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Abstract
We perform a phenomenological analysis on the use of πN�(1232)

alternative couplings in πN scattering, within a single and well-controlled
dynamical model. We compare numerical results for the elastic cross section
obtained using the conventional couplings, already adopted in several reaction
calculations, with those obtained with the so-called ‘spin-3/2 gauge-invariant’
vertexes suggested recently. Confronting with experimental cross-sectional
data in the region around the resonance, we see that these results are by no
means equivalent and the differences between them cannot be eliminated by a
readjustment of free parameters of the meson-exchange contributions. We find
that the use of the conventional couplings leads to better fits.

1. Introduction

The study of the spin-3/2 fields in hadron physics begins very early with the pioneering
work of Rarita Schwinger (RS) [1]. This theory has shown several difficulties along the
time, when interactions were introduced. In fact, when the RS field propagates in an external
electromagnetic field, being the coupling obtained from the minimal substitution in the free
Lagrangian, two problems are reported in the literature. One is that, while the free and
electromagnetic Lagrangians are fully covariant, the second quantization is not realizable in
all reference frames [2]. The other one is the apparition of acausal all order solutions of the
equation of motion coming from these Lagrangians [3]. Posteriorly, using the RS field to
describe the �(1232 MeV) resonance in πN scattering, Nath et al [4] proposed a consistent
πN� vertex invariant from the point of view of the contact transformations of the spin-3/2
field and its quantization. Soon, similar problems as those mentioned previously were found,
but now with the hadronic πN� interaction [5, 6]. The RS equation of motion describes
a ‘constrained’ dynamical system, and for this reason is supplemented by certain primary
and secondary constraints or subsidiary conditions that eliminate the redundant degrees of
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freedom (DOFs). The Lagrangian constraint analysis can be achieved without problems for
the free case as we will show below. When the interaction is included, the same analysis can be
done. However, for ‘certain’ values of the external interacting fields the secondary constraints
can degenerate, being necessary to generate a set of tertiary constraints, this leading to a
loss of DOFs [7, 8]. The values of the fields at the onset of previously mentioned acausal and
quantization problems that appear are the same at which we have the loss of DOF, this situation
pre-emptying the problems. This, of course, offers no resolution of the mentioned paradoxes
present in the coupled RS fields, but gives an understanding of their deeper structure. On the
other hand, one can see that these problems appear at the level of the representation space
without invoking any interaction [9].

One of the proposals to avoid these problems in the πN� coupling case is to replace
the ‘conventional’ Nath’s Lagrangian [4] by the one containing spin-3/2 ‘gauge-invariant
couplings’ (to be defined below), i.e. with the same spin-3/2 gauge symmetry as the free
Lagrangian [10]. Nevertheless, when one intends to introduce the electromagnetic interaction
through a minimal substitution in the spin-3/2 gauge Lagrangian, one finds that this symmetry
and the electromagnetic gauge one have coexistence problems [11]. In view of the evident
complexity of the problem, and because of the mentioned problems with the usual pion
derivative vertex that will not appear in a perturbative calculation [12], we adopt here a
phenomenological point of view comparing those usual and gauge πN� interactions through
the evaluation of πN elastic scattering cross section. The paper is organized as follows: in
section 2, we review the properties of the free RS field, while the πN� interactions are
introduced in section 3; in section 4, we show our numerical results and our conclusions are
summarized in section 5.

2. The free Rarita-Schwinger field

The RS spinor, ψμ, is an element of the non-unitary representation of the Lorentz group

[(1/2, 0) ⊕ (0, 1/2)] ⊗ (1/2, 1/2). (1)

That is, ψμ ≡ � ⊗ Wμ, where � is a Dirac spinor field, while Wμ is a Dirac 4-vector [9] and
satisfies the Dirac equation

(i/∂ − m)ψμ(x) = 0. (2)

One can build by contraction the Dirac spinors ∂μψμ and γ5γ
μψμ that satisfy the Dirac

equation1, viewing these contractions as ‘projecting’ [13] ψμ on spin-1/2 representation
subspaces, with opposite parities. From the sixteen (4 ⊗ 4) constructed states, only eight (four
particle + four antiparticle) satisfy the subsidiary conditions (see [9])

