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S U M M A R Y
Surface-based monitoring of mass transfer caused by injections and extractions in deep bore-
holes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic
methods, such as magnetotellurics, are appealing for these applications due to their large pene-
tration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this
work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric
data to image mass transfer following a saline fluid injection. The inversion estimates the
posterior probability density function of the resulting plume, and thereby quantifies model un-
certainty. To decrease computation times, we base the parametrization on a reduced Legendre
moment decomposition of the plume. A synthetic test shows that our methodology is effective
when the electrical resistivity structure prior to the injection is well known. The centre of mass
and spread of the plume are well retrieved. We then apply our inversion strategy to an injection
experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to
a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more
shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes
that are located at the correct depths and oriented in a preferential north–south direction. To
explain the time-lapse data, the inversion requires unrealistically large resistivity changes with
respect to the base model. We suggest that this is partly explained by unaccounted subsurface
heterogeneities in the base model from which time-lapse changes are inferred.

Key words: Inverse theory; Probability distributions; Non-linear electromagnetics; Hydro-
geophysics.

1 I N T RO D U C T I O N

Monitoring of subsurface mass transfer is critical to maximize oil,
gas and geothermal production to improve groundwater remediation
and to manage environmental risk. In particular, enhanced geother-
mal systems, which constitute an attractive and increasingly studied
renewable energy source (Muñoz 2014), require information on the
flow paths taken by the injected water in order to subsequently
recover it and use it for energy production.

∗Now at: Institut de Physique du Globe de Paris, France.
†Now at: Department of Earth Sciences, Uppsala University, Sweden.
‡Now at: Geological Survey of South Australia, Australia.

Geophysical methods are suitable to characterize subsurface pro-
cesses, both because of their non-invasive nature and their capacity
to provide spatially extensive data coverage (e.g. Hubbard & Ru-
bin 2005). Various geophysical techniques have been applied in
time-lapse studies that aim at inferring temporal changes in the
near subsurface (e.g. LaBrecque & Yang 2001; Day-Lewis et al.
2002; Ajo-Franklin et al. 2007; Miller et al. 2008; Doetsch et al.
2010; Rosas Carbajal et al. 2012). Tailored inverse formulations
that reduce noise and model parametrizations that focus on temporal
changes make time-lapse inversions more suitable than simple dif-
ferencing of models obtained from separate inversions. LaBrecque
& Yang (2001) proposed a time-lapse difference inversion and ap-
plied it to 3-D electrical resistivity tomography (ERT) data. A sim-
ilar strategy was applied by Ajo-Franklin et al. (2007) to better re-
solve subsurface variations related to CO2 injection with crosshole
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seismics, and by Doetsch et al. (2010) combined with joint inver-
sion of crosshole ERT and ground-penetrating radar (GPR). More
recently, Rosas Carbajal et al. (2012) applied this type of inversion
approach to time-lapse electromagnetic (EM) data, specifically ra-
dio magnetotelluric (RMT) and audio magnetotelluric (AMT). In-
spired by the work of Falgàs et al. (2009), who monitored saltwater
intrusion in a coastal aquifer, Rosas Carbajal et al. (2012) demon-
strated significant improvements in the resulting models by incor-
porating information about the expected temporal changes in the
subsurface and by removing systematic errors.

For deeper targets, for example in volcanic and geothermal stud-
ies, microseismic and EM methods represent prominent monitoring
tools. The former consists in locating natural (e.g. Brenguier et al.
2007, 2008) or induced (e.g. House 1987) seismic sources associ-
ated with fracture openings caused by hydraulic pressure variation.
The latter are sensitive to changes in electrical resistivity, which can
be related to fluid redistributions and changes in fracture connectiv-
ity. Feasibility studies that focused on marine (e.g. Lien & Mannseth
2008; Orange et al. 2009) and on-land (Wirianto et al. 2010) con-
trolled source electromagnetics (CSEM) showed that monitoring is
feasible, but complicated by the diffusive character of the EM fields
and the large depths of investigation. On-land CSEM has some
disadvantages with respect to marine applications, for example,
the need for large source–receiver distances, with kilometre-long
sources that need to be accurately modelled (Constable 2010; Stre-
ich & Becken 2011). Recent advances (e.g. Grayver et al. 2014) sug-
gest that monitoring of resistive targets will soon become feasible.
Bedrosian et al. (2004) performed one of the first magnetotelluric
(MT) studies aimed at monitoring a fluid injection experiment. They
conducted 2-D inversions to map the subsurface resistivity changes
following the injection, but no changes could be detected due to
the low signal-to-noise-ratio. Kappler et al. (2010) studied MT data
variations over a period of 4 yr at the San Andreas Fault and showed
that no significant EM signal precursors occurred prior to the most
significant earthquake event during this period. Aizawa et al. (2011)
conducted a one-year monitoring study at a volcano in Japan using
two MT stations. The data indicate large temporal changes, and the
2-D inversion models suggested that the resistivity changes occurred
at the sea level. Peacock et al. (2012, 2013) presented MT monitor-
ing results of an injection experiment in an enhanced geothermal
system at Paralana, Australia. In this experiment, 3100 m3 of saline
water, together with acids, were injected at 3.7 km depth to stimu-
late the opening of new fractures and enable remote monitoring of
the plume. The authors observed changes above the ambient noise
in both apparent resistivity and phase at ∼50 MT stations, with
maximum changes occurring in the north–northeast direction. No
attempts were made to invert these data.

The works cited above present deterministic approaches to the in-
verse problem, where one single subsurface model that explains the
data is sought by iterative linearization and regularization, and no
formal estimates of model parameter uncertainty are made. Prob-
abilistic inversion (e.g. Mosegaard & Tarantola 1995; Tarantola
2005) offers an alternative approach by estimating the posterior
probability density function (pdf) of the model parameters, which
contains detailed information about parameter uncertainty. To nu-
merically estimate the posterior distributions, Markov chain Monte
Carlo (MCMC) simulation methods are often used. These meth-
ods are able to (e.g. Sambridge & Mosegaard 2002, and references
therein) (1) correctly treat non-linear relationships between mod-
els and data, (2) successfully converge to the posterior pdf of the
model parameters, and thus, (3) adequately characterize parameter
uncertainty. Pioneering EM applications of probabilistic inversions

were performed by Tarits et al. (1994), Grandis et al. (1999, 2002),
Hou et al. (2006), Khan et al. (2006) and Chen et al. (2007). The
computational costs of the algorithms, which require many evalua-
tions of the forward response, have only recently been overcome to
explore high dimensional problems: Chen et al. (2012) presented an
MCMC algorithm to invert 2-D MT data based on a fixed number
of layers, and Rosas-Carbajal et al. (2014) presented the first 2-D
pixel-based MCMC inversion of plane-wave EM data. Probabilistic
inversions have been applied to time-lapse geophysical data (e.g.
Ramirez et al. 2005; Laloy et al. 2012; Lochbühler et al. 2014). Of
particular interest in this study is the work by Laloy et al. (2012),
who inverted synthetic crosshole GPR traveltime data to character-
ize an injected water plume in partially saturated media. The authors
proposed a model parametrization based on the Legendre moments
of the injected plume. This reduces the number of parameters to es-
timate, and thus the computation time, and constrains the solutions
to those that honour the total volume of water injected.

