in this work is based on
the tiled version of the algorithm as defined in [15], using
a data division of square blocks and routines from BLAS [1]
and LAPACK libraries [2] for computation. These routines are
xPOTRF, xGEMM, xTRSM and xSYRK, where x can be ’s’
or ’d’ depending on whether single or double precision data
are used. Execution steps are depicted in Fig.(1), supposing a
tile division of n = 5.

Fig. 2 shows the CPN that represents Cholesky’s algorithm.
It has only four Transitions and eight Places; each Transition
represents one routine and each Place represents one of its
parameters. The name of the Places follows the number of the
block used in each operation. Color tokens are represented by

potr1 trsm2

potr

< i, i >

< i, i >
{n− i}

trsm1

syrk1

gemm2 gemm1

trsm

< j, i >
< i, i >

< j, i >
{n− j}

< j, i >
{j − i− 1}

< j, i >

syrk2

syrk

< j, i >

< j, j, i >

< j, j, i + 1 >
if(i+ 1 < j)

< j, j >
if(i+ 1 = j)

gemm3 gemm

< i, q >
< j, q >

< j, i, q >

< j, i, q + 1 > if(q < i− 1)

< j, i >
if(q = i− 1)

Fig. 2. Colored Petri Net that represents Cholesky’s factorization algorithm.

< x,y >, multiset repetitions by braces {x}, and functions arcs
are only Booleans of the form if(cond).

The domains used in Places have the format < x, y >,
representing the row and column of the block in the matrix,
with some restrictions imposed by the algorithm. The number
of tiles in which the matrix is divided is n and it is provided
as a parameter. The first two columns in the Table I show
the domains used for each Place. Restrictions in the domains
are basically caused by the triangular shape of the matrix and
the placement of the parameters used in each routine. The
third parameter used in some Places responds to the necessity
to preserve an order in the computations. In these cases, the
operation is originally based on rectangular data blocks, which,
due the tiled divisions, are square in our case.

The last column in the Table I shows the Places of an
unfolding example, with the n = 3 for simplicity. The names
of Places in the TPN follow the corresponding names in
the CPN, concatenated with the color of the token that is
represented. For example, syrk132, is the Place in TPN that
came from Place syrk1 with color < 3, 2 > in CPN, and
represents the first argument in the syrk operation of the tile
in the third row, second column. An example with n = 4 is
depicted in Fig.3

The table in Fig. II shows the number of tasks in the
algorithm based on the number of tile divisions. The potr task
has a linear growth, syrk and trsm have squared growth, and
gemm, cubic growth. The number of tiles n defines a series
of stages in the processing, where each incremental value of
n introduces a group of new three serial tasks. This implies
that, for example, a tile division with n = 6 has 16 sequential
tasks over the total of 56.

It is not difficult to see how fast the number of Places and
Transitions in TPN grows with an increasing number of tile
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TABLE I. DOMAINS FOR THE PLACES IN THE CPN IN FIG.2. THE

LAST COLUMN SHOWS THE PLACES OF THE TPN UNFOLDED WITH A TILE

DIVISION OF n = 3.

CPN Place Domain in CPN TPN Places

potr1

< i, i > potr111

i = 1 . . . n potr122

potr133

trsm1

< j, i > trsm121

j = 2 . . . n trsm131

i = 1 . . . j − 1, j > i trsm132

trsm2
< i, i > trsm211 {2}
{n − 1} repts trsm222 {1}

syrk1

< j, i > syrk121

j = 2 . . . n syrk131

i = 1 . . . j − 1, j > i syrk132

syrk2

< j, j, i > syrk2221

j = 2 . . . n syrk2331

i = 1 . . . j − 1, j > i syrk2332

gemm1

< j, i >, j > i gemm121 {1}
j = 2 . . . n

i = 1 . . . j − 1,{n − j} repts

gemm2

< j, i >, j > i gemm231 {1}
j = 3 . . . n

i = 1 . . . j − 2,{j − i − 1} repts

gemm3

< j, i, q >, j > i > q gemm3321

j = 3 . . . n, i = 2 . . . n − 1

q = 1 . . . i− 1

TABLE II. REPETITION NUMBER OF EACH TASK BASED ON TILE

DIVISION.

