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Synthetic neurosteroids on brain protection
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Natural neurosteroids and synthetic steroids
Neurosteroids (NS), a term proposed by the physiologists 
Baulieu and Robel (1990), is widely used to refer to the ste-
roids synthesized in the brain. Through their interaction 
with neuronal membrane receptors and ion channels, they 
are capable to modify the brain excitability (Lambert et al., 
2003; Akk et al., 2009). Depending on its chemical struc-
ture, the steroids interactions with the GABAA receptor may 
produce positive or negative modulations (Majewska, 1992; 
Reddy, 2003). Among the positive modulators of this recep-
tor are two progesterone’s metabolites: the 5α-pregnane-3α-
ol-20-one (allopregnanolone) and its isomer 5α-pregnane-
3β-ol-20-one (pregnanolone; Gasior et al., 1999). The 
interest on these steroids arises from their potential activity 
as anticonvulsants, anesthetics, anxiolytic or sedative-hyp-
notic agents (Akk et al., 2007) useful for the treatment of 
several neurological and psychiatric disorders (Gasior et al., 
1999). Also, various physiological and pathophysiological 
conditions have been associated with changes in allopreg-
nanolone and pregnanolone levels (Akk et al., 2007). 

Although the natural NS can be used in epileptic patients 
(Herzog, 1999), certain properties, like their short biological 
half-life, avoid their clinical use. For that reason, synthetic 

steroids (SS), that exhibit better bioavailability and efficacy, 
have an important therapeutic potential in brain disorders, 
becoming an alternative for this kind of pathologies (Reddy 
and Kulkarni, 2000; Morrow, 2007). 

Therefore, there is a considerable interest around NS phys-
iology and synthetic analogues development. The medicinal 
chemistry of neuroactive steroids (NAS) has been focused 
in the development of SS analogues preserving the absolute 
configuration of naturally occurring steroids. Structure/
activity studies indicate that the 3α-hydroxyl configuration 
is required for binding and activity (Purdy et al., 1990). 
However, modifications of the steroid nucleus may empha-
size different pharmacophores. For example, the 3β-meth-
ylated synthetic analog of allopregnanolone, ganaxolone 
(3α-hydroxy-3β-methyl-5α-prengan-20-one) is capable to 
overcome these limitations, showing effective anticonvulsant 
properties (Carter et al., 1997; Reddy and Woodward, 2004). 
In fact, until now, it is the only SS that has been proved in 
human clinical trials for epilepsy (Nohria et al., 2010). 

Neurosteroids and GABAA receptor function
GABA binding to its receptor gates an intrinsic anion-se-
lective channel. According to the reversal potential of the 
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permeate ions, the postsynaptic GABA response can be 
excitatory or inhibitory (Akk et al., 2007). The binding of 
the convulsant t-butyl-bicyclophosphorothionate (TBPS) 
to the GABAA receptor can be allosterically modulated by 
allopregnanolone and pregnanolone (Ramanjaneyulu and 
Ticku, 1984). When GABA is present, these metabolites have 
a significantly increased binding affinity, and under this 
condition, it is possible to reflect the functional state of this 
receptor (Majewska, 1992; Hawkinson et al., 1994). Similar-
ly, NAS can also stimulate the binding of flunitrazepam or 
muscimol to the receptor (Majewska et al., 1986; Hawkinson 
et al., 1994). The NS exposure enhances the opening proba-
bility of the chloride channel, so that the mean time open is 
increased, resulting in a reduction of neuronal excitability. 
  Harrison and Simmons (1984) demonstrated that alphax-
alone (ALPX; 3α-hydroxy-5α-pregnane-11,20-dione), an-
other allopregnanolone synthetic analogue, was able to en-
hance the GABA-evoked responses. Also, a positive allosteric 
modulation of GABAA receptor was found with the SS ga-
naxolone (Carter et al., 1997; Gasior et al., 1997). Since then, 
several SS with different features have been developed. It has 
been described that at least two ent-16-ketosteroid synthetic 
analogues (3α-5α-androsten-16-one and 3α-5α-4methoxy-
androsten-16-one; with an absolute opposite configuration 
to NAS), produced a more potent inhibition of the TBPS 
binding than ALPX (Qian et al., 2013). Moreover, we showed 
a decrease in TBPS binding and an increase in flunitrazepam 
and muscimol binding by the administration of SS epoxies 
(analogues to allopregnanolone and pregnanolone) with an 
intramolecular oxygen bridge that keeps the A/B angle of 
the steroid nucleus in a controlled way (Veleiro and Burton, 
2009; Rey et al., 2013). 

