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Abstract: We obtain box-counting estimates for the pinned distance sets of (dense subsets
of) planar discrete Ahlfors-regular sets of exponent s > 1. As a corollary, we improve upon a
recent result of Orponen, by showing that if A is Ahlfors-regular of dimension s > 1, then
almost all pinned distance sets of A have lower box-counting dimension 1. We also show that
if A,B⊂ R2 have Hausdorff dimension greater than 1 and A is Ahlfors-regular, then the set
of distances between A and B has modified lower box-counting dimension 1, which taking
B = A improves Orponen’s result in a different direction, by lowering packing dimension to
modified lower box-counting dimension. The proofs involve ergodic-theoretic ideas, relying
on the theory of CP-processes and projections.
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1 Introduction and main results

In 1985, Falconer [4] (implicitly) conjectured that if A ⊂ Rd , with d ≥ 2, is a Borel set of Hausdorff
dimension at least d/2, then the set of distances

dist(A,A) = {|x− y| : x,y ∈ A}

has Hausdorff dimension 1. He also showed that the value d/2 would be sharp. The conjecture remains
wide open in every dimension, but several deep advances have been obtained; we discuss in some
detail what is known in the plane, and refer to [3] for some of the known results in higher dimensions.
Throughout the paper, dimH, dimP, dimB, dimB, and dimMB denote, respectively Hausdorff, packing,
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lower box-counting, upper box-counting, and modified lower box-counting dimensions. See §2.2 for the
definitions, and [5] for further background on fractal dimensions.

Relying on earlier work of Mattila [14], and using deep harmonic-analytic techniques, Wolff [22]
showed that if dimH(A) > 4/3, then dist(A,A) has positive Lebesgue measure. As remarked in [22],
4/3 appears to be the limit of these methods. Nevertheless, Iosevich and Liu [11] recently obtained an
improvement for a large class of cartesian products.

Assuming only that dimH(A)≥ 1, Bourgain [2] (relying on earlier work of Katz and Tao [13]) used
sophisticated additive-combinatorial arguments to prove that

dimH(dist(A,A))> 1/2+ ε,

for some small absolute constant ε > 0.
To the best of our knowledge, the following stronger version of Falconer’s conjecture might hold: if

dimH(A)≥ 1, then there exists x ∈ A such that the pinned distance set

dist(x,A) = {|x− y| : y ∈ A}

has Hausdorff dimension 1. Although the method of Wolff does not appear to say anything about pinned
distance sets, Peres and Schlag [20] employed the transversality method to prove that, under the stronger
assumption dimH(A) > 3/2, for all x outside of a set of dimension at most 3− dimH(A), the pinned
distance set dist(x,A) has positive Lebesgue measure.

Very recently, Orponen [19] approached the problem from a different angle. Recall that a set A⊂Rd is
called (s,C)-Ahlfors regular, or s-Ahlfors regular with constant C, if there exists a measure µ supported
on A, such that C−1rs ≤ µ(B(x,r))≤Crs for all x ∈ Supp(µ) and all r ∈ (0,1]. Orponen showed that if
A⊂ R2 is (s,C)-Alhfors regular for some s≥ 1 and any C > 1, then the packing dimension of dist(A,A)
is 1. In fact, a small modification of his method shows that also the lower box-counting of dist(A,A)
equals 1.

In this article, we improve upon Orponen’s result in several directions: we obtain results on the
existence of many large pinned distance sets, we weaken slightly the hypothesis of Ahlfors-regularity, we
show that the modified lower box-counting dimension of the distance set is 1, and we are able to consider
the set of distances between two different sets.

Our first main result is a discretized version for large subsets of (discrete) Ahlfors-regular sets: we
say that a set A⊂ Rd is discrete (s,C)-Ahlfors regular at scale 2−N if

C−12(N−k)s ≤ |B(x,2−k)∩A| ≤C2(N−k)s for all x ∈ A,k ∈ [N],

where [N] = {0,1, . . . ,N−1}. For a bounded set F ⊂ Rd , we denote by N(F,ε) the number of ε-grid
cubes hit by F .

Theorem 1.1. Given s > 1,C > 1, t ∈ (0,1), there exist ε = ε(s,C, t)> 0 and N0 = N0(s,C, t) ∈ N such
that the following holds:

If N ≥ N0, and A⊂ [0,1]2 is a subset of a discrete (s,C)-Ahlfors regular set at scale 2−N , then

|x ∈ A : N(dist(x,A),2−N)< 2tN | ≤ 2(s−ε)N .
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An inspection of the proof shows that we can take ε = (1− t)/C′ for some effective C′ =C′(s,C)> 0.
The value of N0 does not appear to be effective from the current proof.

Theorem 1.1 fails rather dramatically for s = 1, as witnessed by the example described in [13, Eq. (2)
and Figure 1]. Namely, given N� 1, let

AN =
{
(x,y) : x ∈ {i2−N/2 : 0≤ i < 2N/2−1},y ∈ { j2−N : 0≤ j < 2N/2}

}
.

This is a discrete 1-Ahlfors regular set at scale 2−N , yet one can check that N(dist(x,AN),2−N) = O(2N/2)
for all x ∈ AN . In the proof of Theorem 1.1, the role of the assumption s > 1 is to ensure that the set
of directions determined by pairs of points in A is dense “with high multiplicity”, see §4.1 below. This
obviously fails for each of the sets AN and, more generally, for many discrete 1-Ahlfors regular sets. We
thank an anonymous referee for pointing out this “almost counter-example” to Theorem 1.1.

We obtain several corollaries from Theorem 1.1 . Firstly, for sets of full Hausdorff dimension inside
an Ahlfors-regular set, nearly all pinned distance sets have full lower box-counting dimension:

Corollary 1.2. For every t ∈ (0,1), s > 1, C > 0 there is ε = ε(s,C, t)> 0 such that the following holds.
Let A be a bounded subset of a (s,C)-Ahlfors regular set in R2. Then

dimH{x ∈ A : dimB(dist(x,A))< t}< s− ε.

Moreover, if Hs(A)> 0, then

dimB(dist(x,A)) = 1 for Hs-almost all x ∈ A.

In particular, this holds if A is itself (s,C)-Ahlfors regular.

In the above corollary, Hs denotes s-dimensional Hausdorff measure. It is also easy to deduce a
statement purely about box-counting dimensions:

Corollary 1.3. Let A be a bounded subset of a (s,C)-Ahlfors regular set in R2, with dimB(A) = s > 1
(resp. dimB(A) = s > 1). Then

dimB(dist(A,A)) = 1 (resp. dimB(dist(A,A) = 1)).

We underline that the Hausdorff dimension of sets satisfying the hypothesis of the above corollary
may be arbitrarily small, or even zero.

Our second main result concerns the set of distances between two, possibly disjoint, sets A,B⊂ R2.
Although here we do not get a discretized result, we do get large modified lower box-counting dimension
of the distance set (which we recall is smaller than both lower box dimension and packing dimension,
and unlike the former is countably stable). Moreover, while for one of the sets we still need to assume
Ahlfors-regularity, for the other we only require that the Hausdorff dimension strictly exceeds 1.

Theorem 1.4. Let A,B⊂ R2 be two Borel sets such that dimH(A)> 1 and B is (s,C)-Ahlfors regular for
some s > 1. Then

dimMB(dist(A,B)) = 1.