∂μψμ = γ μψμ = 0, (3)

and we say that in the free case, we have the right DOF counting. Mathematically, we are
equating to zero all tensors of the lower rank (Dirac spinors) that can be formed with ψμ,
avoiding the spontaneous transitions to a 1/2 spinor (�) in amplitudes such as �∂μψμ and
�γ μψμ. We consider that these eight ‘3/2 fields’ represent physical on-shell �(1232) states.
On the other hand, we have eight more 1/2 additional states in the space (1), split in two
subsectors. In the first, the states satisfy only the condition ∂μψμ = 0 and are called subsector
1. In the second one, the states do not satisfy any of the subsidiary conditions and are indicated
by subsector 2. It is possible to define projectors on these 3/2 and 1/2 sectors [14], respectively,

1 Taking the partial derivative of (2), one sees that ∂μψμ satisfies it too, and that if ∂μψμ ≡ 0 also γ5γ
μψμ does it.
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and to build up a Lagrangian for the RS field from which both equations (2) and (3) can be
generated [15]:

Lfree = ψ
μ
(x)

{
i∂α	α

μν − mBμν

}
ψν(x), (4)

where

	α
μν = gμνγ

α + 1
3γμγ αγν − 1

3

(
γμgα

ν + gα
μγν

)
and

Bμν = gμν − 1
3γμγν (5)

do not depend on ∂μ and do not mix the 3/2 with the 1/2 states in the space (1). This Lagrangian
was originally proposed by RS [1]. Since (4) only fix the 3/2 component of the states (through
the constraints (3)), being certainly arbitrary as regards the 1/2 ones, it should be invariant
under the contact transformation:

ψμ → ψ ′μ = R(a)μνψν ≡ (gμν + aγ μγ ν )ψν. (6)

If we write a = (1 + 3A)/2, A �= −1/2 (we will see why later) and apply the transformation
on (4), we get the most general one-parameter Lagrangian (found through other procedure
in [13])

Lfree(A) = ψμ(x)K(∂, A)μνψν(x), (7)

where

K(∂, A)μν = R
(

1
2 (1 + 3A)

)μμ′{
i∂α	α

μ′ν ′ − mBμ′ν ′
}
R
(

1
2 (1 + 3A)

)ν ′ν

= R
(

1
2 (1 + 3A)

)μμ′
K

(
∂,− 1

3

)
μ′ν ′R

(
1
2 (1 + 3A)

)ν ′ν
. (8)

K(∂, A) could also be alternatively expressed as

K(∂, A)μν = i∂α	(A)μν
α − mB(A)μν, (9)

with

	(A)αμν = gμνγ
α + (

3
2 A2 + A + 1

2

)
γμγ αγν + A

(
γμgα

ν + gα
μγν

)
,

B(A)μν = gμν − (3A2 + 3A + 1)γμγν. (10)

Substituting (9) into (7), the terms with 	 and B induce the decomposition

Lfree(A) ≡ Lkin(A) + Lmass(A). (11)

Finally, using the properties of R(a), it is easy to show that this Lagrangian is also invariant
under the change

A → A′ = A − 2a

1 + 4a
, a �= −1/4, A �= −1/2 (12)

when the transformation (6) is done.
The spin-3/2 propagator G(p, A)βν should satisfy (in momentum space, we replace

−i∂ → p),

K(p, A)βμG(p, A)βν = gμν, (13)

for any value of A and to keep consistence with equation (8), it should be transformed as

G(p, A)μν = [
R−1

(
1
2 (1 + 3A)

)μ

α

]
G

(
p,− 1

3

)αβ[
R−1

(
1
2 (1 + 3A)

)ν

β

]
, (14)

where G(p,−1/3) = K−1(p,−1/3), being

G

(
p,−1

3

)
μν

= −
[

� p + m

p2 − m2
P̂3/2

μν + 2

m2
( � p + m)