op \n 1 2 3 4 5 6 8 10 12 15 20

potr 1 2 3 4 5 6 8 10 12 15 20
syrk 0 1 3 6 10 15 28 45 66 105 190
trsm 0 1 3 6 10 15 28 45 66 105 190
gemm 0 0 1 4 10 20 56 120 220 455 1140

total 1 4 10 20 35 56 120 220 364 680 1540

seq.
tasks 1 4 7 10 13 16 19 22 25 28 31

divisions. It is practically impossible to show and understand
its graphical representation. An example of an unfolded net
with n = 4 is shown in Fig.3. This figure shows the existence
of tasks whose dependencies are multiple and whose execution
must be initiated as fast as possible, and other tasks whose
execution can be delayed without affecting the ending.

In addition to facilitating the analysis of the algorithm,
the key feature offered by the unfolded net is a matrix-like
representation of the net. Thus, a simple pair of matrices
represent the tasks, data and dependencies, are the model of the
algorithm. Its execution is guided by matrix - vector operations.
A framework that interprets this information and link it with
real routines, is introduced in the next section. Before that,
another example is presented.

D. The Merge-Sort Algorithm

To present another algorithm modeling example using PN-
PEM, the merge-sort algorithm should be described. Merge-
sort is a sorting algorithm that has two stages: data division
stage and a stage for merging the sorted blocks. Data division
is a recursive process that divides data in two halves until
an individual data block is obtained. The merging stage joins
together the previously divided blocks taking one and one with
a lower value from the two blocks until all values are sorted
[16].

A parallel implementation merges the divided blocks until
no more tasks can be done in parallel, which occurs at the
last step of merging. However, to improve efficiency, the data

potr

trsm trsm trsm

syrk syrk syrk gemm gemm gemm

potr

trsm trsm

syrk syrk gemm

potr

trsm

syrk

potr

Fig. 3. Token Petri Net unfolded from the Colored Petri Net shown in Fig.2
using a tile division of n = 4.

division stage continues not until a unitary value block is
obtained, but rather a block reaches a minimum size. This
minimum size block is sorted by some algorithm, after which
the merging stage begins [9].

Three tasks are required to build the CPN model for this
algorithm; they are dividing, sorting and merging. Each of
these is represented by a Transition in the CPN. Considering
the data disposed in an indexable support, data division is
defined by < x, y > segments, indicating the beginning and
the end of the segment.

The division task takes one segment and produces two. The
sorting task takes one segment and produces another where
the data have been sorted, and the merging task takes two
arguments and produces one, which is the result of joining of
both initial arguments. Fig. 4 shows a graphical representation
of the model. Places and Transitions names follow the criteria
described in Cholesky’s example.

It should be noted that the domains of the Places in the
Figure takes the form of an ordered trio. The reason to add
a dimension in the colors of the net is to preserve the order
of the recursive data division needed at merging time. As the
recursion implicitly uses a stack, this stack is simulated with
in this third dimension.

The numbers in the third dimension represent the sequence
of natural numbers in a binary tree beginning with one. Each
value i has two children, i∗2 and i∗2+1, conforming a heap.
In this way the ancestor of a number can be determined using
the integer division by two. The rest of the integer division
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div1

sorti1 sortd1

div
< x, z, a >

< x, y, a× 2 > if(a × 2 < 2n)

< y + 1, z, a × 2 + 1 >
if(a × 2 < 2n)

< x, y, a × 2 >
if(a × 2 ≥ 2n)

< y + 1, z, a × 2 + 1 >
if(a × 2 ≥ 2n)

merge1 merge2

sorti sortd

merge
< i, j, b > < j, k, b+ 1 >

< i, k, b/2 >
if(b > 1 ∧
even(b/2))

< i, k, b/2 >
if(b > 1 ∧
odd(b/2))

Fig. 4. Colored Petri Net that represents the Merge-Sort by blocks algorithm.
The number of subdivisions is done by n. The operation of division is the
usual between integers.

div

div div

sori sord sori sord

merg merg

merg

Fig. 5. Token Petri Net unfolded from the Colored Petri Net shown in Fig.
4 using a number of divisions n = 2.

determines the left or right position of the segment in the
merging phase. The number of recursive divisions n is given
as a parameter.