In this paper, we address the problem of estimating the mass
transfer following a deep injection with time-lapse MT data. To do
so, we present the first deterministic and probabilistic 3-D time-
lapse inversions of MT data. We parametrize the probabilistic in-
version using a Legendre moment decomposition similar to Laloy
et al. (2012), but under saturated conditions and for a saline fluid,
and provide uncertainty estimates of the plume’s centre of mass and
spread. After a numerical test, we focus on the plume resulting from
the Paralana injection experiment (Peacock et al. 2012) and com-
pare the MCMC inversion results to those obtained by time-lapse
deterministic inversion.

2 M E T H O D O L O G Y

2.1 Probabilistic inversion

We use a probabilistic framework to estimate the posterior pdf of
a set of model parameters that describe a tracer plume at a given
time-lapse t. Let this system be described by a vector of B model
parameters, bt = (b1, t, b2, t, . . . , bB, t) and a set of N observations,
dt = (d1, t, d2, t, . . . , dN, t), which are related to bt via a set of
equations,

dt = g(bt ) + er,t + esys, (1)

where g(bt) is the simulated MT forward response, er, t is a random
observational error that is varying in time and esys is a systematic
contribution that is present at all times. The latter may include
static shifts, errors in sensor calibrations and/or geometrical errors
(e.g. station positioning). The posterior pdf p(bt|dt) of the model
parameters conditional on the data is found by applying Bayes
theorem (e.g. Tarantola & Valette 1982). In the case of a fixed
model parametrization, this results in the following proportionality
equality

p(bt |dt ) ∝ p(bt )L(bt ). (2)

The prior probability, p(bt), represents the information known about
the subsurface before collecting the actual data, whereas the like-
lihood function, L(bt), describes the likelihood that a given model
is responsible for the observed data. The larger the likelihood, the
closer the model response is to the experimental data. Typically,
the assumption is made that the errors are uncorrelated and fol-
low a normal distribution with zero mean. Then the log-likelihood
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function, that is, the logarithm of the likelihood function l(bt), is
proportional to − 1

2 ϕl2 , where

ϕl2 =
N∑

i=1

(
gi (bt ) − di,t

σi,t

)2

, (3)

represents the data misfit, σ i, t denotes the standard deviation of
the ith error at time t and the subscript l2 indicates the l2-norm.
Under these assumptions, ϕl2 is expected to follow a chi-squared
distribution with expected value N. A common representation of the
data misfit is the root mean square (RMS) misfit:

RMS =
√√√√ 1

N

N∑
i=1

(
gi (bt ) − di,t

σi,t

)2

, (4)

which attains the value of RMS = 1 when ϕl2 = N .
When the data errors contain significant outliers, it is often better

to use an exponential distribution, which is equivalent to using an
l1-norm instead of an l2-norm to describe the data misfit (Menke
1989). The l1-norm is more robust and often represents a more
realistic description of data errors (e.g. Claerbout & Muir 1973;
Egbert & Booker 1986; Chave & Thomson 1989; Farquharson &
Oldenburg 1998; Tarantola 2005). For uncorrelated errors, the cor-
responding log-likelihood function is proportional to −ϕl1 , where
the data misfit is now defined as

ϕl1 =
N∑

i=1

∣∣∣∣ gi (bt ) − di,t

σi,t

∣∣∣∣ , (5)

and σ i, t represents the mean deviation of the ith error at time t (e.g.
Tarantola 2005).

To numerically implement the probabilistic inversion, we use the
DREAM(ZS) algorithm (Laloy & Vrugt 2012). This is an adaptive
MCMC algorithm (e.g. Roberts & Rosenthal 2007) which, in order
to render the sampling more efficient, runs multiple chains in paral-
lel and implements sampling from an archive of past states. Jumps
in each chain are obtained by computing the difference between
one or multiple pairs of chain states, drawn from an external sample
of points that summarizes the search history of all the individual
chains. A proposed model bt, new is accepted, in the case of a uniform
prior, with probability (e.g. Mosegaard & Tarantola 1995):

Paccept = min
{
1, exp[l(bt,new) − l(bt,old)]

}
, (6)

where bt, old is the chain’s last accepted model. If the proposal is ac-
cepted then the chain moves to bt, new, otherwise the chain remains
at its old location. After a burn-in period, the sampled model real-
izations are distributed according to the underlying posterior distri-
bution. To assess convergence, the Gelman–Rubin statistic (Gelman
& Rubin 1992) is periodically computed using the last 50 per cent
of the chains’ samples. Convergence to a limiting distribution is
declared if the Gelman–Rubin statistic is less than 1.2 for all model
parameters.

A variation of the DREAM(ZS) algorithm is the so-called MT-
DREAM(ZS) algorithm (Laloy & Vrugt 2012), which has recently
been applied to several types of geophysical data such as GPR,
RMT and ERT (Laloy et al. 2012; Linde & Vrugt 2013; Lochbühler
et al. 2014; Rosas-Carbajal et al. 2014). This multiple-try sampling
procedure, designed for high parameter dimensions (i.e., more than
∼30 model parameters), proposes several model variations per chain
and per realization, and thus requires many forward computations
running in parallel to be efficient. In the present contribution we use
DREAM(ZS) as we estimate at maximum 14 parameters. We run the
different chains in parallel and use parallelized forward solvers.

2.2 Time-lapse strategy

Rosas Carbajal et al. (2012) proposed a time-lapse inversion to
derive temporal changes from an initial 2-D resistivity model using
time-lapse RMT and AMT data. The strategy is based on data
differencing (LaBrecque & Yang 2001) to remove systematic errors
(see eq. 1). Although the examples were limited to the audio and
radio frequency range, this strategy is directly applicable to other
types of geophysical data, in particular MT data.

First, a base resistivity model is obtained by means of a deter-
ministic inversion using the data acquired at a reference time (t = 0)
before any perturbation is made to the system. The resulting data
residuals, δ0 = dt − g(b0) = esys + er,0, are removed from the data
acquired at all subsequent times:

d̃t = dt − δ0 = g(bt ) + er,t − er,0. (7)

The corrected data sets d̃t used in the inversion at time-lapse t will

be contaminated with less error provided that σsys >

√
σ 2

r,0 + σ 2
r,t ,

where σ sys and σ r are the standard deviations of the systematic and
random errors, respectively.

2.3 Tracer plume parametrization

Our aim is to estimate the spatial distribution of the injected fluid
in the subsurface. We describe this distribution in a uniformly dis-
cretized 3-D domain and present it in terms of the volume of fluid
originating from injection over the volume of the voxel: θ i [m3/m3],
i = 1, . . . , (nx × ny × nz), where xi, yi and zi are the spatial co-
ordinates and nx, ny and nz the number of voxels in the x-, y- and
z-directions, respectively. Thus, θ i is dimensionless and varies be-
tween 0 (no injected fluid) and a maximum value θmax. Plumes that
occupy large volumes will, for the same total injected volume, have
smaller θmax and vice versa, such that

nx×ny×nz∑
i=1

θi�x�y�z = W tot, (8)

where �x, �y and �z are the voxel dimensions and Wtot [m3]
is the total volume of fluid injected. The 3-D space described
by θ is located in a sub-region of the MT forward mesh and
is more finely discretized (see Fig. 1) to ensure the precision
of the parametrization described in this section. We hereafter re-
fer to this domain as the ‘plume mesh’. A set of coordinates

Figure 1. 3-D parameter discretization used in the inversions of the Paralana
data set. The discretization along the north axis, not shown in the figure, is
identical to the discretization along the east axis. The black lines represent
the resistivity mesh (the complete extension to the sides and in depth is not
shown), which is used as the MT forward mesh in the MCMC inversions and
also as the inversion mesh in the deterministic inversions. The solid blue lines
represent the limits of the subregion where the tracer plumes can be placed
in the MCMC inversions. The dashed blue lines represent the discretization
of the tracer plume as mapped from the Legendre parametrization (i.e. the
plume mesh). The black cross indicates the injection point.
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β = (xstart, xend, ystart, yend, zstart, zend) describes the maximum ex-
tension of the subregion of the plume mesh where θ i �= 0.