In particular, if A is s-Ahlfors regular with s > 1, then its distance set has full modified lower box-counting
dimension.
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In fact, we are able to somewhat weaken the assumptions on A and B, see Theorem 5.1 below and the
remark after the proof.

The proof of Theorem 1.4 also yields the following:

Corollary 1.5. Let A,B⊂ R2 be two Borel sets such that dimH(A)> 1 and B is (s,C)-Ahlfors regular
for some s > 1. Then

dimH({x ∈ A : dimB(dist(x,B))< 1})≤ 1.

In particular, this applies to A = B.

Compared with Corollary 1.2, we lower the size of the exceptional set (from zero measure to Hausdorff
dimension 1), at the price of dealing with upper box-counting dimension instead of lower box-counting
dimension.

For the proofs, we follow some of the ideas of Orponen [19], but there are substantial differences.
A key step in his approach is a projection theorem for entropy in the Ahlfors regular case, see [19,
Proposition 3.8], which is applied at all scales. It is unclear whether such a result continues to hold after
removing even very small pieces of the initial regular set. Hence, in order to make the method robust
under passing to large subsets (which is essential to the proof of Theorem 1.1), we needed a different
device to handle the entropy of projections. This more flexible device is the theory of CP-processes and
projections developed in [10], which we review in Section 2. Very roughly speaking, a CP-process is a
measure-valued dynamical system which consists in zooming in dyadically towards a typical point of the
measure. Thus, this paper is another example of an application of ergodic-theoretic ideas to problems
that, a priori, have nothing to do with dynamics or ergodic theory.

As noted by Orponen already in [17], in the study of distance sets the spherical projections σx(y) =
(x− y)/|x− y| play a key role (the reason is that they arise when linearizing the distance function). An
important fact in Orponen’s approach is that spherical projections of sets of dimension at least 1 are dense.
For the proof of Theorem 1.1 we require a discrete quantitative version of this (established in §4.1), while
for Theorem 1.4 we rely instead on a recent result of Mattila and Orponen [16], see also [18].

The paper is organized as follows. In Section 2 we set up notation, recall different notions of
dimensions, and review the parts of the theory of CP-processes that we will require. In Section 3 we
discuss a notion of regularity weaker than Ahlfors-regularity. Theorem 1.1 and its corollaries are proved
in Section 4, while Theorem 1.4 is proved in Section 5.

2 Preliminaries

2.1 Notation

We use O(·) notation: A = O(B) means 0≤ A≤CB for some constant B; if C is allowed to depend on
any parameters, this are denoted as subscripts; e.g. A = Od(B) means 0≤ A≤C(d)B. Finally, A = Ω(B)
means B = O(A), and likewise with subscripts.

Given a metric space X , we denote the family of all Borel probability measures on X by P(X), and
the family of all Radon measures on X by M(X). When X is compact, P(X) is endowed with the weak
topology, which is metrizable. If f : X → Y and µ ∈M(X), the push-down measure f µ is defined as
f µ(A) = µ( f−1A). We note this is sometimes denoted f#µ .

DISCRETE ANALYSIS, 2017:9, 22pp. 4

http://dx.doi.org/10.19086/da


ON DISTANCE SETS, BOX-COUNTING AND AHLFORS REGULAR SETS

If µ ∈M(X) and µ(A) > 0, then µ|A is the restriction of µ to A and, provided also µ(A) < ∞, we
denote by µA the restriction normalized to be a probability measure, that is

µA(B) =
1

µ(A)
µ(A∩B).

We work in an ambient dimension d; this will always be 1 or 2 in this paper. We denote by D
(d)
k the

partition of Rd into half-open dyadic cubes{
[ j12−k,( j1 +1)2−k)×·· ·× [ jd2−k,( jd +1)2−k) : j1, . . . , jd ∈ Z

}
.

When d is clear from context, we simply write Dk. If x ∈ Rd , we denote the unique element of D(d)
k

containing x by Dk(x). In addition to the Euclidean metric, on Rd we consider the dyadic metric ρ defined
as follows: ρ(x,y) = 2−`, where `= max{k : Dk(x) = Dk(y)}.

Logarithms are always to base 2. We denote Shannon entropy of the probability measure µ with
respect to the finite measurable partition F by H(µ,F), and the conditional entropy with respect to the
finite measurable partition G by H(µ,F|G). That is,

H(µ,F) = ∑
F∈F
−µ(F) log µ(F),

H(µ,F|G) = ∑
G∈G:µ(G)>0

µ(G)H(µG,F).

Here and below we follow the usual convention 0 · log(0) = 0. We denote by Hk(µ) the normalized
entropy H(µ,Dk)/k, and note that if µ ∈ P([0,1)d), then 0 ≤ Hk(µ) ≤ 1. The following are some
standard properties of entropy that will get used in the sequel:

1. If |F| ≤ N, then H(µ,F)≤ logN.

2. If F,G are finite partitions such that each element of F intersects at most N elements of G and vice
versa, then

|H(µ,F)−H(µ,G)| ≤ logN.

3. (Concavity of entropy). If µ,ν are probability measures, t ∈ [0,1] and F is a finite measurable
partition, then

H(tµ +(1− t)ν ,F)≥ tH(µ,F)+(1− t)H(ν ,F).

Given two integers A < B we denote [A,B] = {A,A+1, . . . ,B−1}. When A = 0, we simply write
[B] = {0,1, . . . ,B−1}.

2.2 Notions of dimension

In this section we quickly review the notions of dimension of sets and measures we will require. For
further background on dimensions of sets, see e.g. Falconer’s textbook [5], while for dimensions of
measures and their relationships, we refer to [6].
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Recall that N(F,ε) is the number of ε-grid cubes that intersect a bounded set F ⊂ Rd . The upper
and lower box-counting dimensions of F are defined as

dimB(F) = liminf
ε↓0

logN(F,ε)
− logε

,

dimB(F) = limsup
ε↓0

logN(F,ε)
− logε

.

These dimensions are not countably stable. After making them countably stable in the natural way, one
gets modified lower box-counting dimension dimMB and packing dimension:

dimMB(F) = inf{sup
i

dimB(Fi) : F ⊂ ∪iFi},

dimP(F) = inf{sup
i

dimB(Fi) : F ⊂ ∪iFi}.

The inequalities dimH(F) ≤ dimMB(F) ≤ dimB(F) ≤ dimB(F) and dimMB(F) ≤ dimP(F) ≤ dimB(F)
always hold, while dimB and dimP are not comparable in general.

We move on to dimensions of measures. Let µ ∈ P(Rd). The lower and upper entropy dimensions
are defined as

dime(µ) = liminf
k→∞

Hk(µ),

dime(µ) = limsup
k→∞

Hk(µ).

The Hausdorff dimension of µ ∈M(Rd) is

dimH(µ) = inf{dimH(A) : µ(A)> 0}.

We note that this is sometimes called the lower Hausdorff dimension. Finally, we recall that µ ∈M(Rd)
is called exact dimensional if there exists s≥ 0 (the exact dimension of µ) such that

lim
r↓0

log µ(B(x,r))
logr

= s for µ-almost all x.

For any µ ∈ P(Rd) it holds that

dimH(µ)≤ dime(µ)≤ dime(µ),

with strict inequalities possible, see [6, Theorem 1.3]. However, for measures of exact dimension s, there
is an equality dimH(µ) = dime(µ) = s.