(
P̂1/2

11

)
μν

+
√

3

m

(
P̂1/2

12 + P̂1/2
21

)
μν

]
. (15)

We have introduced Pk
i j (defined in [14]) which projects on the k = 3/2, 1/2 sector of the

space (1), with i, j = 1, 2 being the subsectors of the 1/2 subspace. This equation indicates
that, at the difference of the on-shell case where the subsidiary conditions select only the 3/2
states, when the � propagates off-shell (p2 �= m2), the 1/2 ones appear.
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3. The πN� interaction

The invariance of the free Lagrangian (7) under the contact transformations means that the
physical quantities (and thus the amplitudes) should be independent of A. Consequently,
we demand the interaction Lagrangian for the 3/2 field coupled to a nucleon (�) and a
pseudoscalar meson (φ), as usually appear in a resonance decay, be invariant under (6) and
(12). The most general interaction Lagrangian satisfying such requirement is

Lint(A) = gψ̄μR
(

1
2 (1 + 3A)

)μν
Fν (ψ,�, φ, . . .) + h.c., (16)

where Fν is a function of the fields and its derivatives, and g is the coupling constant. Note
that the A-dependence introduced by the propagator (14) in the φ� → � → φ� amplitude
is canceled by the R(a)μν in the vertex generated from (16). The next step is to define a
group of A-independent ‘reduced’ Feynman rules [16] to evaluate the amplitude, they being
the RS propagator G(p,− 1

3 ) and the vertex V (p, pN, pπ ,−1/3). However, from the property
R(a)μνR(b)νλ = R(a + b + 4ab)μλ [15], we have the important relation

R

(
1

2
(1 + 3A)

)
αβ

= R

(
1

2
(2Z + (1 + 4Z)A)

)
αα′

R

(
1

2

(
1 + 3

−2Z

1 + 4Z

))α′

β

, (17)

which introduces an additional arbitrary parameter Z [4]. Clearly, our previous choice
a = (1 + 3A)/2 in R(a)μν corresponds to Z = 1/2. Now, the replacement of equation (17)
in (14) and (16) shows that another choice of Z simply yields a change in reduced Feynman
rules to G

(
p, −2Z

1+4Z

)
and V

(
p, pN, pπ , −2Z

1+4Z

)
, respectively. This means that an A-independent

set of reduced Feynman rules can be built for different values of Z, but always leading to the
same amplitudes. We feel it is important at this point to mention that in other approaches to
include the �, as it is the chiral perturbation theory [17], the requirement of consistency from
the point of view of the right number of DOFs leads to the same A-parameter structure for
the πN vertex as that in equation (16). Also, analyzing the structure of the constraints on the
Lagrangian, the authors can define the A-dependence of the π� interaction, where also the
invariance under contact transformations comes up automatically and the use of any off-shell
parameter (Z) is not necessary. We could relate this point with our previous discussion in this
section, where we see that changing to another value of Z does not affect the amplitude.

In what follows, we develop two different models for the vertex function Fμ: the
‘conventional’ (C) and ‘gauge-invariant’ (G) couplings.

3.1. Conventional coupling

We begin with the so-called ‘conventional coupling’ which, based on the nonlinear realization
of the chiral symmetry, predicts a derivative of the pion field (isospin omitted)

LintC = fπN�

mπ

ψ̄μR

(
1

2
(1 + 3A)

)
μν

�∂νφ + h.c., (18)

that, in turn, leads to V (p, pN, pπ ,−1/3) = − fπN�

mπ
pα

π . This interaction is considered
‘inconsistent’ advocating that it violates the free DOF counting, when some of the conditions
(3) (extended for the interacting case) could fall for a determined fixed value of the pion field
[6], being necessary to follow the constraint analysis and generate new subsidiary conditions.
These lead to a reduction in the DOF due to the fixing of the pion field [8]. Note that because
pμ

π (P̂1/2
i j )μν (p) �= 0, there exists a coupling to the 1/2 component of the off-shell intermediate

�, which rises to a ‘lower spin background’ contributions in observables. However, this
situation is by no means exclusive of the RS field. In fact, let us consider, for example, the
W boson contribution in the π → W → νμ decay [18] or the W → π one in the pion–pole