Fig. 5 shows the unfolded TPN for this algorithm for the
elemental case of only two levels of data divisions. It can be
seen that, as the number of divisions increases, the number
of tasks increases to the power of two. Since the division
task is only a segmentation task, it can be considered as non-
computational. Thus, the total number of computational tasks
is 2n+1 − 1, considering only sorting and merging tasks.

The analysis of the algorithm determines that the depen-
dency between tasks is present at the merging stages; thus,
more parallel tasks will be available with a larger number
of data divisions. For an efficiently parallel run, a balance
between the number of processors, data locality and the

number of tasks to manage must be determined.

Even though the parallel execution of this algorithm seems
to be obstacle-free, a problem arises when using heterogeneous
multiprocessors. In this case, the PN-PEM model will favor
the execution, because, due to the existence of processors
asymmetries, task assignment to processors is complex to
define statically.

There are two aspects to note in relation to the modeling
of an algorithm using PN-PEM. First, it allows analyzing the
parallel algorithm independently of the processors that execute
it, which in turn allows drawing conclusions about its structural
parallelism and the factors that need to be taken into account
when scheduling tasks. Secondly, from the point of view of
the Petri Nets theory, the execution of the net with its initial
Mark Vector should end without any tokens at any Place. If
the execution is infinite or ends with tokens, it means that
the model is incorrect, which results in infinite execution or
incomplete data computations.

Next section introduces the execution framework, explain-
ing how the PN-PEM model executes an algorithm represented
by Incidence Matrices and a Mark Vector.

III. THE PN-PEM FRAMEWORK

The unfolded TPN bluit in the previous section has the
advantage that can be easily represented by the Incidence
Matrix. Thus, the algorithm can be represented by two matrices
of integers. This section introduces the executable section of
the model, the one that takes the Incidence Matrices and runs
the represented algorithm.

The PN-PEM framework is a model for the parallel execu-
tion of programs, that, instead of using low level instructions
or compiler directives to indicate the parallel sections of a
program, uses the Incidence Matrices as parameter of the
parallel program execution. In addition to the matrices, others
elements are necessary for the execution.

The PN-PEM is defined as a tuple:

PEM = (P, T,D−, D+,M,M0, S, τ, δ,Π, Γ, χ) (3)

where:

• P is a finite set of Places Pi.

• T is a finite set of Transitions Tj .

• D− and D+ are the negative and positive Incidence
Matrixes of the TPN.

• M , is the Mark Vector for Places.

• M0, is the initial marking for the net.

• S is the set of tasks that the algorithm must to execute.
They are obtained from the previous analysis of the
algorithm.

• τ is a function from the set of transitions T to the set
of task S, τ : T → S. It associates each transition
with a task.

• δ is a function from the set of places P to the set of
data divisions, which associates each place with a data
block.

JCS&T Vol. 15 No. 2 November 2015

133



• Π is a finite set of Processors Πi. A processor Πi is
an object capable of executing the tasks associated to
each transition by calling a compute kernel.

• Γ is the set of functions γi, one for each processor
Πi.

• γi is a function, that asociates a task s ∈ S with a
kernel to execute. It defines the kernel to be executed
when the Transition is fired, and links the PN-PEM
model with the execution of the algorithm. Each pro-
cessor Πi has its own function γi, allowing different
processors to solve the execution of the tasks s in their
own way.

• χ is a Boolean variable that represents the state of a
mutual exclusion mechanism over M that allows each
Πi to update M securely.

and the initial state of the PN-PEM is defined by marking
M = M0, and χ = true, the exclusion is free.