To reduce the number of parameters to invert for in the MCMC
inversion, and to include Wtot as a fixed constraint on the proposed
plume geometries, we use a model parametrization similar to the
one proposed by Laloy et al. (2012). This parametrization is based
on a reduced Legendre moment decomposition of the plume. The
Legendre polynomials are orthogonal if defined in a unit square
domain, and thus the Legendre moments are uncorrelated with each
other (Teague 1980).

The Legendre moments λ of θ are given by

λpqu = (2p + 1)(2q + 1)(2u + 1)

8

×
nx×ny×nz∑

i=1

Pp(x ′
i )Pq (y′

i )Pu(z′
i )θi�x ′�y′�z′, (9)

where x′, y′ and z′ are the transformed model coordinates on a unit
square grid [−1 ≤ x′, y′, z′ ≤ 1], �x′, �y′ and �z′ represent the
voxel dimensions of the unit square, and Pp(x ′

i ) is the Legendre
polynomial of order p evaluated by numerical integration over cell
i in the x-direction. In matrix notation, eq. (9) is described by

λ = Pθ, (10)

where P contains the Legendre polynomial products on the 3-D unit
grid. Then, θ can be reconstructed from its Legendre moments up to
a given resolution defined by a truncated series expansion (Teague
1980),

θ rec
i =

Omax∑
p=0

Omax∑
q=0

Omax∑
u=0

λpqu Pp(x ′
i )Pq (y′

i )Pu(z′
i ), (11)

where the superscript rec stands for ‘reconstructed’ and Omax is the
maximum order of moments used for the reconstruction. Writing
eq. (11) in matrix notation gives

θ rec = �λ, (12)

where � contains the polynomial product coefficients of the or-
thogonal moments and has dimension (nx × ny × nz) × npqu, with
npqu = [(max(p) + 1) × (max(q) + 1) × (max(u) + 1)].

The parametrization of θ in terms of the Legendre moments
allows to propose plume models that satisfy certain desired con-
straints that increase the efficiency of the MCMC inversion. Here,
the first imposed constraint concerns the total volume of injected
water, which is directly related to the first Legendre moment:

λ000 = W tot

8

�x ′�y′�z′

�x�y�z
. (13)

The remaining constraints force θ to be zero at the boundaries of
the region defined by β. To implement these constraints, we follow
Laloy et al. (2012) and construct a system of equations Aλ = h that
contains all the constraints on λ, and calculate the singular value
decomposition (SVD) of A

A = USVT, (14)

where U and V are orthogonal matrices that contain basis vectors
spanning the space of constraints imposed in h, and basis vectors
spanning the model space for λ, respectively, and S is a diagonal
matrix with the singular values sorted in decreasing order.

According to Laloy et al. (2012), S will typically have k signif-
icant singular values related to the preservation of injected water
volume and zero-constraints for θ on the boundaries given by β.

Then, the solutions to the inverse problem will have the general
form

λ = VkS−1
k UT

k h + V0α, (15)

where Vk, Sk and Uk have dimensions npqu × k, k × k and Nprior × k,
respectively. The first term on the right side of eq. (15) ensures that
λ satisfies the desired constraints and we thus keep these values
fixed. Conversely, the second term, specifically the vector α, can take
any value while still creating models that honour the constraints. We
invert for α in the MCMC inversion scheme such that the inferred
models honour the data.

The constraints described above do not prevent the generation
of models containing negative values (i.e., θ i < 0). To avoid such
models we set to zero the negative values and then pre-multiply
each θ i by a factor of W tot/W tot′ , where W tot′ is the total fluid
volume without considering the negative values. By doing so, the
new plumes conserve the injected water volume.

We evaluate the basic geometrical properties of the resulting
plumes in terms of their centre of mass:⎧⎪⎨
⎪⎩

μxc = 1
W tot

∑nx×ny×nz
i=1 θi xi�x ′�y′�z′,

μyc = 1
W tot

∑nx×ny×nz
i=1 θi yi�x ′�y′�z′,

μzc = 1
W tot

∑nx×ny×nz
i=1 θi zi�x ′�y′�z′,

(16)

and spread:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sxx =
√

1
W tot

(∑nx×ny×nz
i=1 θi x2

i �x ′�y′�z′) − μ2
xc,

Syy =
√

1
W tot

(∑nx×ny×nz
i=1 θi y2

i �x ′�y′�z′) − μ2
yc,

Szz =
√

1
W tot

(∑nx×ny×nz
i=1 θi z2

i �x ′�y′�z′) − μ2
zc.

(17)

2.4 Petrophysics and upscaling procedure

In this subsection, we explain how we translate θ into corresponding
bulk resistivity values, from which the MT response can be eval-
uated. Let the base model, that is, the 3-D resistivity distribution
prior to the injection be described by a vector rj, 0, j = 1, . . . , (NX
× NY × NZ), with NX, NY and NZ the number of resistivity blocks
in the x-, y- and z-direction, respectively. The black mesh in Fig. 1
represents this discretization. We assume that the region where fluid
is injected is saturated with water of constant resistivity. Taking �j, t

to be the porosity at the scale of the resistivity discretization, and
using Archie’s law (Archie 1942) gives

r j,0 = ρpre
w �

−m0
j,0 , (18)

where m0 is the cementation factor prior to the injection, which we
assume to be known, and ρpre

w is the resistivity of the pre-existing
fluid at the confining rock temperature. We assume that the con-
ductive fluid dominates the conduction in the fracture network (e.g.
Brace et al. 1965), and surface conductivity is thus neglected.

The fluid resistivity is a function of temperature and salt concen-
tration. We use the relationship by Sen & Goode (1992) to model
this dependence:

ρw(T, c) =
[

(5.6 + 0.27T − 1.5 × 10−4T 2)c

−2.36 + 0.099T

1 + 0.214c
c3/2

]−1


m, (19)

where c is the salt concentration in mol l−1 and T the temperature in
◦C. Given a proposed spatial distribution of the tracer plume at time
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t, θ i, t [m3/m3], we consider the possibility of an increase in porosity
due to the opening of fractures, �φi, t, where φi, t represents the
porosity. The bounds for the porosity change are given by 0 ≤ �φi, t

≤ θ i, t. To obtain the salt concentration of the fluid at time t in each
model block, we sum the contributions from the salt concentration
of the injected water and the salt concentration of the water prior to
the injection, weighted by the volume they occupy in the available
space:

ci,t = θi,t

φi,t
cinj + φi,t − θi,t

φi,t
cpre, (20)

where φi, t = φi, 0 + �φi, t.
If new fractures are opened it is likely that the cementation factor

decreases (e.g. Jougnot & Revil 2010). As a first approximation, we
model the changes of the cementation factor �mi, t to be propor-
tional to θ i, t

�mi,t = θi,t

θt,max
�mmax, (21)

where the maximum change in the cementation factor �mmax is
one of the parameters to be estimated within the inversion. The
cementation factor at time t will then be given by mi, t = m0 +
�mi, t.