4
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terms in the νN → μπ neutrino–nucleon scattering [19]. The W vector field ϕμ belongs to the
spin-1 sector of the (1/2, 1/2) representation, satisfying the Proca equation (in the momentum
space)

[(−p2 + m2)gμν + pμ pν]ϕν = 0, (19)

with the subsidiary condition pμϕν = 0, which leads to the Klein–Gordon equation

(−p2 + m2)ϕν = 0. (20)

There is also a spin-0 state that satisfies equation (20) but not the subsidiary condition. This
is totally analogous to the spin-1/2 sector of the space (1) that satisfies the Dirac (2) equation
but not the conditions (3). The W propagator looks

�μν(p) = −
[

Pμν

1 (p)

p2 − m2
+ Pμν

0 (p)

m2

]
, (21)

being Pμν

0 = pμ pν/p2 and Pμν

1 = gμν − Pμν

0 as the projectors on the 0 and 1 sectors,
respectively, we also have an off-shell lower spin contribution. The W ↔ π decay vertex
goes as pμ

π [18] or pμ [19], being in both cases pπμPμν

0 �= 0 or pμPμν

0 �= 0, respectively. Still
more, it would be impossible for the pion to decay without the off-shell spin-0 piece of the W
propagator.

3.2. Gauge-invariant coupling

We start reviewing the relation of the DOF counting with gauge transformations. For simplicity,
we take A = −1 in (7), being (with the help of (9) and (10))

Lfree(A = −1) = ψμ(x)

(
εμναβ ∂

∂xα
γβγ5 + imσμν

)
ψν(x). (22)

In the massless case (Lfree ≡ Lkin), this is invariant under the spin-3/2 gauge transformation
[11]

ψμ(x) → ψμ(x) + ∂μχ(x), (23)

(the analysis can be done for any A value, but under the transformation ψμ(x) →
ψμ(x) + R−1( 1

2 (1 + 3A))μνR(−1)νμ′
∂μ′χ(x)), where χ is a spinor field, and we are left

with DOF = 2 as in the photon case. The mass term breaks this symmetry and we have
DOF = 2 × 3/2 + 1 = 4, corresponding to the spin-3/2 sector of the space (1). From these
remarks, we follow the procedure of [20], where πN� interactions are introduced with the
same type of gauge symmetry as Lkin. That is, Fμ∂μχ = 0 (or Fμ pμ = 0 in the momentum
space) is satisfied. Because G(p,−1) (incorrectly called the RS propagator) is built with

P
1
2

22, P
1
2

12, P
1
2

21 [11], all satisfying P
1
2 μ

i j Fμ = 0, the spin-1/2 sector is decoupled not contributing
to the amplitude.

The gauge couplings, considered now as ‘consistent’, can be introduced from L(A) =
Lkin(A) + Lmass(A) + LintC (A) through a redefinition of the RS field

ψμ → ψμ + fπN�

mπ m
R−1

(
−1

2
(A + 1)

)ν

μ

�∂νφ, (24)

using the properties of the R matrices, they giving a net change LintC (A) → LintG (A) + Lcont

in L(A), with

LintG (A) = fπN�

mπ m
�̄∂μφ†εμναβγβγ5R

(
−1

2
(A + 1)

)
νσ

∂αψσ + h.c.,

Lcont = f 2
πN�

m2
πm2

�[εμναβγβγ5∂α + imσμν]∂μφ†�∂νφ. (25)

5
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Δ0
+

pπ
+

n
++

MπΝ
σρΔ++

+=

Figure 1. Feynman graphs corresponding to different contributions to the elastic π+ p scattering
amplitude.