NAS and SS neuroprotective role 
Cumulative evidence indicates the existence of neuropro-
tective properties of NAS in a variety of experimental par-
adigms (Schumacher et al., 2004). They have a major influ-
ence on the central nervous system (CNS) activity and are 
essential for growth and survival of neurons and glial cells 
(Wang et al., 2005; Melcangi et al., 2008). Studies in adult 
animals after brain injury indicate that NAS have an import-
ant role in repairing processes, enhancing myelination and 
reducing apoptotic processes (Ibanez et al., 2004). During 
pregnancy, stressful events which lead to transient hypoxia/
ischemia, stimulate NAS production in the brain providing 
further protection (Nguyen et al., 2004). This supports the 
importance of NAS in brain development and suggests that 
the exposure to normal NAS levels is critical. In traumat-
ic brain injury, progesterone has the most important re-
pair-promoting actions (He et al., 2004a) and it acts through 
its reduced metabolites like allopregnanolone (Djebaili et al., 
2004; He et al., 2004b; Ardeshiri et al., 2006). The neuropro-
tective actions of allopregnanolone have been shown in hy-
poxia-induced brain injury models, where its levels increase 
in response to acute hypoxic stress, as a protective mecha-
nism to reduce excitotoxicity (Hirst et al., 2006). In fact, we 
have described a protective effect of allopregnanolone on as-

trogliosis (Kruse et al., 2009) and neuronal damage (Kruse et 
al., 2010) caused by hypoxia in perinatal cultures of cerebral 
cortex and hippocampus of the rat. Studies with the SS mife-
pristone (RU486), reported that it acts as a neuroprotective 
agent against excitotoxicity and traumatic brain injury (Behl 
et al., 1997; McCullers et al., 2002) and protects Purkinje 
cells from cell death in postnatal rat and mouse cerebellum 
organotypic slice cultures (Ghoumari et al., 2003), through 
the reversion of chloride efflux in the GABAA receptor elicit-
ed by GABA (Rakotomamonjy et al., 2011). Other properties 
like antiprogestagen and antiglucorticoids, were observed 
with their administration. We have also demonstrated that 
two SS epoxies, (analogues of allopregnanolone and preg-
nanolone,) were capable to prevent the glial and neuronal 
damages in the perinatal cultures of cerebral cortex and hip-
pocampus (Rey et al., 2013). 

In adults, the brain ischemic stroke is also considered a 
hypoxic event that compromises the brain functionality. 
During ischemia, the loss of energy supply by the mitochon-
drial dysfunction and posterior increased oxidative stress 
contributed to the neuronal injury. Therefore, a trend has 
been set in the development of steroid drugs that reduce 
the excitotoxicity and the oxidative stress, for treatments of 
acute brain injuries or chronic neurodegenerative diseases. 
Because the current therapies are still limited the promotion 
of novel neuroprotectants is essential for the ischemic stroke 
treatment. One example is the SS 5α-androst-3β,5,6β-triol  
showed a robust neuroprotective effects when it was tested 
in vitro (Chen et al., 2013). 