To reduce the computation time of the forward responses, it is
important to make the MT forward mesh as coarse as possible. At
the same time, the plume mesh should be fine enough to ensure the
precision of the Legendre moment decomposition. Here, we propose
to upscale the finely discretized plume description and then use
Archie’s law to calculate the corresponding resistivity distribution

of the MT forward mesh (Fig. 1). We volume-average the porosity
and the cementation factor within each MT forward block:{
� j,t = ∑

i∈Vj

φi,t Vi

V j
,

M j,t = ∑
i∈Vj

mi,t Vi
V j

,
(22)

where Vi and Vj are the volumes of the fine plume mesh and MT for-
ward mesh blocks, respectively. Correspondingly, the total amount
of salt in each of the coarse blocks is given by:

Sj,t =
∑
i∈Vj

ci,tφi,t Vi . (23)

We use this value to calculate the upscaled fluid salt concentration
C j,t = S j,t

� j,t V j
, which in turn is used in eq. (19) to calculate an up-

scaled fluid resistivity. Finally, the coarse-mesh bulk resistivity at
time t, rj, t, is calculated using eq. (18) with the upscaled porosity,
cementation factor and fluid resistivity.

The posterior pdf that we seek to sample with MCMC simulations
is given by

p(bt |d̃t ) ∝ p(bt )L(bt ), (24)

where bt = [α, β, �mmax]. Fig. 2 summarizes our probabilistic in-
version methodology and the upscaling procedure.

2.5 Resistivity-difference-based probabilistic time-lapse
inversion

In cases where the petrophysical relations described above do not
apply, or the information about the time-lapse experiment is limited,
the classical approach is to infer the resistivity contrasts needed
to explain the data changes (e.g. Falgàs et al. 2009). Here, we
present such an approach while conserving the Legendre moments

Figure 2. Schematic overview of the MCMC inversion framework used to invert the time-lapse MT data. The left side describes the MCMC algorithm applied
to one of the parallel chains used in DREAM(ZS). The right side highlights the upscaling procedure used to transform the proposed tracer plume model to a
resistivity model that can be used to evaluate the corresponding MT response.
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parametrization to reduce the number of parameters. We propose
the following relation between the resistivity ratio and the spatial
variations given by the Legendre moments

r1, j

r0, j
=

{
1, if � j = 0,

10 f �

� j
�max
0 , otherwise,

(25)

where f is a parameter to be inferred in the inversion, � the upscaled
θ and �max its maximum value. Taking the logarithm of eq. (25)
to consider the resistivity changes �log10r = log10(r1/r0, it can
be noted that f acts as a shift on the spatial variations imposed
by

� j

�max
(log10 �0). For a given � and negative f, the maximum

change in resistivity with respect to the base model is be given by
�log10rmax = f + log10�0.

2.6 3-D deterministic inversion

To obtain the base resistivity model needed for the time-lapse inver-
sions, we resort to classical deterministic inversion. To the best of
our knowledge, no attempts have been made so far to use MT data
to obtain the posterior pdf of a 3-D resistivity model discretized in
voxels. This is because the large number of unknowns would imply
a large number of iterations to converge to the posterior distribu-
tion (cf. Rosas-Carbajal et al. 2014), and the forward solvers still
require significant CPU time to calculate the 3-D forward model
response. We use the ModEM program (Egbert & Kelbert 2012)
with non-linear conjugate gradients (e.g. Nocedal & Wright 2006)
to perform the deterministic inversions.

3 T H E PA R A L A NA T E S T S I T E

The Paralana geothermal system is located in Paralana, South Aus-
tralia. Its anomalously high heat flow, estimated at 113 mW m−2

(Neumann et al. 2000), is associated with an unusual concentration
of radiogenic elements within the Mount Painter Domain (Brugger
et al. 2005). This domain is composed of fractured Paleoproterozoic
to Mesoproterozoic gneiss, granites and metasediments. Well test-
ing and fracture stimulation were carried out in view of developing
a power supply from the geothermal sources. In 2009, an injection
well was drilled to 4000 m depth and cased to 3725 m. Several zones
of over-pressured fluid were encountered between 3670 and 3864 m
(Reid et al. 2011) and the measured temperature at the bottom of
the borehole was 190 ◦C. Saline fluids with a resistivity of 1.5 
m
(at ambient temperature) were encountered at 3860 m, indicating a
pre-existing fluid-filled fracture network (Peacock et al. 2013).

In July 2011, 3100 m3 of saline water of resistivity 0.3 
m,
along with acids, were injected into the metasediments to stimulate
the opening of new fractures. The injection was carried out at a
depth of 3680 m over the course of 4 d. During the injection, a
microseismic array measured over 11 000 events with the majority
located in the northeast quadrant from the injection well (Hasting
et al. 2011). The data suggest that fractures opened in a preferred
northeast direction and that the total zone stimulated by the injection
was approximately 900 m in the northeast–southwest direction, over
a depth extent of 600 m. After the injection, the wellhead pressure
remained at approximately 27.6 MPa, suggesting that the stimulated
volume is connected to a naturally over-pressured zone (Reid et al.
2011) .

Peacock et al. (2012) presented the results of the continuous
monitoring of the 4-d injection with 11 MT stations placed around
the borehole. Peacock et al. (2013) reported on time-lapse mea-
surements of about 50 MT stations acquired just before and 1 week

after the injection experiment. They observed coherent changes in
the MT signals above measurement errors, indicating predominant
resistivity changes in the north–northeast direction. In the following
section, we use these data in an attempt to infer the spatial distribu-
tion of the injected tracer 1 week after the injection was finalized.
We refer to Peacock et al. (2012) and Peacock et al. (2013) for
details about the MT transfer function estimation.

4 R E S U LT S

4.1 Base resistivity model from 3-D deterministic inversion

To evaluate the changes in resistivity produced by the injected
water, a base model representing the subsurface resistivity prior
to the injection is needed (Rosas Carbajal et al. 2012). Fig. 3
depicts the location of the 60 MT stations used to obtain this model.
Besides the time-lapse stations (i.e., those repeated post-injection),
additional stations were used to obtain the base model.

We first perform 1-D MCMC inversions to obtain layered models
that are parametrized in terms of the logarithms of resistivity and
layer thickness, for 2, 3, 4 and 5 layers. The 1-D forward solver
is described by Linde & Pedersen (2004). We use the off-diagonal
components of the impedance tensor of 60 stations with 12 periods
ranging from 0.016 to 161 s and assume an error floor of 5 per cent
on the impedance elements. The results of these inversions will
subsequently be used as starting models of deterministic 3-D in-
versions. Since the latter are limited to the use of an l2-norm to
measure the data misfit, we also use an l2-norm for the data misfit
in the 1-D MCMC inversions. The prior pdf consists of uniform
distributions in the range of −2 to 4 for log10-resistivity, and 1 to 4
for log10-thickness. Fig. 4(a) shows some posterior realizations of
these inversions, and Figs 4(b) and (c) display the forward response
of the posterior mean models compared to the measured apparent
resistivity and phase, respectively. The uncertainty in the posterior
pdf increases with the degrees of freedom, and thus, the number of
layers. The improvement in data fit from the mean model with 4
layers to the mean model with 5 layers is subtle (RMS of 6.77 and
6.6, respectively). Furthermore, the inversion considering five layers
proposes a very thin and conductive layer (located at about 10 km
depth), which appears unphysical. The data presented in Figs 4(b)
and (c) shows evidence of heterogeneity or anisotropy that can-
not be explained with 1-D isotropic models. Therefore, we use the
mean model from the posterior pdf with 4 layers as the starting