Here,Lcont contains contact terms involving only pion and nucleon fields. Both, the original and
the new Lagrangian, should lead to the same S-matrix elements (observables) in concordance
with the equivalence theorem [20, 21]. A generalization of the procedure developed above
to go from C to G couplings for the case of bilinear couplings has been achieved in [22]
within chiral effective field theory framework for the π� interaction. Here, pion couplings
to off-mass-shell components of the � − 3/2 field included in some terms of Lagrangian are
absorbed in other Lagrangian’s terms. Finally note that (24) eliminates LintC from the original
Lagrangian for any value of A, at the difference of the transformation used in [20] where only
the particular case A = −1 is presented. The new interaction Lagrangian, LintG (A), is invariant
under the generalization of (23) for any A since it comes from transformations on the free one.
This fact intuitively leads to suppose that we can extend to the interacting case constraints (3)
without problems. This point and the coexistence of the electromagnetic and spin-3/2 gauge
symmetries, within a dynamical model as we will develop in the following section, should
be further analyzed in the future with more detail. Finally, we mention that the propagator
to be used in this case to get A-independent amplitudes obtained from (14) using (17) (with
Z = −1/2) is

Gμν (p, A) = R−1
(− 1

2 (A + 1)
)μ

α
Gαβ (p,−1)R−1

(− 1
2 (A + 1)

)ν

β
.

4. π+ p elastic scattering calculation

In this section, C and G interactions are compared numerically within a simple effective
isobar model for π+ p elastic scattering. Comparison with experimental data has been already
done elsewhere [24] for the case of the C vertex and the � parameters (mass, width and
coupling constants) were obtained consistently. We again perform the same task under the
same standards, but now using the G interaction. Our minimum ‘dynamical model’ involves
nucleons, �++,0 resonances and ρ and σ meson DOF, where throughout this paper we will
assume isospin symmetry in the masses and strong couplings of hadrons. The elastic scattering
amplitude is given by

M(π+ p → π+ p) =
∑

i=�++,�0,n,ρ,σ

Mi(π
+ p → π+ p) , (26)

with each contribution shown in figure 1. The last four graphs are included at the tree
level and they provide a smoothly varying background around the resonance region. The
various Lagrangian densities necessary to build those terms are found in [24] and references
therein. We will work with effective Lagrangian inspired models not representing elementary
particles and form factors, which, taking into account their structure, should be important
if we go away from the threshold. Because we will move with invariant masses between

6
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mN + mπ � √
s � m� + mπ , we have to consider that they can be ignored to reproduce πN

scattering in this region. Besides, the improvement of the model by the consideration of the
effect of final state interactions into the vertexes and self-energies, and the lack of unitarity
due to the fact that the background amplitudes are real, has been carefully analyzed in [24]
and [25]. Nevertheless, since for π+ p scattering the �-pole term is dominant and the cross
section depends on the modulus-squared T -matrix, the limitations of the present model have
a minor impact on the cross-sectional fitting; we prefer to keep it at a more simple level.

We now focus on the dominant �++ contribution (first graph in figure 1) and compare
the amplitude calculated using the V σ

πN�C
= − fπN�

mπ
pσ

π vertex with that obtained employing

V σ
πN�G

= i fπN�

mπ m γ5γβ pα pπμεαμβσ , coming from LintC and LintG , respectively. They read

MC
�++ (π+ p → π+ p) = f 2

πN�

m2
π

u(p′
p, m′

s)pμ
πGμν

(
p,−1

3

)
pν

π u(pp, ms), (27)

being p = pp + pπ , and

MG
�++ (π+ p → π+ p) = f 2

πN� p2

m2
πm2

u(p′
p, m′

s)pμ
π (−)

� p + m

p2 − m2
P̂

3
2
μν pν

πu(pp, ms), (28)

where the fact that V μ
πN�G

(
P̂1/2

22

)
μν

= V μ
πN�G

(
P̂1/2

21

)
μν

= (
P̂1/2

12

)
μν

V ν
πN�G

= 0 has been used. On
the same footing, we can build the �0 contribution which is part of the background. Note the
relation

MC
�++,0 = MG

�++,0 + Mcont, (29)

with Mcont being the amplitude obtained with the contact Lagrangian from equation (25).
However, it will not be included here since as a background, we expect that it could be
absorbed by a readjustment of free parameters in the N, ρ and σ amplitudes [20]. Propagators
in equations (27) and (28) blow up when

