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Aco-simulation strategy formodeling the unsteadydynamics of flying insects and small birds aswell as biologically

inspired flapping-wing micro-air-vehicles is developed in this work. In particular, the dynamic system under study is

partitioned in two subsystems (the structural model and the aerodynamic model) that exchange information in a

strongway. The vehicle or insect system ismodeled as a collection of rigid bodies and lifting surfaces that can undergo

deformations such as spanwise twisting, in-plane bending, out-of-plane bending, and an arbitrary combination of

these deformationmechanisms. To account for the loads associatedwith the airflow, an aerodynamicmodel based on

an extended version of the unsteady vortex-lattice method is used. The motion equations are integrated by using a

fourth-order predictor-correctormethod along with a procedure to stabilize the solution of the resulting differential-

algebraic equations. The numerical results obtained for the unsteady lift anddynamics of a fruit fly in free hover flight

are found to be in close agreement with prior experimental results reported in the literature. Furthermore, the

inclusion of an adequate wing deformation pattern results in an increase of the lift force comparedwith that of a rigid

wing surface, pointing to the importance of wing flexibility on aerodynamic performance. From the findings reported

in this paper, it is believed that the numerical simulation framework presented here could serve as a computational

tool for further studies of flying insects and micro-air-vehicles.

Nomenclature

Ak
i = area of ith aerodynamic panel belonging

to kth body
Bqk = Jacobian tensor of constraints associated

with set of coordinates qk

{
k
b̂1,

k
b̂2,

k
b̂3} = right-handed orthonormal kth body-fixed

frame
c = wing chord length
êki = unit vector at control point of, and normal

to, ith aerodynamic panel belonging to
kth body

Gk = rotation parameterization matrix for kth
body

Hj
k�η� = eigenfunction

h� ~zn�1; tn�1� = invariant set for index 1 DAE system
I3 = 3 × 3 identity matrix
L = stabilization matrix
Mk = primary motion mass matrix for kth body
Nk = shape function matrix for kth body
nc = number of constraint equations

ncoord = number of nonindependent absolute
coordinates

nDOF = number of degrees of freedom
np = number of panels of aerodynamic grid
nf, Tf = flapping frequency and flapping period

{n̂1, n̂2, n̂3} = right-handed orthonormal inertial/New-
tonian frame

p�x; t�, p∞ = unknown pressure and pressure far away
from body

pk = array containing elastic generalized
coordinates

pj
k�t� = elastic generalized coordinate

QNBk = rotation tensor from kth body-fixed frame
to inertial frame

Qk = generalized load vector comprising
conservative and nonconservative loads

Qaero
k = aerodynamic generalized loads for kth

body
Qgrav

k = generalized loads due to gravitational
field for kth body

qk, _qk = set of absolute coordinates for kth body
and its time derivative

_Rk = velocity associated with origin of kth
body-fixed frame

_RP
k = absolute velocity vector for arbitrary

point belonging to kth body
rk = position vector of arbitrary pointP on kth

body in undeformed configuration
�rk, �uk = skew-symmetric tensors associated with

rk and uk
sP

0P
k = position vector of point P relative to

point P 0
Tk = kinetic energy of kth body
t = dimensional time
uk = elastic displacement vector of point P
uP 0
k = elastic displacement vector associated

with point P 0 resolved in given reference
basis

V∞ = free-stream velocity
V�x; t� = velocity field
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W�t� = total energy per unit mass
x = position vector of a fluid particle at

instant t
xnode, vnode = position and velocity of aerodynamic

panel corner
φ�x; t� = potential velocity
Γ�t� = circulation associated with finite segment

of vortex line
ρ, ρoil = constant density and density of oil used in

robofly experiment
~zn�1 = solution computed by Hamming’s

method
Bk = secondary motion mass matrix for kth

body
Mk = mass matrix that couples primary and

secondary motions
Δpk

i = pressure jump for ith aerodynamic panel
belonging to kth body

λk = vector of Lagrange’s multipliers for kth
body

ωk = angular velocity vector of kth body-fixed
frame relative to inertial frame

ρk = mass density per unit of volume
_θk = array of time derivative of rotation

parameters for kth body
φk � �φ1

k;φ
2
k;φ

3
k�T = small rotations due to deformations on

elastic axis
Φk = set of algebraic constraint equations

I. Introduction

I N RECENT years, drawing inspiration from flapping wings in
nature, many studies have focused on studies and design ofmicro-