For the parallel execution each processor runs a task
independently of the rest. Data dependency is guaranteed by
the Petri Net model when an output Place acts as an input Place
in a possibly different Transition. This produces a strong effect
in the model that eliminates completely the need to introduce
synchronizations in the parallel execution.

The number of enabled Transitions can be lower or higher
than the number of idle Processors. As a result of this, there
may be idle Processors with no Transitions to fire or enabled
Transitions waiting for a free Processor. In the first case,
execution speedup will be poor, which should be avoided.
In the second case, the Processor should select the most
appropriate Transition to fire. Thus, a criterion should be
defined for each processor to select the Transition to fire when
more than one is available.

Since many processors run in parallel, there may be two or
more of them attempting to read or write simultaneously on the
Mark Vector M . Concurrent writes on the vector may produce
an incorrect state of the algorithm execution. To avoid this
situation, a Mutual Exclusion (mutex) mechanism is used. In
this sense, Processors work serially when they are selecting the
next Transition to fire, waiting for the mutex enabled condition.

The Pseudo-code of the PN-PEM execution algorithm of
each Processor is presented in Fig. 6. Each Πi Processor
runs in parallel with the other of Processors. In a round-
robin fashion, each idle Πi Processor tries to hold the mutual
exclusion mechanism. If it succeeds, it searches for a task to
execute based on the state of the TPN. To determine which
Transitions are enabled, only simple linear algebra operations
are needed. Thus, if we call D−

j and D+

j the j-th column

(transition) in D− and D+ respectively, the j-transition is
enabled if the vectorial subtraction M − D−

j does not have
a negative value, which implies that all the input places of the
j transition have tokens. Function h represents this:

h(j,D−,M) =

{
1 ∀k = 1 . . . p : (M −D−

j )k ≥ 0
0 else

and when computing h for all the columns, all enabled
Transitions that are ready to be fired are determined.

While main a l g o r i t h m h as n o t f i n i s h e d
I f can h o ld t h e m u tu a l e x c l u s i o n

Compute h f u n c t i o n
S e l e c t one t a s k t o e x e c u t e
Update M by a b s o r b i n g t o k e n s
Free t h e e x c l u s i o n
Task e x e c u t i o n
I n j e c t t o k e n s i n M

E l s e
Delay

E n d i f
End

Fig. 6. Pseudo-code of the task selection algorithm.

To select the task to be executed (fourth step), a selector
is needed. In run-time, each processor uses a value function
that is applied to the set of enabled transitions, selecting the
transition with highest valuation, Tk. The valuation function is
a key factor for the parallel processing performance, because
to select to most appropriate task, it should be adequate for
each type of processor and algorithm.

PN-PEM is very similar to Timed Petri Nets [19]. Both
share the concept that firing a Transition is not instantaneous.
There is an interval time between the start and the end of the
firing. The same as in PN-PEM, the firing action represents
the execution of a task, but the difference is that in PN-PEM
firing is not autonomous once the transition is enabled, as it
is in Timed Petri Nets. An idle Processor is responsible to fire
the Transition selected among all the enabled ones.

Steps 5 and 8 of the pseudo-code algorithm represent the
evolution of the execution. As in Timed Petri Nets, tokens
are absorbed and injected at two times, t0 and t0 + ∆k. In
Step 5, tokens from the input Places of Tk are absorbed when
the Transition is fired, and, in Step 8, they are injected into
their output Places. Both steps updete the Mark Vector M with
simple linear algebra operations:

M ′ = M −D−
k in 5 at t0

M ′′′ = M ′′ +D+

k in 8 at t0 +∆k

(4)

Once the tokens are absorbed in Step 5 and the exclusion
is released, the task is executed in Step 7 using the function
γi. Also, the data blocks needed are selected by the δ function
which uses the input places of the selected transition to get
the appropriate blocks.

Mapping settings between Transitions and Places with
kernels and data blocks should not be unique for all processors;
this is the key to adapting the framework to a heterogeneous
system. For example, in a multicore - multigpu system, each
type of processor has its own mapping setting, both for routines
to execute as well as for data. In the first case, the processor
heterogeneity is solved. In the second, a different granularity
of data for each type of processor may be the solution,
highlighting an absence of synchronicity in both cases.