√
p2 approaches m. The simplest solution to cure this

bad behavior maintaining electromagnetic gauge invariance in the radiative π+ p scattering
amplitude is to replace m2 → m2 − im	 (	 being the decay width of the �) in all the Feynman
rules involving the �++ resonance [16]. This is the so-called complex mass scheme [16].
It can be shown that the dressed � propagator by the one-loop πN self-energy correction
corresponds to replace in (15) m → m− i	(s)/2, with 	(s) being usually obtained in terms of
m and f�Nπ [16]. When this variable width is used, a violation of the Ward identities at order
	/m is produced, being necessary vertex corrections (a troublesome task) to restore gauge
invariance. On the other side, the one-loop πN self-energy is the lowest order contribution and
one should include πN rescattering into the bubble through the so-called non-pole T -matrix,
which iterates all the background contributions in figure 1 to all orders [25]. Because we
consider that to work within a gauge-invariant formalism is fundamental to have confidence
in the results, we will adopt the complex mass scheme which has worked very well before
in the description of several different processes as elastic and radiative πN scattering, π

photoproduction and weak π production [24–26]. We have introduced an energy-dependent
width at higher energies for neutral current π production, the difference with the complex
mass scheme being not important [27]. In addition, to take into account at least effectively
another contribution to the self-energy, we treat the constant width as an adjustable parameter.
The finite widths of the �0 baryon and the ρ, σ mesons do not play any role since these
resonances do not appear in the s-channel.

Some of the couplings appearing into the Lagrangians used to build the background
terms are taken from other low energy processes: the coupling constants g2

ρ

/
4π = 2.9,

g2
πNN

/
4π = 14 from ρππ decays and the analysis of NN scattering data [28, 29], whereas

the magnetic ρNN coupling, κρ = 3.7, from the values of nucleon magnetic moments. The

7
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Figure 2. Elastic π+ p total cross section calculated with the amplitude (26) with MC
�++ from

equation (27) (conventional) and MG
�++ from equation (28) (gauge). Data were taken from [31].

masses of the ρ meson and the nucleon were taken from [30], and the mass of the hypothetical
σ meson (that runs on the range 400–1000 MeV region [30]) was set to 450 or 650 MeV
[28, 29] depending on the model for M�++ , analyzed and used previously [24]. The � mass,
width and coupling constants gσ = gσππgσNN and f�Nπ are left as the only free parameters to
be determined from the fitting of the total cross section of π+ p scattering to the data.

In figure 2, we compare results for elastic π+ p total cross section calculated with the
amplitude (26) with MC

�++ taken from equation (27) and MG
�++ from equation (28). For the

C coupling, mσ = 650 MeV was used as before [24], and we get f 2
�Nπ

/
4π = 0.317 ± 0.003,

m� = 1211.2 ± 0.4 MeV, 	 = 88.2 ± 0.4 MeV, gσ /4π = 1.50 ± 0.12 and χ2/dof = 4.5,
being the last three points in the upper tail of the total cross section excluded. Our obtained
values (or m� = 1211.7 ± 0.4 MeV, 	 = 92.2 ± 0.4, which could be obtained in
an improved more evolved model [25]) are consistent with the complex pole parameters
(m� = 1211 MeV, 	 = 97.0 ± 0.4) obtained with the chiral perturbation calculations in [11]
making the identification hA/2 fπ = f�Nπ/mπ .

On the other side, for the G coupling (where the best fits were obtained with
mσ = 450 MeV), we obtain 0.278±0.002, 1211.6±0.3 MeV, 76.62±0.25 MeV, 1.00±0.05
and 13.5, respectively. In figure 3 also, we show separately the �-pole (the first graph in
figure 1), the background (the four last graphs in figure 1) and the sum amplitude contributions
to the total cross section. This is done for both the conventional and gauge couplings. As
can be seen, the background contribution is practically the same in both couplings, with the
difference being due to the small contribution of the �-cross (the third graph in figure 1) term
and the difference in the σ parameters for each coupling that is not very important. The �-pole
contribution presents a more appreciable difference due to the fact that the virtual � − 1/2
contribution is absent from the gauge coupling amplitude (also, the factor