2.3 Global sceneries, entropy and projections

In this section we recall some results from [9, 19] (similar ideas go back to [10]). We write δ (ω) or δω

to denote the point mass at ω (often ω will be a measure).
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We denote the topological support of µ ∈ P([0,1)d) in the ρ-metric by Suppρ(µ). Note that x ∈
Suppρ(µ) if and only if µ(Dn(x))> 0 for all n ∈ N. Given Q ∈D

(d)
n , let TQ be the homothety that maps

Q onto [0,1)d , and define

µ
Q = TQ

(
µ|Q

µ(Q)

)
.

If x ∈ Suppρ(µ), we also write µx,n = µDn(x) for short. That is, µx,n is the normalized restriction of µ to
Dn(x), renormalized back to the unit cube.

Given µ ∈ P([0,1)d), x ∈ Suppρ(µ), and an integer interval [A,B], we write

〈µ,x〉[A,B] =
1

B−A

B−1

∑
n=A

δ (µx,n),

〈µ〉n =
∫

δ (µx,n)dµ(x) = ∑
Q∈Dn

µ(Q)δ (µQ),

〈µ〉[A,B] =
∫
〈µ,x〉[A,B] dµ(x) =

1
B−A

B−1

∑
n=A
〈µ〉n.

The second equality in the last line follows from interchanging the order of sum and integration; it will be
convenient to alternatively use either definition of 〈µ〉[A,B].

The following simple but important fact is proved in [9, Lemma 3.4]. It allows to recover the global
entropy of a measure from local entropies.

Lemma 2.1. Let µ ∈ P([0,1)d). Then∣∣∣∣HN(µ)−
∫

Hq(η)d〈µ〉[0,N](η)

∣∣∣∣= Od(q/N).

In the above lemma, one should think that the value of q is fixed, and N tends to infinity (possibly
along a subsequence).

The following is a variant of a result of Orponen [19], which in turn adapts ideas of Hochman [9].

Proposition 2.2. Fix 2 < q < N. Let µ ∈ P([0,1)2), and let U be an open set containing Supp(µ).
Suppose that f : U → R is a C1 map such that, for some fixed v ∈ S1,

‖D f (x)− v‖ ≤ 2−q for all x ∈ Supp(µ).

Then, if Πv(x) = v · x denotes the orthogonal projection of x onto a line in direction v,

HN( f µ)≥
∫

Hq(Πvη)d〈µ〉[0,N](η)−O(q/N)−O(1/q).

The constants in the O notation are absolute.
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Proof. Orponen [19, Lemma 3.5] showed that if 1≤ q < N and ν ∈ P(U), then

HN( f ν)≥ 1
N

bN/qc−1

∑
`=0

∑
D∈D(2)

`q

ν(D)H( f νD,D(`+1)q|D`q), (2.1)

where the sum runs over D with ν(D)> 0.
By concavity of entropy, if D̃ ∈D

(2)
j , then

HN( f µ)≥ µ(D̃)HN( f µD̃).

Applying (2.1) to each ν = µD̃ with D̃ ∈D
(2)
j , j ∈ [q], and adding up, and then averaging over j, we get

HN( f µ)≥ 1
N

N−q

∑
i=0

∑
D∈D(2)

i

µ(D)
1
q

H( f µD,Di+q|Di). (2.2)

On the other hand, by [19, Lemma 3.12], the almost linearity hypothesis on f ensures that

|H( f µD,Di+q|Di)−H(ΠvµD,Di+q|Di)|= O(1) (2.3)

for any D ∈D
(2)
i . (This was stated in [19] for i a multiple of q but the proof in general is identical.)

Finally, as observed in [19, Remark 3.6], the linearity of Πv implies that

1
q

H(ΠvµD,Di+q|Di)≥ Hq(Πvµ
D)−O(1/q). (2.4)

Putting together (2.2), (2.3) and (2.4) yields the claim.

We will apply the above proposition to functions f of the form φx(y) = 1
2 |x− y|. Let σ(x,y) =

(x− y)/|x− y| ∈ S1 ⊂ R2 be the direction generated by x 6= y, and note that D fx(y) = σ(x,y). Hence, we
have the following corollary of Proposition 2.2.

Corollary 2.3. Fix x ∈ R2, D ∈D
(2)
k , v ∈ S1 and q� 1 such that |σ(x,y)− v| ≤ 2−q for all y ∈ D. Then

for any µ ∈ P([0,1)2) supported on D and any N ≥ q,

HN(φxµ)≥
∫

Hq(Πvη)d〈µ〉[0,N](η)−O(q/N)−O(1/q).

2.4 CP processes

Following [7], we consider CP processes on the tree ([0,1)d ,ρ) rather than on Euclidean cubes; the dyadic
metric helps avoid technicalities with functions that would not be continuous on Euclidean space (due to
dyadic hyperplanes) but are on the tree, notably entropy. We will denote the induced weak topology on
P([0,1)d) by ρ̃ , and the weak topology induced by this on P(P([0,1)d)) by ρ̂ . Slightly abusing notation,
we will also denote by ρ̃ the product topology ρ̃×ρ on P([0,1)d)× [0,1)d , and by ρ̂ the corresponding
weak topology on P(P([0,1)d)× [0,1)d). We note that all these topological spaces are compact and
metrizable. To avoid any ambiguity, we will occasionally denote the topology under consideration with a
subscript.

We let S : [0,1)d → [0,1)d , S(x) = 2x mod 1 be the doubling map.
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Definition 2.4 (CP magnification operator). Let

Ξ =
{
(µ,x) ∈ P([0,1)d)× [0,1)d : x ∈ Suppρ(µ)

}
.

We define the CP magnification operator M on Ξ by

M(µ,x) = (µx,1,Sx).

Note that Mn(µ,x) = (µx,n,Snx).
We now define CP distributions (we refer to probability measures on “large” probability spaces

such as Ξ as distributions). This definition goes back to [7]; see [10] and [12] for some variants and
generalizations.

Definition 2.5 (CP distributions). A distribution Q on Ξ is adapted, if there is a disintegration∫
f (ν ,x)dQ(ν ,x) =

∫∫
f (ν ,x)dν(x)dQ(ν), (2.5)

for all f ∈Cρ̃(P([0,1)d)× [0,1)d), where Q is the projection of Q onto the measure component.
A distribution on Ξ is a CP distribution (CPD) if it is M-invariant (that is, MQ = Q) and adapted.

Note that adaptedness can be interpreted in the following way: in order to sample a pair (µ,x) from
the distribution Q, we have to first sample a measure µ according to Q, and then sample a point x using
the chosen distribution µ . From now on we will denote by Q both the CPD acting on Ξ and its measure
component acting on P([0,1)d), since by adaptedness the latter determines the former.

An easy consequence of the Ergodic Theorem applied to CP distributions is that if P is a CPD which
is ergodic under the action of M, then P-a.e. ν is exact dimensional, and has dimension

dimP =
∫

Hq(η)dP(η)

for any q ∈ N (see e.g. [7, Equation (2.7)]). Let P =
∫

Pµ dP(µ) be the ergodic decomposition of P (that
is, each Pµ is M-invariant and ergodic, and µ 7→ Pµ is a Borel mapping). By general properties of Markov
processes, Pµ is again a CPD for P-almost all µ , see e.g. [7, Remark before Proposition 5.2]. Hence, if P
is a (non-necessarily ergodic) CPD, then P-a.e. ν is still exact-dimensional, but dimν needs no longer be
P-a.e. constant.