Figure 3. Magnetotelluric stations used for the base and time-lapse inver-
sions in Paralana, represented in a local grid with the injection point in the
centre (×). At the top right corner, a map of Australia shows the temperature
at 5 km depth where red represents 285 ◦C and the star locates Paralana.
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Figure 4. (a) Posterior realizations of the 1-D MCMC inversions of the base data using different (fixed a priori) number of layers. Corresponding data in terms
of (b) apparent resistivities and (c) phases are shown together with the simulated responses of the posterior mean models, where the X-direction corresponds
to the north and the Y-direction to the east. The model with 4 layers represents a compromise between low data misfit and few model parameters. The forward
responses of the 1-D models explain the general tendency of the data at low periods but cannot describe the separation between the XY and YX data at higher
periods.

model of the 3-D deterministic inversion. The layer thicknesses and
resistivities in this model from surface to depth are given by⎧⎪⎪⎨
⎪⎪⎩

h1 = 33 m, r1 = 70 
m,

h2 = 700 m, r2 = 4 
m,

h3 = 7780 m, r3 = 550 
m,

h4 = half-space, r4 = 20 
m.

(26)

We use the ModEM program (Egbert & Kelbert 2012) to perform
the deterministic 3-D inversion. Since the diagonal components of
the impedance tensor are strongly noise contaminated, we do not
use them in any of the inversions. Thus, we invert the same data as
for the 1-D MCMC inversion, and we obtain a final RMS of 1.35
after 99 iterations.

Fig. 5(a) shows vertical slices of the inverted 3-D model at the
centre of the x- and y- axes and for horizontal slices at 700 m and
3700 m (injection) depth. Most of the variability with respect to
the starting model is present at shallow depths whereas only minor
changes are introduced at the injection depth. According to this
model, the injection takes place in a thick resistive layer. We present
the comparison between the model response and the data for some
stations in Fig. 5(b). Both apparent resistivity and phase curves are
clearly better explained by the 3-D model than by the 1-D model
(see Figs 4b and c).

4.2 Time-lapse 3-D deterministic inversion

Fig. 6 illustrates some of the changes observed with respect to the
base data one week after the injection (defective stations were re-
moved). Initial inversions using both apparent resistivity and phases
lead to very erratic resistivity changes, which may be due to dif-
ferent galvanic distortions affecting the base and time-lapse data.
Hence, we decided to only use the phase data for the deterministic
and probabilistic time-lapse inversions.

Following the differencing strategy presented in Section 2.2, we
compute the data residuals from the base model and remove them
from the post-injection data. Not all the stations could be repeated
using the same holes for installing the MT stations, however, we ap-
plied the time-lapse strategy to all the stations assuming that in cases
where the station locations were not exactly the same this would still
remove most of the systematic modelling errors. To describe the re-

sulting errors, we use the combination (σr,tot =
√

σ 2
r,0 + σ 2

r,t ) of the

errors pre- and post-injection provided by the impedance transfer
function estimations. In addition, we use an error floor of 1◦ to en-
sure that data are not over-fitted. Finally, we remove 6 data points
corresponding to the longer periods at 3 different stations because
they present extremely large estimated errors. This results in a total
of 676 data points.

Using the 3-D base model (Fig. 5a) as the starting model,
we perform a deterministic time-lapse inversion of the data. The
RMS of the starting model is 2.8 and the final RMS is 1.01,
which corresponds to a data misfit of ϕl2 = 690. Depth slices
of resistivity changes at 700 and 3700 m depth are presented
in Figs 7(a) and (b). As expected, most changes indicate a de-
crease in the electrical resistivity. The resistivity decrease at the
injection depth (Fig. 7b) is elongated in the north–south direction
and is of much smaller magnitude than at 700 m depth (resis-
tivity contrasts with respect to the base model are approximately
two orders of magnitude smaller). The adequate data misfit and
the agreement between the data and the forward responses in
Fig. 7(c) suggest that this model explains most of the time-lapse
data.

4.3 Synthetic time-lapse MCMC inversion

To evaluate our probabilistic 3-D time-lapse inversion strategy, we
first consider a synthetic test case. The example is similar to the
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Figure 5. (a) 3-D base model at Paralana obtained from the deterministic inversion of the base data using ModEM (Egbert & Kelbert 2012) and the mean
1-D model with 4 layers from Fig. 4 as the starting model. Horizontal depth slices correspond to 700 and 3700 m (injection) depth. (b) Base data and forward
response of the model shown in (a) for some of the MT stations (see locations in Fig. 3).

Figure 6. Relative apparent resistivity and absolute phase changes observed
in the data one week after the injection as a function of station position, for
some of the periods considered. Changes are represented by arrows, where
the length is proportional to the l2-norm of the off-diagonal impedance
changes and the orientation depicts the relative weight between changes in
the XY and YX components. A vertical arrow indicates changes in the XY
component only. Phase changes are largest at T = 4.10 s (panel b). This
figure is shown as a station-to-station comparison only. For phase tensor
representation, see Peacock et al. (2013).

real experiment in that we assume being in possession of the same
amount and type of information in terms of the station distribu-
tion, periods and data errors. In addition, we assume that the base
model previously obtained (Fig. 5a) is the real one, and insert in

this model a 3-D plume calculated with a Legendre moment de-
composition of order 3. For this, we use the same temperature and
salinity constraints as the ones from the real experiment, but we
assume that the mass injected is six orders of magnitude larger than
in the real case, and that the injection is done at a depth of 2700 m,
that is, 1 km more shallow than the real experiment. These drastic
changes compared to the field experiment were needed to repro-
duce the observed magnitudes of the time-lapse data at Paralana.
Finally, we assign a maximum change in the cementation factor of
�mmax = −0.5.

To generate the synthetic plume we use the scheme shown on
the right side of Fig. 2. We consider the porosity presented in
eq. (18) to be the crack porosity, that is, the ratio between the
volume of open fractures in the rock and the total rock volume. This
value is calculated using eq. (18) with the base resistivity model
and assuming m = 2 over the complete domain. The fluid resis-
tivity at the borehole temperature is calculated using eq. (19) with
the values obtained from fluid samples and temperature measured
at the injection borehole. Eq. (18) gives, for an average resistivity
value of 550 
m at the injection depth, an average crack porosity of
2.5 per cent. We further assume that the space created by the rock
dissolution and opening of fractures in each voxel is equal to the
volume of fluid that originates from the injection in that voxel, that
is, �φi, t = θ i, t. This implies that the volume of pre-existing fluids
does not change since the extra volume needed for the injected flu-
ids is given by the porosity increase. This simplification maximizes
the predicted resistivity changes. We adopt the same assumption in
the inversion of the field data. Fig. 8(a) shows the selected geome-
try of the synthetic plume represented as the volume of subsurface
where salinity has changed. The plume is predominantly oriented
in the north–south direction and presents a bend towards the east
in the northern extreme. In depth, it extends from ∼1.5 to ∼3.3 km.
The northeast extreme of the plume has smaller tracer water con-
tent than the north–south portion. The centre of mass and spread are
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Figure 7. (a,b) Estimated differences in log-resistivity after the injection
with respect to the base model (Fig. 5a), obtained with a deterministic 3-D
time-lapse inversion The depth slices correspond to (a) 700 m and (b) 3700 m
(injection depth). (c) Post-injection differences of data and forward response
of the model shown in (a) and (b) for some of the stations measured, with
respect to the data shown in Fig. 5(b) (see station locations in Fig. 3). The
resistivity changes are concentrated at shallower depths than the injection
point. The model explains the time-lapse data (RMS = 1.01), but note also
the low signal-to-noise-ratios in this field example.

given in Table 1. The spread in the north–south direction is ∼900 m
larger than in the east–west direction.