√
p2/m is very

important) which, however, is present in the background. This fact also affects the important
interference contribution to the cross section. Our calculation differs from that in [23] at the
tree level, where a minor difference between C and G results was reported, by three important
points. Firstly, their κρ was fixed to zero when the C coupling is used. Secondly, they have an
opposite sign in the VσNN,σππ potential as regards to us, since we assume a two-pion-correlated
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Figure 3. �-pole amplitude contribution (�), background (B) amplitude contribution and total
amplitude (conventional or gauge) contribution to the elastic π+ p total cross section calculated
both couplings. Line conventions are shown in the figure.
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Figure 4. Differential π+ p cross section calculated with the conventional (C) and gauge (G)
amplitudes for Tlab = 263.7 MeV. Circles and triangles indicate experimental data from [32] and
[33], respectively.

model in spite of the fact that they are at the tree level. Finally, they avoid the contribution of
the σ meson to S partial waves through an additional factor in the potential, with the S-wave
lengths being then explained only by the nucleon and ρ terms.

With these obtained parameters, we also show the predicted differential cross section at
two fixed Tlab energy values. Our results are compared with the available data for both the C
and G couplings in figures 4 and 5. As can be seen from figure 2, the fitting to the total cross
section is clearly better by using the C couplings than the G ones, this being due to the different
behavior of the �-pole contribution and not due to the background that is almost the same in
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Figure 5. Same as figure 4 with predictions at Tlab = 291.4 MeV.

both the cases. This fact is better appreciated for the differential cross sections in figures 4 and
5, where eventual compensation of differences due to the angle integration is not present.

5. Conclusions

From the formal point of view, we have analyzed in detail the connection between different
fixings for the Z parameter appearing at the moment of introducing the πN� interaction. Also,
we analyze the generation of a set of reduced (A-independent) Feynman rules to compute
contact-invariant amplitudes for different Z values. The πN� interaction has been included
in a contact-invariant fashion through both the usual ‘conventional’ couplings based on the
nonlinear realization of the chiral symmetry predicting a derivative of the pion field and the
called ‘gauge couplings’ respecting the same spin-3/2 gauge symmetry as the massless �

free Lagrangian. These last vertexes have the particularity to uncouple the off-shell 1/2 �

components ‘really’ present in its propagator. Also, we show the transformation that enables
to generate a gauge-invariant interacting Lagrangian from the conventional one for ‘any’ value
of A. We obtain the relation MC

� = MG
� + Mcont, where the last term includes certain

background contact terms, different to that included by N, ρ and σ DOFs. It was shown
that the so-called inconsistence of the off-shell propagation of 1/2 components for the �

fields is clearly present, with a notable parallelism, in other cases as is the W boson off-shell
propagation in π → W → νμ decay or the W → π one, present in the pion–pole terms
contributing to νN → μπ ′ neutrino–nucleon scattering.

We have calculated within a ‘minimum’ dynamical model, without the inclusion of form
factors due to the considered energy region, and where we have a good control on the majority of
the background parameters, the total and differential cross section for the elastic π p scattering
with both kinds of πN� couplings. From our numerical results, we arrive at the following
conclusions.

(i) Within this simple model, the fittings achieved with the conventional couplings are clearly
better than those obtained with the gauge ones.
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(ii) It does not seem possible to accommodate the parameters of the σ meson (those of ρ

are fixed in both approaches by low energy phenomenology) to obtain identical results
with both types of couplings. In fact, the obtained value gσ /4π = 1.00 ± 0.05 for
mσ = 450 MeV using the gauge couplings is also consistent with the conventional
resonant amplitudes [24]. Then, it does not seem possible to simulate the not included
Mcont by changing consistently parameters inMn+Mρ+Mσ . The contribution ofMcont,
automatically included in the conventional amplitude, is clearly necessary to reproduce
the experimental results. Note also the presence of the p2/m2 factor in the resonant gauge
amplitude, which could have an important effect on the cross section through its direct
contribution and the interference with the background amplitude.
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