Since a framework is an incomplete software artifact that
a programmer should complete with its own pieces of code
in order to obtain a specialized program [7], is important to
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highlight which are the elements that the programer of PN-
PEM should provide. They are the Incidence Matrices, the
set of Places and its mapping with the data block related (δ
function values), the set of Transitions with the related tasks
(τ function values), the set of processors (the Π set), and the
kernels to be run in each processor (the Γ set).

To achieve high performance using the PN-PEM frame-
work, two more elements, not included in the formal definition
of the framework, have to be provided by the programmer.
These are the configuration of each processor object (each
Πi), and the valuation function used to select the task to be
run when there is more than one task available.

The configuration of each processor Πi is formed by
processor’s set of cores. This variable allows configure a two-
level partition of the cores, with a logical high level division,
and a lower level that allows using affinity when more that
one core is used. Also, the configuration can specify if the
processor object is dedicated to control a coprocessor, like a
GPGPU or a Xeon Phi board.

The valuation function also helps achieving high perfor-
mance. It is the element that allows implementing a dynamic
scheduler. Since each of the Πi objects can be different, each
of them has its own valuation function. This function evaluates
the set of available Transitions and defines the one with high
priority to be executed. Thus, the result of the valuation can be
calculated using as parameters to the state of the processing,
the set of available Transitions, and the properties of the
physical processor involved. The dynamics of the scheduler
is a consequence of these characteristics, and because of this,
the response can differ depending on the state of the factors
considered at execution time.

Finally, as a summary of framework utilization, a pro-
gramer should complete it with the code of the kernels that
implement the actions of each Transitions, the code that
manage data and its partitions, and the code of the valuation
function described above for each processor.

This section has introduced the executable side of the PN-
PEM framework, completing its presentation. The next section
presents some tests done using the PN-PEM framework.

IV. EXPERIMENTS

This section describes the test results carried out using the
Cholesky algorithm running on a Symmetric Multiprocessor
(SMP) machine built with Intel processors. It must should be
noted that these experiments are conceived as a testbed for the
PN-PEM framework.

The SMP used is configured with two Intel Xeon E5-
2680 chips, each of them with eight cores. Each core has
one AVX (Advanced Vector Extensions) unit that uses 256-
bits registers and can perform addition and multiplication
operations simultaneously over these registers with 32 or 64-
bits groups. Since the selected algorithm makes an intensive
use of AVX operations, sixteen processors were considered,
one for each AVX unit.

The PN-PEM configuration of the parallel hardware may
vary in the number and configuration of the two-levels pro-
cessor division, from only one Πi object with sixteen cores

TABLE III. TIME IN SECONDS AND FLOPS IN GFLOPS FOR TESTS WITH

RANGES 24000 AND 48000, USING 16 THREADS WITH DOUBLE LEVEL

DIVISION,Πi× THREADS (1X16,2X8,4X4,8X2,16X1), TILE DIVISION

n = 12.

Πi 1x16 2x8 4x4 8x2 16x1

rng secs flps secs flps secs flps secs flps secs flps

24K 11.7 392 10.2 453 9.0 513 8.4 549 9.52 484

48K 69.7 529 62.7 588 59.9 616 60.3 611 71.0 519

to sixteen Πi logical processors composed each one by only
one core. This adaptability is used to test which combination
offers the best performance.

Tests were run on the Intel Composer 2013 suite, which
includes the MKL BLAS/LAPACK implementation. PN-PEM
has two requirements in relation to the compiler / libraries
to be used; nested parallelism, needed for the two-levels
division, and core affinity, to configure each Πi internally. Both
requirements are fulfilled by the compiler selected. Single-
precision floating point was used for these tests.