Definition 2.6. If P is a CP distribution, we define its lower dimension dim∗P as the P-essential infimum
of dimν .

We turn to the behavior of entropy under projections. For this, we recall some results from [10] on
CP-processes and projections. Recall that Πv(x) = 〈v,x〉, v ∈ S1. Elementary properties of entropy imply
that

|Hq(Πvη)−Hq(Πv′η)| ≤ O(1/q) if |v− v′| ≤ 2−q, (2.6)

with the O(·) constant independent of η . Indeed, Hq(Πvη) = 1
q H(η ,Π−1

v Dq) and likewise with v′. But
if |v− v′| ≤ 2−q, then each element of Π−1

v Dq hits O(1) elements of Π
−1
v′ Dq and vice-versa, so (2.6)

follows.
The following result is a consequence of [10, Theorem 8.2]. It will act as our projection theorem for

entropy.
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Theorem 2.7. Let P be a (not necessarily ergodic) CP-distribution. Write Eq : S1 → [0,1], v 7→∫
min(Hq(Πvη),1)dP(η). Then:

1. The function Eq satisfies

|Eq(v)−Eq(v′)| ≤ O(1/q) if |v− v′| ≤ 2−q;

2. The limit E(v) := limq→∞Eq(v) exists for all v and E(v) is lower semicontinuous;

3. E(v)≥min(dim∗P,1) for almost all v;

Proof. The first claim is immediate from (2.6). Let

Ẽq(v) =
∫

Hq(Πvη)dP(η).

Since Πvη is supported on an interval of length ≤
√

2, |Ẽq(v)−Eq(v)| ≤ 1/q for all v ∈ S1. In the case
P is ergodic, the latter claims are a particular case of [10, Theorem 8.2]. More precisely, in [10], the
stated convergence is Ẽq(v)→ E(v), but by our observation, this immediately yields Eq(v)→ E(v). The
general case follows by considering the ergodic decomposition of P (notice that an integral of lower
semicontinuous functions is lower semicontinuous by Fatou’s Lemma).

2.5 Global tangents

We want to be able to estimate the entropy of projections of a given measure µ ∈ P([0,1)2), but the tools
we have at our disposal concern typical measures for a CP process. Following [8], we handle this by
passing to suitable tangent objects.

Given µ ∈ P([0,1)d), the set of accumulation points of 〈µ〉[0,N] in the ρ̂ metric will be denoted T(µ).
Unlike in [8], our tangent distributions are global, rather than local but, as the next lemma shows, they are
still CP processes:

Lemma 2.8. Let µn be a sequence in P([0,1)d). Suppose

〈µN j〉[0,N j]→
ρ̂

P,

for some subsequence (N j). Then P is a CPD (in the sense that the adapted distribution with measure
marginal P is a CPD).

In particular, if µ ∈ P([0,1)d), then any element of T(µ) is a CPD.

Proof. Both the claim and the proof are similar to those of [7, Propositions 5.2]. For ν ∈ P([0,1)d), write

〈ν〉∗[A,B] =
1

B−A

B−1

∑
n=A

∫
δ (Mn(ν ,x))dν(x).

Note that the measure component of 〈ν〉∗[A,B] is 〈ν〉[A,B], and that 〈ν〉∗[A,B] is always adapted.

DISCRETE ANALYSIS, 2017:9, 22pp. 10

http://dx.doi.org/10.19086/da


ON DISTANCE SETS, BOX-COUNTING AND AHLFORS REGULAR SETS

Now suppose 〈µN j〉∗[0,N j]
→ P in the ρ̂ topology. Since adaptedness is a closed property (it is tested

on equalities of continuous functions), P is adapted.
Since we are using the dyadic metric and M is adapted, M is well defined and continuous at P-a.e.

(µ,x) (notice that x ∈ Suppρ(µ) for P-a.e. (µ,x) by adaptedness). Using standard properties of weak
convergence (see e.g. [1, Theorem 2.7]) we conclude that

MP = M
(

lim
j→∞
〈µN j〉∗[0,N j]

)
= lim

j→∞
M(〈µN j〉∗[0,N j]

)

= lim
j→∞
〈µN j〉∗[1,N j+1]

= lim
j→∞
〈µN j〉∗[0,N j]

= P.

3 Ahlfors regularity and weak regularity

The following definition introduces a notion of regularity that, as we will see, extends the concept of
Ahlfors-regularity in a suitable sense.

Definition 3.1. 1. A measure µ ∈ P([0,1)d) is said to be s-rich at resolution (N,q,δ ) if

〈µ〉[0,N]{η : Hq(η)< s−δ}< δ .

2. A measure µ ∈ P([0,1)d) is said to be weakly s-regular if for every δ > 0 there is q ∈N such that
µ is s-rich at resolution (N,q,δ ) for all sufficiently large N (depending on q and δ ).

Note that if a measure is weakly s-regular then it is weakly t-regular for all t < s. In other words,
weak s-regularity ensures a minimum level of local entropy at most places and scales, but allows for
higher entropy as well.

A first useful feature of weak s-regularity is robustness under passing to subsets of positive measure:

Lemma 3.2. If µ is weakly s-regular and µ(A)> 0, then µA is weakly s-regular.

Proof. This is essentially a consequence of the Lebesgue density theorem (which for the dyadic metric
is an immediate consequence of the convergence of conditional expectation given the dyadic filtration).
Fix δ > 0, and let q be such that µ is s-rich at resolution (N,q,δ ) for all sufficiently large N. Write
Ωκ = {η : Hq(η)> s−κ}. Then we have∫

B
〈µ,x〉[0,N](Ωδ )dµ(x)> µ(B)−δ (3.1)

for any Borel set B, provided N is large enough depending on δ and q only. By the density point theorem,
for µ almost all x ∈ A, the sequences µ

x,n
A and µx,n are ρ̃-asymptotic (i.e. ρ̃(µx,n

A ,µx,n)→ 0). In particular,
if N is large enough (depending on δ ), we then have µA(B)> 1−δ , where

B =
{

x : 〈µA,x〉[0,N](Ω2δ )≥ 〈µ,x〉[0,N](Ωδ )
}
.
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Here we used that Hq is continuous on (P([0,1)d), ρ̃). Recalling (3.1) we conclude that, always assuming
N is large enough,

〈µA〉[0,N](Ω2δ )≥
1

µ(A)

∫
B
〈µA,x〉[0,N](Ω2δ )dµ(x)

≥ 1
µ(A)

(µ(B)−δ )≥ 1− (1+µ(A)−1)δ .

This gives the claim.

Recall that µ ∈P(Rd) is called (s,C)-Ahlfors regular if C−1rs ≤ µ(B(x,r))≤Crs for all x∈ Supp(µ)
and all r ∈ (0,1]. If this holds only for r ∈ [2−N ,1], we say that µ is (s,C)-Ahlfors regular at scale 2−N .
We also say that a set A is (s,C)-Ahlfors regular if the restriction Hs|A is a positive finite (s,C)-Ahlfors
regular measure.

Given a discrete (s,C)-Ahlfors regular set at scale 2−N contained in [0,1]d , we can construct a measure
µ in the following manner:

µ = µ
A =

1
|A| ∑

D∈DN

|A∩D|LD, (3.2)

where L denotes d-dimensional Lebesgue measure. Reciprocally, from a measure µ supported on [0,1]d

which is (s,C)-Ahlfors regular at scale 2−N , one can construct the set

A = Aµ = {xL(D) : D ∈DN ,µ(D)> 0},

where xL(D) is the left-endpoint of D. One then has the following easy lemma:

Lemma 3.3. 1. If µ ∈ P([0,1]d) is (s,C)-Ahlfors regular at scale 2−N , then Aµ is discrete (s,O(C))-
Ahlfors regular at scale 2−N .