Fig. 8(b) shows the corresponding resistivity changes with respect
to the base model calculated as described in Section 2.4 and Fig. 2.
Maximum resistivity changes of two orders of magnitude are found
close to the injection point (x = y = 0 in Fig. 8b). In the northeastern
part, the resistivity changes are ∼1 order of magnitude. To simulate
the synthetic data, we contaminate the forward response of this new
resistivity model with errors following an exponential distribution
with a mean deviation (see eq. 5) equal to the standard deviation
used for the deterministic inversion. We use this distribution to
obtain similar errors to the ones observed in the Paralana data. The
resulting synthetic data, shown for some stations in Fig. 8(c), have
deviations from the base model response that are similar to the field
data (cf. Fig. 7c).

The model parametrization used for the synthetic and field-based
inversions is based on a Legendre decomposition up to order 3 (see
Section 2.3). This means that, besides the 6 coordinate parameters
in β and the maximum change in the cementation factor �mmax, 7
coefficients αi, i = 1, . . . , 7 need to be determined by the inversion,
thus yielding a total of 14 model parameters to invert for. Following
Laloy et al. (2012), we assign uniform prior distributions for these
coefficients in the range [−0.1 0.1], which contain the values used
to create the synthetic plume. For the coordinates of the plume
boundaries, we determine a maximum extension of 13.8 km in the
east–west and north–south directions and of 3.3 km in depth. Then,
we discretize this volume in cubes of 75 × 75 × 75 m3 to obtain
the injected water distribution θ from the Legendre moments. Thus,

Figure 8. Synthetic plume used to test the MCMC inversions based on the
Legendre moment decomposition. (a) Plume geometry at the fine discretiza-
tion used for the Legendre decomposition. The isosurface corresponds to a
value of θ = 10−7. (b) Differences in log-resistivity with respect to the base
model (Fig. 5a) at the injection depth of 2700 m. (c) Time-lapse data simu-
lated from the synthetic model and contaminated with noise corresponding
to the same errors as assumed for the field data. The plume has a predomi-
nant north–south direction with a bend towards the northeast at its northern
side.

xstart and ystart can take discrete (every 75 m) values between −6.9 km
and 0 km; xend and yend can take values between 0 and 6.9 km; and
zstart and zend can vary between 0.5 and 2.15 km, and 2.15 km
and 3.8 km, respectively. To translate the plume to a resistivity
model, we discretize the same volume in cubes of 300 × 300 ×
300 m3. This discretization was chosen based on a convergence
test of the mesh, in which we evaluated the forward response (also
calculated with ModEM) of the base model containing a conductor
of the size of the maximum plume allowed for different lengths
of the domain and resistivity block sizes. The chosen resistivity
discretization represents a compromise between accurate forward
responses, that is, changes in impedance of less than 0.1 per cent
with respect to a highly discretized and largely extended mesh, and
computation time.

We allow �mmax to vary between 0, that is, no change in the
cementation factor, and −0.99, which implies mmin ≈ 1 and thus a
perfectly connected medium. We use uniform prior distributions for
all the model parameters mentioned, and an l1-norm in the likelihood
function to evaluate the data misfit (see eq. 5) since the errors follow
an exponential distribution.

We use the DREAM(ZS) algorithm with three chains that evaluate
the forward responses in parallel. We also employ the parallelized
forward solver in ModEM, which distributes the forward computa-
tions for each period and for each of the two EM field polarizations to
a different processor. To decrease the number of processors needed,
we only use the 8 longest periods in the MCMC inversions, which is
where the main time-lapse changes occur. Since we evaluate eight
periods for each configuration, we use 16 processors per chain,
and thus a total of 48 processors for the forward computations.
The computing time of a single forward response depends on the
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Table 1. Mean values and standard deviations of the centre of mass and spread of the synthetic
plume, as estimated with the probabilistic mass-constrained time-lapse approach.

Centre of mass Spread

Model Estimate μxc μyc μzc Sxx Syy Szz �mmax Data misfit
(m) (m) (m) (m) (m) (m) [–] [–]

True N/A −620 840 2550 2420 1530 440 −0.5 676

Mean −1160 670 2490 2370 1480 370 −0.48 682
Order 3 Standard 490 440 310 370 190 110 0.24 3

deviation

Figure 9. (a–f) Marginal posterior distributions of the centre of mass (a–c)
and spread (d–f) of the plume for the synthetic test. The ranges of values
shown correspond to the prior pdfs’ bounds. (g) Maximum change of the
cementation factor. (h) Data misfit distribution of the posterior models’
responses to compare with the 676 data points used. The red crosses indicate
the true values. The histograms’ mean and standard deviation are indicated
in Table 1.

complexity of the model evaluated, but is on average 11 min. Con-
vergence of the chains was reached after ∼7500 realizations, which,
multiplying by the number of chains implies a total of ∼22 500
forward computations. The mean acceptance rate was 40 per cent
and the total computing time needed to reach convergence was
approximately 60 d.

Figs 9(a)–(f) show the marginal posterior distributions of the
plume’s centre of mass and spread, and �mmax. All the parameter
values used to construct the synthetic plume are contained in the
posterior pdf. Fig. 9(h) shows the data misfit distribution of the
models that belong to the posterior pdf. The corresponding model
responses have data misfits that are close to the true value (676).
Table 1 shows the mean and standard deviation of the histograms
shown in Fig. 9. The centre of mass estimate in depth is very well
determined, being only 60 m more shallow than the true value,
while in the x-direction, it is approximately 450 m to the south
from the exact value. The standard deviations of the centre of mass
estimates are in the order of 400 m. The spreads of the plume are
well determined, with a larger uncertainty in the x-direction. The
cementation factor change of −0.5 is well estimated with a mean
value of −0.48 and a standard deviation of 0.24. The posterior data
misfit distribution is short-tailed and close to the number of data.

In Figs 10(a)–(f), we present some of the plumes that belong to
the posterior distribution. In agreement with the true model, the
plumes are mostly located in the eastern part of the region and are
elongated in the north–south direction. Only two plumes (Figs 10b
and e) present a larger extension to the northeast similar to the true
plume.

4.4 Application to the Paralana injection experiment

We now return to the field data acquired during the injection ex-
periment in Paralana. We first perform a MCMC inversion with the
same model parameters as for the synthetic case and the same prior
distributions, but with the actual water volume. Also, the discretiza-
tion in cubes of 300 × 300 × 300 m3 is shifted downwards 1.1 km in
z to allow for deeper plumes. Thus, zstart and zend can vary between
1.6 and 3.25 km, and 3.25 and 4.9 km, respectively.