The Alzheimer’s disease (AD) produces a brain degener-
ative process, with neuronal losses and decreased synapses. 
Present therapies are focused on stopping the progression of 
the disease, but the major challenge remains, in restore cog-
nitive function through the regeneration of lost neurons and 
neural circuitry. In aged and AD brains, the pool of neural 
stem cells, their proliferative potential and the allopregnano-
lone content are markedly diminished (Bernardi et al., 1998; 
Genazzani et al., 1998; Weill-Engerer et al., 2002). Studies 
using transgenic AD mice showed that allopregnanolone 
has neurogenic properties (Wang et al., 2008). These in vitro 
and in vivo neurogenic features, coupled to low molecular 
weight, easy blood brain barrier penetration and lack of 
toxicity, are the key elements required to consider the use 
of allopregnanolone as a neurogenic/regenerative therapy 
for neurons restoration in AD patients (Brinton and Wang, 
2006; Irwin and Brinton, 2014). Estrogen has also showed 
neuroprotective properties, preventing the development of 
neurodegenerative disorders like AD. Hormonal therapy at 
menopause (to restore normal levels) appears to reduce the 
risks, but this kind of treatment has been associated with 
detrimental effects. Therefore, the development of SS with 
a selective agonist action is promising. Moreover, estrogen 
like neuroprotection effects were observed with the SS 4-es-
tren-3α,17β-diol that differs structurally from estrogens only 
on the A ring (Kousteni et al., 2002; Cordey et al., 2005). In 
addition, similar neuroprotective actions have been described 
with the SS ent-steroid of 17β-estradiol (Covey, 2009). 
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Neurosteroids synthesis: steroid effects on 
3β-HSD activity 

Another important issue is the influence of the SS on the 
local natural NS synthesis. NAS are present in the nervous 
system and in other steroidogenic tissues, like gonads and 
adrenal glands. In the CNS, NS synthesis occurs in glial and 
neuronal cells. Within the mitochondrial matrix, the choles-
terol is converted to pregnenolone by the cytochrome P450 
side-chain cleavage enzyme (CYP450scc; Iwahashi et al., 
1990). Then, the pregnenolone is oxidized to progesterone 
by the 3β-hydroxysteroid dehydrogenase enzyme (3β-HSD; 
Zwain and Yen, 1999) being this conversion an essential 
step in the biosynthesis of all steroid hormones. Allopreg-
nanolone is synthesized from progesterone, by the sequen-
tial enzymatic steps of the type I 5α-reductase (5α-R) and 
the 3α-hydroxysteroid dehydrogenase enzymes (3α-HSD; 
Mellon et al., 2001). The rate-limiting step in neuroste-
roidogenesis is the unidirectional reduction of progesterone 
to the 5α-dihydroprogesterone (5α-DHP) by the 5α-R. Sub-
sequently, the 3α-HSD catalyzes conversion of 5α-DHP into 
allopregnanolone. Functionally expression of these enzymes 
has been described in pluripotent progenitor cells (Melcangi 
et al., 1996). 

On the other hand, the expression of 3β-HSD enzyme 
has been demonstrated in several tissues like adrenal 
glands, gonads and CNS (Rheaume et al., 1991; Guennoun 
et al., 1995; Coirini et al., 2003). Moreover, pregnenolone 
conversion into progesterone has been demonstrated in rat 
homogenates from septum and amygdala (Weinfeld et al., 
1980). The co-expression of 3β-HSD and GABAA recep-
tor subunits in different brain regions (Laurie et al., 1992; 
Wisden et al., 1992) gives an anatomo-functional support 
for the in situ production of progesterone and the GABAA 
receptor modulation (Guennoun et al., 1995). Although 
regulatory mechanisms underlying the NS biosynthesis in-
side the brain remain unclear, it is well known the capacity 
of steroids of negatively modulate the 3β-HSD activity in 
different steroidogenic endocrine glands and in peripheral 
nervous system, like sciatic nerve (Guennoun et al., 1995; 
Coirini et al., 2003). Among SS, the RU486 caused an im-
pact on the 3β-HSD enzyme activity in rat adrenal gland 
(Albertson et al., 1994) but not in gonads (Sanchez et al., 
1989). In our work, we described that SS epoxies caused a 
dose-dependent decrease on the 3β-HSD activity. In fact, 
the analogues of pregnanolone produced less inhibition 
than those with the conformation allopregnanolone-like 
(Rey et al., 2013).  