air-vehicles (MAVs). Such flying systems, wherein flow separations
take place on highly flexible structuralmembers undergoing complex
motions, are difficult to analytically study. The governing equations
of motion form a nonlinear system, which is characterized by a fully
unsteady three-dimensional (3D) flow strongly coupled with the
MAV structure. A complete numerical model intended for flapping
wings would need the following: 1) precise information on wing
kinematics, 2) an aerodynamic model able to accurately predict the
loads actingon the lifting surfaces, 3) anonlinear hybriddynamicmodel
for the rigid–flexible MAV’s structure able to predict its structural
response under excitation of aerodynamic loads; 4) a control system
able to suppress undesirable motions and optimize its performance
under different flow conditions; 5) a technique for transferring
information between the aerodynamic and structural models; and 6) an
integration scheme to solve all the governing equations, which in the
most general case are differential algebraic in nature.
Early attempts to understand the aerodynamics of flapping wings

relied on experimental investigations,whichwere used formeasuring
the time histories of aerodynamic forces in tethered insects [1–4].
Recently, the development and availability of significant computing
capabilities supress has enabled investigations based on viscous flow
solvers, such as 3D Navier–Stokes models [5]; Reynolds-averaged
Navier–Stokes (RANS) codes [6,7]; arbitrary Lagrangian Eulerian
(ALE) formulations [8]; and direct numerical simulations (DNS)
solvers [9], among others. However, significant computational
difficulties and cost associated with the use of models based on
computational fluid dynamics (CFD) techniques have led to
alternative approaches; some of them have been extensively used in
aircraft studies, for example, the unsteady vortex-lattice method
(UVLM) [10]. Lately,UVLMhas been gaining ground in the study of
nonstationary problems, where free-wake methods become
necessary in problems involving highly flexible complex geometries
undergoing arbitrary motions such as flying vehicles inspired by
biology [10–16].
With respect to dynamics of flapping wings, different studies

have been performed through the years; at the beginning, most of
them were based on the standard aircraft six-degree-of-freedom
equations [17,18]. Considerable research has been conducted in this

field on several insect species and diverse MAV prototypes by
using the same technique. However, in all of them, mass of the
wings and the associated inertial effects are neglected [19–25].
Many improved dynamic models have been developed in order to
carry out numerical studies on the dynamic behavior of flying
insects and MAVs like flapping wings, such as follows: two-
dimensional (2D) approaches based on articulated rigid
mechanisms coupled with Navier–Stokes solvers [26] and UVLM
versions [27]; the work of Khan and Agrawal [28] in which
three-degree-of-freedomwings are considered; studies based on the
Newton–Euler equations [29,30]; dynamics based on the
Gibbs–Appel equations considering the inertial/mass effects of
the wings on the MAV’s fuselage [31,32]; and models found in
multibody approaches based on Boltzman–Hamel equations [33]
and Kane’s equations [34], among others. More recently, Orlowski
andGirard [35] presented an extensive literature review for dynamic
models of flapping wings. In addition, these authors carried out
numerical simulations by using a six-degree-of-freedommodel that
allowed them to conclude the importance of considering the inertial
coupling between the vehicle system’s fuselage and wings.
However, in most of the previously mentioned efforts, the focus

has been on dynamics, control, and stability, with the lift and drag
forces being computed by steady or quasi-steady aerodynamic
models. From this literature review, it is clear that there is a need for an
integral study involving nonlinear dynamics and unsteady
aerodynamics of flying insects and/or MAVs. To address this gap, a
numerical framework well suited for studying the dynamics of both
flying insects as well as flapping-wing MAVs is presented in this
paper. The entire system under study is partitioned in two subsystems
(the MAV/insect structure model and the aerodynamic model) that
can exchange information in a strong way. From this point of view,
the computational environment built can be seen as a sort of strong
co-simulation framework [36]. The aforementioned subsystems
consist of a dynamically nonlinear model based on an extended
version of [37], which allows us to impose different deformation
patterns on the insect’s wings (i.e., all deformations are prescribed by
means of known functions of time), such as spanwise twisting, out-
of-plane bending, in-plane bending, and an arbitrary combination of
these deformation fields. To take aerodynamic loads into account,
this hybrid dynamic model and an aerodynamic model based on a
modified version of the nonlinear UVLM [16] are coupled by the
authors. Such a model takes all possible aerodynamic interferences
into account and allows for obtaining the following information:
1) flow field around the structure, 2) spatial-temporal vorticity
distribution attached to the structure, 3) vorticity distribution in the
wakes emanating from the sharp edges of lifting surfaces, 4) positions
and shapes of wakes, and 5) unsteady aerodynamic loads acting on
the wings.
In addition, the authors also describe a numerical procedure to