The base model l1-norm data misfit of the time-lapse data is
ϕl1 ≈ 1980 and the MCMC inversion reaches a data misfit that os-
cillates around ϕl1 ≈ 750 for our 676 data (i.e., the data are not
fitted to the error model). The spread estimates shown in Table 2,
Sxx = 2820 m, Syy = 2900 m, Szz = 710 m, have a tendency to max-
imize the size of the plume (the prior ranges of β result in allowed
maximum spreads of 3100 m in the horizontal directions and 740 m
in depth). Moreover, �mmax, which largely controls the changes in
the resistivity with respect to the base model, is close to the max-
imum value allowed, that is, −0.99. This behaviour of the spread
and �mmax indicates that resistivity changes larger than allowed
by our physical model are needed to explain the time-lapse changes.

To investigate the actual resistivity changes needed to explain the
data, we resort to the resistivity-difference-based time-lapse inver-
sion presented in Section 2.5. We use the same Legendre moment
decomposition up to order 3 as in the previous inversions, with the
same prior ranges for α and β, and a uniform prior pdf between
−10 and 0 for f. The MCMC inversion converged after ∼13 500 re-
alizations (40 500 forward computations), with a mean acceptance
rate of 25 per cent and 95 d of total computation time. Fig. 11 shows
the posterior estimates of the mean and standard deviation of the
centre of mass, spread and the maximum resistivity change �rmax

and data misfit. The posterior uncertainty ranges of the spreads are
no longer affected by the prior boundaries (see Table 2). The centre
of mass of the plume is located towards the south of the injection
point and it is well centred in the east–west direction. The centre of
mass is estimated at a depth that is ∼150 m deeper than the actual
injection point, with a standard deviation of 130 m. In accordance
with the microseismics (Reid et al. 2011), the spread is larger in
the north–south direction than in the east–west direction. The pos-
terior pdf of �log10rmax has a mean value of −7.3 with a standard
deviation of 0.3. The posterior models have data misfit values that
are smaller than the number of data with the data misfit distribution
centred on 575.
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Figure 10. (a–f) Random posterior realizations from the MCMC inversion of the synthetic time-lapse data. Models have a predominant north–south direction
and similar extension to the true plume (Fig. 8a). The isosurfaces correspond to a value of θ = 10−7.

Table 2. Mean and standard deviation of the estimated centre of mass and spread of the injected plume at Paralana, as
estimated with the mass-constrained and resistivity-difference-based probabilistic time-lapse inversion approaches.

Centre of mass Spread

Type of Estimate μxc μyc μzc Sxx Syy Szz �mmax �log10rmax Data misfit
inversion (m) (m) (m) (m) (m) (m) [–] [–] [–]

Petrophy- Mean −460 1010 2830 2820 2900 710 −0.95 N/A 750
sically Standard 390 1070 110 210 100 60 0.04 N/A 7
based deviation

Resistivity- Mean −2540 10 3830 2260 1630 530 N/A −7.3 574
difference Standard 440 550 130 180 160 60 N/A 0.3 9
based deviation

Figure 11. (a–f) Marginal posterior distributions of the centre of mass (a–c)
and spread (d–f) of the plume from the resistivity-difference-based Paralana
time-lapse inversion. The range of values shown corresponds to the prior
pdfs’ bounds. (g) Maximum resistivity change. (h) Data misfit distribution
of the posterior models to compare with the 676 data points used. The
histograms mean and standard deviation are indicated in Table 2.

The posterior models shown in Figs 12(a)–(f) indicate that the
plume is most likely oriented in a north–south direction, and rather
to the east. In depth, most models extend between 3400 m and
4500 m but with depth variations along the plume. Some models

(Figs 12b, c, d and f) show a plume dipping towards the north,
as suggested by the microseismic data by Reid et al. (2011). An
isolated component of the plume can be observed in Figs 12(b), (d)
and (f) in the northeast region at more shallow depths (∼3400 m)
than the rest of the plume.

5 I N F LU E N C E O F T H E B A S E M O D E L

The previous results suggest that large resistivity changes are needed
to explain the Paralana time-lapse data. These changes are presum-
ably dependent on the base model from which they are estimated.
To test this possibility we consider 5 additional starting models
for the deterministic inversion of the base data. Table 3 presents
the characteristics of these models. The first three models are built
from the mean estimates of the 1-D MCMC inversions presented
in Section 4.1. The fourth and fifth model are based on the 4-layer
model previously used but present two unconnected conductors and
a conductive layer, respectively, at the injection depth. The uncon-
nected conductors are oriented in the north–south direction, they
are separated by ∼2 km and are located on opposite sides of the
injection point. They have a vertical extension of ∼5 km and are
completely embedded in the layer with resistivity of 550 
m.

The deterministic inversions based on these starting models pro-
vide new base models that fit the base data to similar levels as
the original one. We then compute the time-lapse data using the
residuals of each model and run new resistivity-difference-based
probabilistic time-lapse inversions until a stable data misfit level is
reached. Note that no formal convergence of the chains was reached
due to computational constraints and therefore these estimates are
used only to qualitatively assess the variations due to different base
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Figure 12. (a–f) Random posterior realizations from the resistivity-difference-based MCMC inversion of the Paralana time-lapse data. The isosurfaces
correspond to a value of θ = 10−7.

Table 3. Initial structure and resulting resistivity change and spread ratio estimates of the 1-D models used to test the influence of the base model.
The letters ‘r’ and ‘h’ correspond to the layer resistivity and thickness, respectively.

Conceptual model 1st layer (top) 2nd layer 3rd layer 4th layer 5th layer 6th layer �log10rmax Sxx/Syy

Half-space – – – – – – −5.8 1.1
r1 = 8 
m – – – – –

2 layers h1 = 594 m – – – – – −8.5 1.1
r1 = 4 
m r2 = 46 
m – – – –

3 layers h1 = 55 m h2 = 430 m – – – – −7.2 1.4
r1 = 9.6 
m r2 = 3.3 
m r3 = 45 
m – – –

4 layers with h1 = 33 m h2 = 700 m h3 = 7780 m – – – −6.6 1.2
2 unconnected r1 = 70 
m r2 = 4 
m r3 = 550 
m r4 = 20 
m – –
conductors

6 layers h1 = 33 m h2 = 700 m h3 = 2650 m h4 = 1520 m h5 = 3610 m – −9.0 1.4
r1 = 70 
m r2 = 4 
m r3 = 550 
m r4 = 55 
m r5 = 550 
m r6 = 20 
m

models. Table 3 shows the estimated maximum resistivity changes
�log10rmax and horizontal spread ratio Sxx/Syy for each base model.
Large differences can be observed among the maximum changes,
which give evidence of the influence of the base model on the
estimation of the time-lapse changes. For example, the maximum
resistivity change in the plume area is estimated in −5.8 when the
base model is derived from a half-space, and it is of −9.0 when a 6-
layer model is used. Nonetheless, all the estimates point to a plume
more elongated in the north–south direction than in the east–west
direction. Note that all the models resulting from these inversions
explain the data to the same level as the resistivity-difference-based
inversion presented in the previous section (cf. Table 2).