2. Conversely, if A⊂ [0,1]d is discrete (s,C)-Ahlfors regular at scale 2−N , then µA is (s,O(C))-Ahlfors
regular at scale 2−N .

The implicit constants depend only on the ambient dimension d.

Proof. Suppose µ is (s,C)-Ahlfors regular at scale 2−N and fix k ∈ [N]. If y ∈ Aµ , then µ(B(y,3 ·
2−N)) ∈ (Ω(C)2−sN ,O(C)2−sN) and likewise with k in place of N. If B(x,2−k)∩A = {y1, . . . ,ym}, then
{B(y j,3 ·2−N)} is a covering of Supp(µ)∩B(x,2−k) with bounded overlapping, so the first claim follows.
The proof of the second claim is analogous, so is omitted.

We will see that s-Ahlfors regular measures are weakly s-regular. The following quantitative version
of this will be crucial later.

Lemma 3.4. Given ε,q,N,C such that logC/q < ε and q < εN, the following holds.
Let ν be (s,C)-Ahlfors regular at scale 2−N . Then if µ ∈ P([0,1)d) is supported on Supp(ν) and

HN(µ)> s− ε , then µ is s-rich at resolution (N,q,
√

ε/C′), where C′ > 0 depends only on d.
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Proof. Any constants implicit in the O notation are allowed to depend on d only. Since q < εN and

〈µ〉[0,N] =
N−q

N
〈µ〉[0,N−q]+

q
N
〈µ〉[N−q,N], (3.3)

it is enough to show that µ is s-rich at resolution (N−q,q,
√

ε/C′).
Write A = Supp(ν). We begin by noting that for any D ∈D

(d)
n with n ∈ [N−q], the set A meets at

most O(C)2sq cubes D′ ⊂ D,D′ ∈Dn+q. Indeed, let D1, . . . ,Dm be the sub-cubes of D in Dn+q that hit A,
and pick xi ∈ Di∩A. The family B(xi,2−(n+q)) has overlapping bounded by O(1) and each member is
contained in D(2−n), the (2−n)-neighborhood of D. On the other hand, D(2−n)⊂ B(x1,(

√
d +1)2−n).

Hence

O(C)2−sn ≥ ν(D(2−n))≥
m

∑
i=1

ν(B(xi,2−(n+q)))≥ (O(C))−12−sn2−sqm,

giving the claim. In particular, we see that Hq(µ
x,n)≤ s+O(logC/q)≤ s+O(ε) for any x ∈ Supp(µ)

and any n ∈ [N−q].
We know from Lemma 2.1, the assumption and (3.3) that∫

Hq(η)d〈µ〉[0,N−q](η)≥
∫

Hq(η)d〈µ〉[0,N](η)− q
N−q

≥ s−O(ε)

which, since Hq(η)≤ s+O(ε) for 〈µ〉[0,N−q] a.e. η , we can rewrite as∫
s−Hq(η)+C′ε d〈µ〉[0,N−q](η)≤ O(ε),

where the constant C′ was chosen so that the integrand is positive. The lemma now follows from Markov’s
inequality.

As an immediate consequence, we deduce that a class of measures, including s-Ahlfors regular
measures, are indeed weakly s-regular.

Corollary 3.5. If µ is supported on an s-Ahlfors regular set and dime µ = s, then µ is weakly s-regular.
In particular, this is the case for νA when ν is s-Ahlfors regular and ν(A)> 0.

Proof. Fix δ > 0 and take q large enough that log(C)/q < δ 2. Since dime µ = s, we know that HN(µ)>
s−δ 2 for large enough N. If N is also large enough that N > δ−2q, then the previous lemma says that µ

is rich at resolution (N,q,O(δ )).
For the latter claim, note that νA has exact dimension s (as a consequence of the density point theorem),

so that dime νA = s.

4 Proof of Theorem 1.1, and consequences

4.1 Discrete conical density lemmas

In the proof of Theorem 1.1 we will require some discrete conical density results. These are similar to
those in [21, Section 3].
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We say that a set A⊂ [0,1]2 is k-discrete if |A∩D| ≤ 1 for all D ∈D
(2)
k . Also, let X(a,β ,v) be the

two-sided cone with center a ∈R2, opening β ∈ (0,π/2) and direction v ∈ S1. The following is a discrete
analog of [15, Lemma 15.13].

Lemma 4.1. Given β > 0, there is a constant C = C(β ) > 0 such that the following holds. If A is
k-discrete and for each a ∈ A there is a direction v such that

X(a,β ,v)∩A\{a}= /0,

then |A| ≤C2k.

Proof. We begin with a simplification. Choose a finite set {v j} with Oβ (1) elements such that for every
v ∈ S1 there exists v j with

X(a,β/2,v j)⊂ X(a,β ,v).

Hence, if A is as in the statement, for every a ∈ A we can pick j(a) such that

X(a,β/2,v j(a))∩A\{a}= /0.

Let A j = {a ∈ A : j(a) = j}. Some A j has ≥ |A|/Oβ (1)-elements. Moreover, by passing to a further
refinement with |A|/Oβ (1) elements, we can assume that the elements of A j are (2−k)-separated. This
shows that it is enough to prove the following statement: if v0 is a fixed direction, and A ⊂ [0,1]2 is a
(2−k)-separated set such that

X(a,β/2,v0)∩A\{a}= /0 for all a ∈ A,

then |A| ≤ Oβ (2k).
Let Π(x) = Πv⊥0

(x) = x · v⊥0 , where v⊥0 is a unit vector perpendicular to v0. It follows from our
assumptions on A that |Π(a)−Π(a′)|sin(β/2) ≥ 2−k for any distinct a,a′ ∈ A. In particular, Π|A is
injective and its range has Oβ (2k) elements so |A| ≤ Oβ (2k), as claimed.

For sets which are dense in a discrete s-Ahlfors regular set, we obtain the following consequence.

Lemma 4.2. Given s ∈ (1,2),C > 1,κ ∈ (0,(s−1)/(2s)),β ∈ (0,π/2), the following holds for all large
enough N (depending on s,C,κ,β only):

Let A be a discrete (s,C)-Ahlfors regular set at scale 2−N , and suppose B⊂ A satisfies |B|> 2(1−κ)sN .
Then there exists a subset E ⊂ B with |E| ≤ 2(1−κ)sN such that for all x ∈ B\E and any v ∈ S1 there exists
y ∈ B such that y ∈ X(x,β ,v) and |x− y| ≥ 2−2s(s−1)−1κN .

Proof. Write κ ′ = 2s(s−1)−1κ and note that κ ′ ∈ (0,1). We say that a point x ∈ B is well surrounded if
for every v ∈ S1 there is y ∈ B such that y ∈ X(x,β ,v) and |x− y| ≥ 2−κ ′N .