Table III shows the most representative results using the
system described below. A tile division of twelve divisions
by side, n = 12, was used. The ranges of the matrices
tested were 24000 and 48000, and the grouping of the phys-
ical cores is configured by all the possible combinations of
< Πi× threads > with the sixteen AVX units. The valuation
function used was the same for all processors, prioritizing the
task with more pending stages in its path to the end, a close
concept to the “critical path”.

1×16 division means that all tasks are done sequentially by
the framework and the parallel execution of each task is derived
to the library. On the other hand, 16× 1 implies that there are
many tasks running in parallel, each task using a sequential
implementation of the library. The best result, 616 gflops, is
achieved by a 4 × 4 division which means a combination of
parallel tasks run on four logical processors, each of these,
composed by four internal threads. Taking into account that the
Rpeak of the machine is 691.2 gflops, a near-optimum result
was obtained, which evidences a very good management of
the parallel tasks done by the framework.

Due to the editorial space limitations, in this work were
included only tests for the Cholesky algorithm using a SMP.
There were also tests for the same algorithm using other SMP
computer or heterogeneous multiprocessors and for different
algorithms, as for merging. The space required for a complete
topic presentation of these test exceeds the allowed limits, and
are left to next papers. Nevertheless, we can anticipate in order
to remark the usability of the framework, that its ability to
adapt to changes in the algorithm or in the processors, was
significant to reach excellent results.

V. RELATED WORKS

Iordache et.al. [12] use Petri Nets to model algorithms
from the control point of view. They use TPNs to model, with
Transitions representing tasks and Places representing data or
control facts. Scheduling tasks in a parallel system is barely
mentioned.

The dynamic scheduler developed is related to the one
described by Quark [21]. In this work, data locality is given
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priority over parallel task availability. In PN-PEM, task avail-
ability is prioritary to the locality. StarPU is a runtime system
developed at the INRIA institute that launches tasks in parallel
over a set of processors, using a dynamic scheduler [3]. It
is based on kernels provided by the user that implement the
appropriate solution for each processor. The scheduler uses
estimated times to select the task to execute. The definitions
of tasks, dependencies and data partition are provided within
the code. Any change involves recoding, which is a drawback.

XKaapi is another runtime system developed at INRIA that
launches tasks in parallel [8], with a different approach: it is
based on compiler directives introduced in the source code that
define the tasks that are to be run in parallel. It uses a dynamic
scheduler following a FIFO order, and does not consider any
other optimization factor. In addition to the differences noted
above, none of the previous works are designed to be used on
heterogeneous systems.

Shetti et.al. implements the HEFT (Heterogeneous Earliest-
Finish-Time) scheduling algorithm in a CPU-GPU environ-
ment [17], which is similar to the scheduler implemented
in this framework. It has the disadvantage of assigning task
priorities before running them. Tomov et.al. [18] introduce the
concept of “critical path” for scheduling of tasks in hybrid
systems, but they present a static division of type of tasks to
be executed by each type of processor.

VI. CONCLUSIONS

There are several points to highlight in relation to the
research and development of the PN-PEM framework:

• It has been shown that Petri Nets not only offer good
properties to model concurrent systems, but they are
also a basis for parallel execution. It is not easy to
manage the parallel execution of hundreds or even
thousands of tasks, but this tool proved successful in
doing so.

• Using CPN to model an algorithm allows analyzing
its parallel structure and brings information about
its possibilities and limitations, which are used to
improve parallel performance.

• The framework can be adapted to run on different
SMPs or even on Heterogeneous machines. It should
be noted that the model of the algorithm remains
unchanged, differing only in the configuration of the
processors, the kernels and the valuation function to
select the most appropriate task for each type of
processor.

• In addition to theoretical facts, the framework is
also able to execute in parallel and achieve in a
real performance very close to its theoretical limit.
Asynchronicity and affinity are key for this.

Future work will focus on implementing the framework
and analyzing its execution impact in a distributed memory
architecture. Also, a domain specific language will be de-
veloped for facilitate the representation of algorithms in the
framework, helping, by example, in the process of unrolling
or in the generation of the Incidence Matrices. Framework
internal elements tweaking will also be studied, the same as
using sparse matrices to represent the TPN.
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