solve all the governing equations, which originally form a differential
algebraic system of index 3. This set of equations is rewritten as a
system of index 1 through an index reduction technique and
integrated simultaneously in the time domain. Such an integration is
achieved by means of a fourth-order scheme based on the modified
method of Hamming [38,39] combined with a procedure to control/
eliminate the numerical drift that results as consequence of the
index reduction. To the best of the authors’ knowledge, a study of

nonlinear dynamics and unsteady aerodynamics of flying insects
and MAVs, based on a multibody system approach in combination

with the UVLM involving free-deforming wakes, time-dependent

geometries, and largely attached flows is unavailable in the current
literature; this computational dynamics is the primary focus of the

present work.
The rest of this paper is organized as follows: In Sec. II, a brief

revision of the UVLM is presented. In Sec. III, a detailed formulation
of the nonlinear dynamic model of the MAV is presented. This is
followed by a description of the co-simulation strategy, the numerical
integration scheme, and the poststabilization technique adopted to
suppress the numerical drift. In Sec. V, the nonlinear dynamic-
unsteady aerodynamic models are validated by comparing numerical
results with available analytical and experimental data. As an
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illustration of the co-simulation capabilities presented here, a study

on a free-flying insect (fruit fly) in hovering flight is conducted. The

limitations of the current framework are also discussed. Finally, to

close the paper, concluding remarks and thoughts of future works are

collected together in Sec. VI.

II. Model for Aerodynamics

An extended and modified version of the general method known

as UVLM is used in this work. This method can be applied to 3D

lifting and nonlifting surfaces. The surface of the bodymay undergo

arbitrary time-dependent deformations and can execute any type of

maneuver in space. The flow around the body, that is, the fuselage

and wings of the MAV, is assumed to be irrotational and

incompressible over the entire flow field, except adjacent to the

solid boundaries of the body and wakes. This approach allows one

to consider nonlinear and unsteady aerodynamic effects associated

with large angles of attack and static deformations. The UVLM

scheme also allows one to take all possible aerodynamic

interferences into account as well as estimate the spatial-temporal

vorticity distribution attached to the body’s surface, the vorticity

distribution in the wakes shed from the sharp edges of the wings, as

well as their locations and shapes.

In the proposed model, the authors consider a flow of an

incompressible fluid characterized by a very high Reynolds

number. Given that the Reynolds number characterizing insect

flights is relatively low, a question naturally arises. Can one use

UVLM reliably for predicting the aerodynamic loads on flapping

wings? Dickinson et al. [40] and Dickinson and Götz [41] showed

by means of experimental studies that viscous effects can be

neglected in the range of Reynolds numbers 75–4000 for hovering

MAVs/insects. Ramamurti and Sandberg [8] obtained similar

conclusions by analyzing the effect of viscosity on the unsteady

flow surrounding a 3D Drosophila’s wing undergoing flapping

motion. Based on these observations, recently, Roccia et al. [16]

have conducted a series of numerical studies on the aerodynamics of

flapping wings by using a modified version of the UVLM. Their

results show exceptionally good agreement in terms of trends and

magnitude with the experimental data reported by Dickinson et al.

[40]. These findings render the UVLM as an accurate and efficient

numerical model for studies of aerodynamics of flying insects

and MAVs.

A. Discretization of the Vortex Sheets

In the UVLM, the bound-vortex sheets are replaced by a lattice of

short, straight vortex segments with circulation Γ�t�. These segments

are used to divide the wing surface into a number of elements of area

(the so-called panels). The model is completed by joining free vortex

lines, representing free-vortex sheets, to the bound-vortex lattice

along the separation edges, such as the trailing edges and leading

edges of the lifting surfaces. The locations at which separation occurs

are considered as input data, and they are not determined as part of the

solution. However, the vortex lattices representing wakes (the

positions of the vortex segments and the circulations around them)

are determined as part of the solution.

B. Boundary Conditions

The governing equation of the problem is complemented with the

following boundary conditions:
1) Regularity at infinity: This condition requires that all

disturbances that characterize a moving body in a fluid, initially at
rest, decay away from the body and its wakes.
2)No-penetration condition: It is applied over the entire boundary

of the solid immersed in the fluid. This condition, which is also
known as impermeability, requires that the normal component of the
velocity of all fluid particles relative to the body surface must be zero
on the body surface. This condition is imposed on the control points
(CPs) located in the geometric center of each panel.