Let E ⊂ B be the set of all points in B which are not well surrounded, and suppose |E|> 2(1−κ)sN . Let
E1 be a maximal (2−κ ′N)-separated subset of E. Since each ball of radius 2−κ ′N contains O(C)2(1−κ ′)sN

points of A⊃ E, it follows that |E1|> Ω(C)2(κ
′−κ)sN . Note that (κ ′−κ)s > κ , and let C′ =C′(β ) be the

constant given by Lemma 4.1. Provided N is large enough that Ω(C)2(κ
′−κ)sN >C′2κN , it follows from

Lemma 4.1 and the definitions that E1 contains a well surrounded point. This contradiction proves the
lemma.
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4.2 Pinned distance sets in discrete regular sets

The core of the proof of Theorem 1.1 consists in showing the existence of one large pinned distance set.
We state and prove the corresponding statement separately:

Proposition 4.3. Given s > 1,C > 1, t ∈ (0,1), there exist ε = ε(s,C, t)> 0 and N0 = N0(s,C, t,ε) ∈ N
such that the following holds: if N ≥ N0, and A⊂ [0,1]2 is a subset of a discrete (s,C)-Ahlfors regular
set at scale 2−N , such that |A| ≥ 2(s−ε)N , then there exists x ∈ A such that

N(dist(x,A),2−N)≥ 2tN .

Before embarking on the proof of this proposition, we show how to deduce Theorem 1.1 from it.

Proof of Theorem 1.1 (assuming Proposition 4.3). Let ε and N0 be as given by Proposition 4.3, and take
N ≥ N0. Let

B = {x ∈ A : N(dist(x,A),2−N)< 2tN}.

In particular, if x ∈ B, then N(dist(x,B),2−N)< 2tN . By Proposition 4.3 applied to B, |B| ≤ 2(s−ε)N , as
claimed.

The rest of this section is devoted to the proof of Proposition 4.3. Suppose the claim is false. Then
we can find sequences N j→ ∞, ε j→ 0, A j,B j ⊂ [0,1]2 such that B j is discrete (s,C)-Ahlfors regular at
scale 2−N j , A j ⊂ B j, |A j| ≥ 2(s−ε j)N j , and N(dist(x,A j),2−N j)< 2tN j for all x ∈ A j. Let

µ j =
1
|A j| ∑

D∈DNj

|A j ∩D|LD.

By passing to a subsequence if needed, we may assume that 〈µ j〉[0,N j] converges to some P ∈
P(P([0,1)2)) in the ρ̂ topology. By Lemma 2.8, P is a CPD. We underline that P needs not be ergodic
under M; if it was, the next lemma would hold automatically. It is only in this lemma that the hypothesis
of Ahlfors-regularity gets used.

Lemma 4.4. dim∗P≥ s

Proof. Since P-a.e. measure is exact-dimensional, it is enough to show that dime ν ≥ s for P-a.e. ν . In
turn, by Borel-Cantelli this will follow if we can show that for every δ̃ > 0, if q is sufficiently large
(depending on δ̃ ), then

P{η : Hq(η)≥ s− δ̃}> 1− δ̃ . (4.1)

Since ε j→ 0, we know that |A j| ≥ 2(s−δ/2)N j for large enough j. Since B j, and hence A j, hits at most
C points in each dyadic square of side length 2−N j , a calculation shows that, if j is large enough, then

HN j(µ j)≥ s−δ .

Lemma 3.4 (together with Lemma 3.3(2) applied to B j) can then be invoked to conclude that, given q is
taken large enough in terms of δ , and then j is taken large enough in terms of q, the measure µ j is s-rich
at resolution (N j,q,

√
δ/C′) for some universal C′ > 0. Since Hq is continuous on (P([0,1)d), ρ̃), the set

{η : Hq(η)≥ s−
√

δ/C′} is compact, so we can pass to the limit to obtain our claim (4.1).
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At this point we fix a small δ > 0. In the end, a contradiction will be obtained provided δ was taken
sufficiently small.

Let Eq,E be the functions given by Theorem 2.7. We fix v ∈ S1 such that E(v) = 1 (this is possible
because dim∗P > 1). Pick q large enough that 1/q≤ δ and (recalling the definition of Eq)∫

min(Hq(Πvη),1)dP(η)> 1−δ . (4.2)

We take j large enough that |A j| ≥ 2(1−δ/2)sN j . We know from Lemma 4.2 that, again assuming j
is large enough, there is a set E j with |E j| ≤ 2(1−δ )sN j such that if x ∈ A j \E j, then there is y ∈ A j with
y ∈ X(x,2−q−1,v) and |x− y| ≥ 2−KδN j , with K > 0 depending only on s.

Write M j = b(K+1)δN jc and note that if y∈X(x,2−q−1,v) and |x−y| ≥ 2−KδN j , then y∈X(x′,2−q,v)
for all x′ ∈ DM j(x), again provided j is large enough (the point is that the diameter of DM j(x) is very

small compared to |x− y|). If D j,1, . . . ,D j,L j ∈D
(2)
M j

is an enumeration of the the squares containing some
point of A j \E j, the previous observations show that, if j is sufficiently large, then:

1. For each k ∈ {1, . . . ,L j}, there is y j,k ∈ A j such that y j,k ∈ X(x,2−q,v) for all x ∈ D j,k.

2.

µ j

( L j⋃
k=1

D j,k

)
> 1−OC(2−δN j)> 1−δ . (4.3)

Since P-a.e. measure is exact dimensional and has dimension > 1, P-a.e. measure gives no mass to
lines, hence the function η 7→ Hq(Πvη) is continuous P-almost everywhere. Consequently, if j is large
enough we deduce from (4.2) that∫

min(Hq(Πvη),1)d〈µ j〉[0,N j](η)> 1−δ .

Since M j/N j ≤ (K +1)δ , it follows that∫
min(Hq(Πvη),1)d〈µ j〉[M j,N j](η)> 1− (K +2)δ . (4.4)

On the other hand, note that for any η ∈ P([0,1)2), and any 1≤M ≤ n, there is a decomposition

〈η〉n = ∑
D∈DM

η(D)〈ηD〉n.

Hence, if we denote ν j,k = (µ j)D j,k , adding up over n = M j,M j+1, . . . ,N j yields

〈µ j〉[M j,N j] =
L j

∑
k=1

µ(D j,k)〈ν j,k〉[M j,N j]+Q, (4.5)

where Q has total mass at most δ by (4.3).
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It follows from (4.4) and (4.5) that for large enough j there exists a square D j,k with∫
min(Hq(Πvη),1)d〈ν j,k〉[M j,N j](η)> 1− (K +3)δ .

From now on we fix such a good square D j,k for each j, denote it simply by D j and forget about the other
squares. We also denote ν j = ν j,k and y j = y j,k. Recall that this is the point in A j, whose existence we
established earlier, such that y j ∈ X(x,2−q,v) for all x ∈ D j.

Using again that M j/N j ≤ (K +1)δ , we get∫
Hq(Πvη)d〈ν j〉[0,N j](η)> 1− (2K +4)δ .

We have arranged things so that the hypotheses of Corollary 2.3 are met. Since 1/q < δ , we conclude
that, provided j is large enough that q/N j < δ ,

HN j(φy j ν j)≥ 1−Os(δ ),

where φy(x) = 1
2 |x− y|. In particular, since ν j is supported on a (2−N j)-neighborhood of A j, this shows

that
N(dist(y j,A j),2−N j)≥ 2(1−Os(δ ))N j

provided j is large enough (depending on δ ). This contradicts with

N(dist(y j,A j),2−N j)< 2tN j for all j

if δ is small enough, yielding the result.