6 D I S C U S S I O N

Our results indicate that it is possible to infer information about
tracer plumes in deep injection experiments using MT data, but also
that many important challenges remain. Our probabilistic time-lapse
inversion methodology has several advantages over the determinis-
tic approach. The non-linearity of the inverse problem is correctly
treated and the uncertainty of the model parameters is formally
characterized. Furthermore, valuable prior information such as the
injection depth, the electrical resistivity expected only to decrease
or stay unchanged after the saline injection, and bounds on the re-
gion where resistivity can decrease, can be flexibly implemented in
the MCMC inversion. The results of the synthetic example shown
in Figs 8–10 suggest that our approach works properly when the

base resistivity model is suitable, and the plume is in accordance
with the proposed physical model. The MCMC inversion correctly
retrieves the change in the cementation factor and the centre of
mass and spread of the plume. Higher orders of the Legendre mo-
ment decomposition could be used, which would allow for more
complicated 3-D structures (cf. Laloy et al. 2012). The computa-
tional costs would then also be larger (3 months were needed for
the inversion of the Paralana data to converge for Legendre mo-
ments up to order 3), but it is unlikely that smaller details would be
resolved.

The large time-lapse changes observed in the MT data following
the injection experiment in Paralana were used by Peacock et al.
(2013) to derive qualitative information about the direction of flow
of the injected fluids. Our deterministic 3-D time-lapse inversion
was useful to determine the geographical regions of maximum re-
sistivity changes, even if the inferred changes in depth appear to be
too shallow. These changes were located above the actual injection
point and towards the south and the west. The depth of the anomaly
may be a result of the higher sensitivity of the inversion at shal-
lower depths but could also be related to an inadequate base model.
Unphysical increases in resistivity also appear (see Fig. 7) as no con-
straints regarding the sign of the resistivity changes were applied.
Including these types of constraints could help to improve the deter-
ministic inversions. For example, penalizing positive changes in the
resistivity model and using an l1-norm to penalize the model struc-
ture would lead to more compact resistivity changes (see examples
for 2-D inversions in Rosas Carbajal et al. 2012).
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Very large resistivity changes were needed to explain the Par-
alana time-lapse data. For example, the amount of injected water
had to be increased and the depth of injection moved to shallower
depths to obtain similar time-lapse changes for the synthetic ex-
ample. An inversion of the Paralana data using our upscaling and
petrophysical model that accounted for the amount of saline water
injected could not explain the data changes. This suggests limita-
tions of the petrophysical model used and raises the question of
whether changes in reservoir properties can be inferred from the
time-lapse MT data. In this regard, Vasco et al. (2014) argue that
instead of aiming at relating changes in geophysical properties to
changes in reservoir properties, it may be more viable to relate the
initiation of a change in a geophysical property to key reservoir
changes such as fluid saturation or pressures. While Vasco et al.
(2014) consider reservoir monitoring with seismic data, the appli-
cation to MT data where relatively long time series have to be used
to obtain good signal-to-noise ratios of the transfer functions is not
straightforward.

When directly inferring the changes in resistivity, while keeping
constraints on the location of the plume (injection depth and limited
spatial dimensions), the probabilistic inversion could fit the data
and retrieved water plumes that are more elongated in the north–
south direction. Compared to the microseismics, the centre of mass
of the plume is located to the south of the injection point, and the
plumes predicted from the MT data are much larger in extent (see
Fig. 12). The latter is expected, as the microseismic data sense the
opening of fractures whereas the MT time-lapse data sense changes
in electrical resistivity, which happen where the injected fluid is
present and not only where fractures open. Also, the microseismic
data were measured during the injection, while the time-lapse MT
data were acquired one week after the injection was completed.

To evaluate the influence of the base model, we performed time-
lapse inversions using different base models that equally explain the
base data. The discrepancy observed between the plume estimates
calculated with different base models suggests that, to a large extent,
the large resistivity changes needed to explain the time-lapse data
are related to our chosen base model. The base model derived from
a half-space resulted in the smallest maximum resistivity change,
with a log-value of −5.8 (cf. Table 3). That is, in order to explain
the time-lapse data, a resistivity change with respect to the base
model of more than five orders of magnitude is needed. The fact
that the other base models require larger resistivity changes to ex-
plain the data may be a consequence of the conductive surface layer
they all contain, which reduces the sensitivity to deeper resistive
layers. This does not mean that the half-space-like base model is
the most appropriate. Its resistivity value (8 
m) and MT response
as compared to the base data do not appear realistic. Most likely,
none of the evaluated base models include the correct heterogeneity
distributions that would lead to the true resistivity changes needed
to explain the time-lapse data. The synthetic example, which was
performed using the correct base model, yielded satisfactory es-
timates of the plume. To further constrain the model, one could
perform a time-lapse MCMC inversion where both the base model
heterogeneities and the plume geometry would be inverted for at
the same time, minimizing the resistivity changes involved. Such
methods have been proposed for deterministic time-lapse studies
involving ERT data (Kim et al. 2009; Karaoulis et al. 2011). This
type of study would be highly computationally demanding, and we
leave it for future investigations.

The extremely large resistivity changes needed to explain the
time-lapse data raise important questions about how such a large
conductance anomaly could be caused by the injection. Surface

conductivity could not explain the changes even if clay minerals
were present as its effect would be decreased by the injected con-
ductive water. One possibility is that, as the rock dissolves due to
the injected acids, more minerals are incorporated into the fluids
and thus the salinity of the fluid increases, therefore decreasing the
bulk resistivity. Another alternative is that the large changes ob-
served originated from the presence of microscopic or macroscopic
electrical anisotropy. The latter could be the result of a complex
arrangement of fractures, which in some directions were effectively
connected by the fracture stimulation whereas in other directions
stay in the vicinity of the percolation threshold. Such situations
were suggested by Bahr (2000) to explain the distortion in MT data
and by Hautot et al. (2002) to associate observed temporal varia-
tions in resistivity to pore pressure changes controlled by lake level
variations. Reid et al. (2011) reported on high fluid pressures en-
countered when drilling the Paralana borehole and after the injection
experiment was finished. This supports the hypothesis that fractures
may be well connected in some directions while staying close to the
percolation threshold in others, thus creating large variations of
the measured electric fields. Simulating the MT responses of real-
istic complex fracture networks would be highly computationally
demanding and it is out of the scope of this contribution.

7 C O N C LU S I O N S

We presented the first time-lapse 3-D deterministic and probabilistic
inversions of MT data, with focus on imaging a tracer plume created
by injecting a saline tracer in a geothermal system. The time-lapse
deterministic inversion resulted in resistivity changes that are much
shallower than the depth of the injection, which demonstrates the
importance of including prior information such as the injection point
and that the electrical resistivity is expected to decrease following
the injection. The probabilistic approach used relied on petrophysi-
cal relations and a reduced Legendre moment decomposition of the
injected plume that decreases the parameter dimensionality and thus
the computation times. This approach was effective when applied to
a synthetic test case. For the inversion of the Paralana data, the ap-
plied petrophysical relation and upscaling procedure were not able to
explain the large data changes observed and a resistivity-difference-
based inversion with relaxed constraints had to be used. The plumes
belonging to the posterior pdf are elongated in the north–south di-
rection, which is in agreement with microseismic data. However,
their centre of mass is estimated to be located south from the in-
jection point, which is in contrast to the microseismic events, and
the inferred resistivity changes are extremely large (many orders of
magnitude larger than expected). Since the studied media is highly
fractured, a possible explanation for the large resistivity changes is
the existence of a connected fracture network that is close to the
percolation threshold in one direction. Another related possibility is
a heterogeneous resistivity distribution that is poorly represented by
our smoothly varying base model. A simple analysis using differ-
ent base models supports this explanation. Thus, more efforts have
to be put in the accurate characterization of the base model when
performing monitoring studies with EM methods.
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