Conclusion
NS are endogenous regulators of neuronal excitability (Lam-
bert et al., 2003; Akk et al., 2009). Within the brain, reduced 
steroids (like allopregnanolone and pregnanolone) are highly 
selective and potent modulators of the GABAA receptor func-
tions (Gasior et al., 1999). Thus, their anticonvulsant, anes-
thetics and anxiolytic properties are useful in the treatment 
of several neurological and psychiatric disorders (Schüle et 
al., 2011). Neuroprotective effects against adverse early life 

events (Patchev et al., 1997) and neurogenic effects on neu-
rodegenerative diseases, like AD (Brinton and Wang, 2006), 
have been observed with allopregnanolone administration. 
Steroids with similar activity like this progesterone metabo-
lite provide big opportunities for therapeutic treatments re-
ducing hormonal side effects (Morrow, 2007; Reddy, 2010). 
The principal disadvantage of endogenous NS administra-
tion is their poor bioavailability caused by their rapid in vivo 
metabolism. Thus, endogenous NS stimulation synthesis or 
synthetic steroids analogues (Poisbeau et al., 2014) might 
constitute promising novel strategies for several disorders 
treatments. The current medicinal chemistry around NAS 
is focused on the development of new SS analogues, having 
the absolute configuration of natural steroids. Several stud-
ies indicate that the 3α-hydroxyl configuration is the key for 
binding and activity, but modifications in the steroid nucle-
us may emphasize different pharmacophores. Among the SS 
developed are ganaxolone and ALPX which have anesthetic 
and anticonvulsant properties. Until now, ganaxolone is 
the only one SS that has been used on human clinical trials 
for epilepsy (Nohria et al., 2010). On the other hand, the 
SS ent-neurosteroids produced more potent inhibition of 
TBPS binding from the GABAA receptor than ALPX (Qian 
et al., 2013). Moreover, we found that some SS epoxies re-
duce the TBPS binding and stimulate the flunitrazepam and 
muscimol binding in a dose-dependent manner (Rey et al., 
2013). On the other hand, anxiolytic effects are mediated by 
GABAA receptors (Reddy and Kulkarni, 1997). Therefore 
NS modulation of this receptor can be traduced in SS anxi-
olytic properties. This type of effects was observed with the 
synthetic allopregnanolone analogue Co 2-6749 (GMA-839; 
WAY-141839; 3α,21-dihydroxy-3β-trifluoromethyl-19-nor-
5β-pregnan-20-one; Vanover et al., 2000). In fact, neuroste-
roidogenic agents, that lack benzodiazepine-like side effects, 
are promising for the treatment of anxiety and depression 
(Reddy, 2010). 

Neuroprotective effects have been described with several 
SS in hypoxia-induced brain injury models. Among others, 
the SS RU486 was able to protect against excitotoxicity and 
traumatic brain injury (Behl et al., 1997; McCullers et al., 
2002) and the 5α-androst-3β,5,6β-triol showed a neuropro-
tective action in an ischemic stroke model in vitro (Chen et 
al., 2013). Moreover, in perinatal brain tissues submitted to 
hypoxic conditions, restricted analogues from allopregnano-
lone or pregnanolone showed similar properties preventing 
the glial and neuronal damage (Rey et al., 2013). On the oth-
er hand, neurogenic properties on AD were observed with 
the 4-estren-3α,17β-diol and ent-steroid of 17β-estradiol 
administrations (Kousteni et al., 2002; Covey, 2009). 

Another issue to take in consideration for the development 
of SS is related to the presence of all the enzymes necessary 
for NS synthesis in the brain (Mensah-Nyagan et al., 1999; 
Agis-Balboa et al., 2006; Do Rego et al., 2009). Although reg-
ulatory mechanisms around NS biosynthesis are still unclear, 
it is well known the capacity of steroids to negatively modu-
late the 3β-HSD activity (in almost all steroidogenic tissues) 
and the importance of a minor effect on these activities by 
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the SS administration.
Specific enzymes and nuclear hormone receptors for en-

dogenous steroids have structurally defined binding sites. 
It is important that the SS should be developed lacking the 
possibility to bind with high affinity to these proteins. There-
fore the SS drugs might not strongly interfere with the natu-
ral steroids biosynthesis or their specific receptors. It would 
be also advantageous that the half-life of these new SS might 
be quite different and potentially longer, than those of ste-
roid already used as anticonvulsants, anxiolytics, or another 
neuroactive-neurogenic agents. Thus, it is likely that the 
development of new SS for therapeutical use will continue 
requiring a great deal of effort with the attendant generation 
of new knowledge. 
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