4.3 Proof of Corollaries 1.2 and 1.3

It is now easy to deduce Corollaries 1.2 and 1.3.

Proof of Corollary 1.2. Let A be as in the statement. Write AN for the collection of centers of squares in
DN hitting A, so that in particular A is contained in the 2−N-neighborhood of AN . By Lemma 3.3, the sets
AN are contained in a (s,C′)-discrete Ahlfors regular set at scale 2−N , for some C′ = O(C).

Let ε = ε(s,C′, t)> 0 be the value given by Theorem 1.1. By the theorem, if N is large enough, then
there is a set BN ⊂ AN with |BN |< 2(s−ε)N such that if x ∈ AN \BN , then

N(dist(x,AN),2−N)≥ 2tN .

Let

B = limsup
N

BN(2−N) =
∞⋂

N=1

∞⋃
M=N

BM(2−M).

Fix s′ > s− ε . Since |BM|< 2(s−ε)M, we see that for each N the set B can be covered by a sequence of
balls containing 2(s−ε)M balls of radius 2−M for each M ≥ N. It follows that Hs′(B)< 0 so that, letting
s′ ↓ s− ε , we get dimH(B)≤ s− ε .
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On the other hand, it follows from the previous observations that if x ∈ A\B, then

N(dist(x,A),2−N)≥ 2tN for large enough N,

so dimB(dist(x,A))≥ t. This gives the first claim.
Now suppose Hs(A)> 0. It is enough to check that if t ∈ (0,1), then

dimB(dist(x,A))≥ t

for Hs|A-almost all x. Suppose otherwise. Then there is a set B⊂ A such that Hs(B)> 0 (in particular,
dimH(B)≥ s), and dimB(dist(x,B))< t for all x ∈ B. This contradicts the first claim.

Remark 4.5. In fact, dimH can be replaced by dimMB in the first part of the corollary above - the proof is
identical. Moreover, a small variant of the proof shows that, under the same assumptions,

dimP{x ∈ A : dimB(dist(x,A))< t}< s− ε.

Proof of Corollary 1.3. We give the proof for dimB, the proof for dimB is almost identical. As in the
proof of Corollary 1.2, we let AN be the (2−N)-discretization of A, so that AN is contained in the (2−N)-
neighborhood of a (s,C′)-discrete Ahlfors-regular set with C′ = O(C). Fix t ∈ (0,1); it is enough to show
that dimB(dist(A,A)) ≥ t. Let ε = ε(s,C′, t) > 0 be the number given by Theorem 1.1. If N is large
enough, |AN | ≥ 2(s−ε)N , so Theorem 1.1 says that there is x= xN ∈AN such that N(dist(x,AN),2−N)≥ 2tN .
But

N(dist(A,A),2−N)≥ 1
3
N(dist(x,AN),2−N)

by the triangle inequality, so the claim follows.

5 Distances between two sets

Now we investigate the set of distances between two sets. The following result immediately implies
Theorem 1.4.

Theorem 5.1. Let A,B ⊂ Rd be two Borel sets such that dimH(A) > 1 and µ(B) > 0 for some weakly
1-regular µ which also satisfies dimH(µ)> 1. Then

dimMB(dist(A,B)) = 1.

We begin the proof of Theorem 5.1, by showing that it is enough to prove the corresponding claim for
lower box counting dimension.

Lemma 5.2. Suppose that, under the assumptions of Theorem 5.1,

dimB(dist(A,B)) = 1. (5.1)

Then Theorem 5.1 holds.
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Proof. Let A,B be as in the statement of Theorem 5.1. Without loss of generality, A and B can be taken
to be compact. Moreover, by Frostman’s Lemma, we may further assume that dimH(A∩B(x,r))> 1 for
any open ball B(x,r) for which A∩B(x,r) 6= /0 (more precisely, let ν be a measure supported on A such
that ν(B(x,r))≤C rs for some s > 1, and replace A by the support of µ). Finally, we may assume that
Supp(µ) = B simply by replacing B by Supp(µB).

After these reductions, suppose dimMB(dist(A,B)) = t < 1, and partition dist(A,B) into countably
many Borel sets D j, so that dimB(D j)≤ t for all j. By Baire’s Theorem (and since we are assuming that
A and B are compact), dist−1(D j) has nonempty interior in A×B for some j. Hence dist−1(D j) contains
a set of the form A0×B0 where, by our assumptions, dimH(A0) > 1 and µ(B0) > 0. This contradicts
(5.1).

Recall that the direction determined by two different vectors x,y ∈ R2 is denoted by σ(x,y). In the
next Lemma we perform a further regularization of the set B; this step uses a recent result of Mattila and
Orponen [16].

Lemma 5.3. In order to prove Theorem 5.1, it is enough to prove the following.
Let A,B,µ be as in the statement of the theorem, and further assume that A,B are compact and

disjoint and that there exists a set Θ⊂ S1 of positive length such that for each v ∈Θ,

µB{y : σ(x,y) = v for some x ∈ A}> 1−δ ,

for some δ ∈ (0,1). Then
dimB(dist(A,B))> 1− ε(δ ),

where ε(δ ) ↓ 0 as δ ↓ 0.

Proof. Suppose there exist A,B,µ as in Theorem 5.1 with

dimB(dist(A,B))< 1.

In light of Lemma 5.2, to derive a contradiction it is enough to show that, given δ > 0, we can find subsets
A0,B0 of A,B (depending on δ ), so that the pair (A0,B0) satisfies the assumptions in the present lemma.

We start by noticing that we can easily make A,B disjoint by taking appropriate subsets so we
assume that they are already disjoint as given. By [16, Corollary 1.5], for µ-almost every y ∈ B, the set
Θy = {σ(x,y) : x ∈ A} has positive length. Notice that the set

ϒ = {(v,y) : v ∈Θy}

is Borel (we leave the routine verification to the reader). Thus, by Fubini, (γ×µ)(ϒ)> 0 (where γ is
Lebesgue measure on S1). Let (v0,y0) be a (γ × µ)-density point of ϒ (for its existence, see e.g. [15,
Corollary 2.14]). We can then find compact neighborhoods Θ0 of v0 and B0 of y0, such that

(γ×µ){(v,y) ∈Θ0×B0∩ϒ} ≥ (1−δ/2)γ(Θ0)µ(B0).

Applying Fubini once again, we conclude that for v in a set Θ of positive measure (contained in Θ0),

µ{y ∈ B0 : v ∈Θy}> (1−δ )µ(B0).

Replacing B and µ by B0 and µB0 concludes the proof.
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Proof of Theorem 5.1. We will prove the claim of Lemma 5.3 with ε(δ ) = O(δ ). Hence, let A,B,µ,Θ
and δ be as in that lemma. We also assume, as we may, that B⊂ [0,1)2.

Let t = dimB(dist(A,B)). Our goal is then to show that t > 1−O(δ ). Recall that N(X ,2−N) stands
for the number of cubes in DN hit by the set X . Let N j→ ∞ be a sequence such that

logN(dist(A,B),2−N j)

N j
→ t. (5.2)

By passing to a subsequence if needed, we may assume that 〈µB〉[0,N j] converges, in the ρ̂ topology, to a
distribution P which, as we have seen in Lemma 2.8, is a CPD. Moreover, using weak 1-regularity of µ ,
the same argument from Lemma 4.4 shows that dim∗P≥ 1.

Let Eq and E be as in Theorem 2.7. By the last part of that theorem, we know that E(v) = 1 for almost
all v. Thus, since Θ has positive measure, we can fix v such that E(v) = 1 and v ∈Θ.

From this point on, the proof is similar to that of Proposition 4.3 but simpler as we do not need
quantitative estimates. Since Eq→ E pointwise, we can fix q = q(P,δ ) such that Eq(v) > 1− δ 2 and
1/q < δ . Recalling the definition of Eq, we see from Markov’s inequality that

P({η : Hq(Πvη)> 1−δ})> 1−δ .

Now since A and B are compact and disjoint, there exists k (depending on A,B,q) such that if
x ∈ A,y ∈ B and σ(x,y) = v, then

|σ(x,y′)− v| ≤ 2−q if y′ ∈ Dk(y). (5.3)

Next, let B0 be the union of Dk(y) over all y such that σ(x,y) = v for some x∈ A. Note that µ(B0)> 1−δ

by hypothesis. Let D1, . . . ,D` be the cubes in Dk that make up B0, and pick yi ∈ Di,xi ∈ A such that
σ(xi,yi) = v (i.e. if there are many such pairs we select one; this can be done in a Borel manner although
we do not require this). Arguing exactly as in the proof of Proposition 4.3, for each sufficiently large j we
find a cube Di (with i depending on j) such that

〈µDi〉[0,N j]({η : Hq(Πvη)> 1−2δ})≥ 1−O(δ ). (5.4)

Hence, there is a value of i such that the above happens infinitely often. From now on we fix that value of
i, and write M j→ ∞ for the corresponding subsequence of N j.

Write φx(y) = 1
2 |x− y|. It follows from (5.3) and Corollary 2.3 that if j is large enough, then

HM j(φxi µDi)≥ 1−O(δ ).

Since φxi µDi is supported on 1
2 dist(A,B) and M j is a subsequence of N j, we conclude from (5.2) that

t = dimB(dist(A,B))> 1−O(δ ),

which is what we wanted to show.
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Remark 5.4. The proof of [16, Corollary 1.5] goes through under the assumption of positive 1-capacity
rather than Hausdorff dimension > 1 (or finite I1 energy for the corresponding statement for measures
that occurs in the proof). Hence, the assumptions in Theorem 5.1 can be weakened to positive 1-capacity
of A and I1(µ)<+∞ instead of dimH µ > 1 (we still need to assume that µ is weakly 1-regular). This
gives many examples of (pairs of) sets of dimension 1 to which the results apply.

Proof of Corollary 1.5. Let A0 = {x ∈ A : dimB(dist(x,B)) = 1}. The proof of Theorem 5.1 shows that
A0 is nonempty (we begin with a sequence N j→ ∞ such that 〈µB〉[0,N j] converges; the rest of the proof
is identical). This implies that dimH(A \A0) ≤ 1, for otherwise there would be x ∈ A \A0 such that
dimB(dist(x,B)) = 1.
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[2] J. Bourgain. On the Erdős-Volkmann and Katz-Tao ring conjectures. Geom. Funct. Anal., 13(2):334–
365, 2003. 2

[3] M. Burak Erdog̃an. A bilinear Fourier extension theorem and applications to the distance set
problem. Int. Math. Res. Not., (23):1411–1425, 2005. 1

[4] K. J. Falconer. On the Hausdorff dimensions of distance sets. Mathematika, 32(2):206–212 (1986),
1985. 1

[5] Kenneth Falconer. Fractal geometry. John Wiley & Sons, Ltd., Chichester, third edition, 2014.
Mathematical foundations and applications. 2, 5

[6] Ai-Hua Fan, Ka-Sing Lau, and Hui Rao. Relationships between different dimensions of a measure.
Monatsh. Math., 135(3):191–201, 2002. 5, 6

[7] Hillel Furstenberg. Ergodic fractal measures and dimension conservation. Ergodic Theory Dynam.
Systems, 28(2):405–422, 2008. 8, 9, 10

[8] Michael Hochman. Dynamics on fractals and fractal distributions. Preprint, available at
http://arxiv.org/abs/1008.3731, 2013. 10

[9] Michael Hochman. On self-similar sets with overlaps and inverse theorems for entropy. Ann. of
Math. (2), 180(2):773–822, 2014. 6, 7

DISCRETE ANALYSIS, 2017:9, 22pp. 21

http://dx.doi.org/10.19086/da


PABLO SHMERKIN

[10] Michael Hochman and Pablo Shmerkin. Local entropy averages and projections of fractal measures.
Ann. of Math. (2), 175(3):1001–1059, 2012. 4, 6, 9, 10

[11] Alex Iosevich and Bochen Liu. Falconer distance problem, additive energy and Cartesian products.
Ann. Acad. Sci. Fenn. Math., 41(2):579–585, 2016. 2

[12] Antti Käenmäki, Tuomas Sahlsten, and Pablo Shmerkin. Dynamics of the scenery flow and geometry
of measures. Proc. Lond. Math. Soc. (3), 110(5):1248–1280, 2015. 9

[13] Nets Hawk Katz and Terence Tao. Some connections between Falconer’s distance set conjecture
and sets of Furstenburg type. New York J. Math., 7:149–187, 2001. 2, 3

[14] Pertti Mattila. Spherical averages of Fourier transforms of measures with finite energy; dimension
of intersections and distance sets. Mathematika, 34(2):207–228, 1987. 2

[15] Pertti Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.
14, 19

[16] Pertti Mattila and Tuomas Orponen. Hausdorff dimension, intersection of projections and excep-
tional plane sections. Preprint, available at http://arxiv.org/abs/1509.05724, 2015. 4, 19,
21

[17] Tuomas Orponen. On the distance sets of self-similar sets. Nonlinearity, 25(6):1919–1929, 2012. 4

[18] Tuomas Orponen. A sharp exceptional set estimate for visibility. Preprint, available at
http://arxiv.org/abs/1602.07629, 2016. 4

[19] Tuomas Orponen. On the distance sets of Ahlfors-David regular sets. Adv. Math., 307:1029–1045,
2017. 2, 4, 6, 7, 8

[20] Yuval Peres and Wilhelm Schlag. Smoothness of projections, Bernoulli convolutions, and the
dimension of exceptions. Duke Math. J., 102(2):193–251, 2000. 2

[21] Tuomas Sahlsten, Pablo Shmerkin, and Ville Suomala. Dimension, entropy and the local distribution
of measures. J. Lond. Math. Soc. (2), 87(1):247–268, 2013. 13

[22] Thomas Wolff. Decay of circular means of Fourier transforms of measures. Internat. Math. Res.
Notices, (10):547–567, 1999. 2

AUTHOR

Pablo Shmerkin
Torcuato Di Tella University and CONICET
Buenos Aires, Argentina
pshmerkin utdt edu
http://www.utdt.edu/profesores/pshmerkin

DISCRETE ANALYSIS, 2017:9, 22pp. 22

http://www.utdt.edu/profesores/pshmerkin
http://dx.doi.org/10.19086/da

	1 Introduction and main results
	2 Preliminaries
	2.1 Notation
	2.2 Notions of dimension
	2.3 Global sceneries, entropy and projections
	2.4 CP processes
	2.5 Global tangents

	3 Ahlfors regularity and weak regularity
	4 Proof of Theorem ??, and consequences
	4.1 Discrete conical density lemmas
	4.2 Pinned distance sets in discrete regular sets
	4.3 Proof of Corollaries ?? and ??

	5 Distances between two sets