C. Aerodynamic Loads

The aerodynamics loads acting on the lifting surfaces are
computed as follows: 1) for each element, the pressure jump at the
control point is computed by integrating the unsteady Bernoulli
Eq. (1); 2) the force on each element is calculated as the product of the
pressure jump, the element area, and the unit vector normal to each
aerodynamic panel; 3) the resultant forces and moments are
computed as the (vector) summation of the forces and moments
produced by each element.
Next, consider

∂tφ�x; t� �
1

2
V�x; t� ⋅ V�x; t� � p�x; t�

ρ
� W�t� (1)

where ∂t denotes the partial time derivative at a fixed space location in
an inertial reference frame; V�x; t� is the spatial gradient of the
velocity potential φ�x; t�; p�x; t� is the unknown pressure; ρ is the
constant density of the fluid; W�t� is the total energy per unit mass,
which depends only on time and has a unique value at every point of
the whole fluid domain; and x is the position vector of a fluid particle
at the instant t. In its present form, the evaluation of ∂tφ is
troublesome, but this term can be stated so as to make its evaluation
relatively easy. Detailed explanations of the treatment of each term in
Eq. (1), as well as a full formulation of the UVLM, can be founded in
the work of Konstandinopoulos et al. [42], Preidikman [39],
Preidikman andMook [38], andRoccia et al. [16]. The lastmentioned
reference contains all the extensions needed to attack the problem of
flapping wings.
Once loads have been computed, each segment of the wakes is

“convected” by means of convection of its end nodes to their new
positions; this can be approximated as

xnode�t� Δt� ≈ xnode�t� � vnode�t�Δt (2)

where xnode and vnode are the position and velocity of an aerodynamic
panel corner, and Δt is the time step.

III. Model for Vehicle Dynamics

The computational model of the MAV adopted in this paper to
study the dynamics as well as aerodynamics of flapping wings is
based on the morphology of a fruit fly [43]. For simplicity, each part
of the central body (head, thorax, and abdomen) is modeled as a
surface of revolution [37]. The revolution surfaces that define the
body as well as the wing surfaces are discretized by using simple
quadrilateral elements with four nodes.
In this section, the governing equations for the vehicle system are

developed considering large rotations and displacements in space,
primary motions, and small/moderate rotations and displacements
with respect to a reference frame, secondary motions. Basically, the
primary motions are used to describe the position and orientation of
each body as a whole in space, and the secondary motions are used to
describe elastic movements if they exist.
The vehicle equations of motion are derived by means of

Lagrange’s equations for constrained systems. The MAV is modeled
as a collection of three rigid and deformable bodies (nb � 3). One of
them, completely rigid (the central body), and the remaining two
bodies, the wings, may undergo only prescribed deformation
patterns. The location of each one of the three bodies in space is
identified by using a set of six absolute Cartesian coordinates (three
coordinates define the position of a fixed point on the body, and the
others for the orientation of the body). This results in a total of 18
absolute nonindependent coordinates (ncoord � 6nb � 18), which
are linked through constraint equations. The wings undergo a
prescribed motion (kinematically driven) with respect to the central
body. This fact introduces 12 constraint equations (nc � 12), 6 to
specify the joint point between the central body and thewings and 6 to
specify the orientation of the wings with respect to the central body.
Thus, the number of degrees of freedom of the multibody system is
six (nDOF � ncoord − nc � 6). In what follows, bold italic letters and
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bold letters are used for tensor notation and matrix notation,
respectively.

A. Reference Frames and Absolute Coordinates

The authors use four reference systems (see Fig. 1): 1) aNewtonian
or inertial systemN � fn̂1; n̂2; n̂3g and 2) a reference system fixed to
each MAV’s body denoted by Bk � fkb̂1; kb̂2; kb̂3g. The reference
frame B1 is a body-fixed frame attached at the center of mass of the

central body, and the reference frames B2 and B3 are body-fixed
frames attached to the left and right wings with origin at the wing
joints.
The set of absolute coordinates for each body is given by

qk � �xk; yk; zk;ϕk; θk;ψk�T for k � 1; 2; 3 (3)

where xk, yk, and zk are rectangular Cartesian coordinates associated
to the unit vectors n̂1, n̂2, and n̂3, respectively, andϕk, θk, and ψk are
angular coordinates that orientate the kth body relative to the inertial
frame N.
To orientate each body with respect to the inertial frame, the

authors have used a rotation representation based on Euler angles

[44]: a 2–3–1 rotation sequence for the central body and a 1–3–2
rotation sequence for each wing.

B. Velocity for an Arbitrary Point Belonging to a Body

Let us consider a flexible body that moves and deforms in space.

The components of the absolute vector of translational velocity for an
arbitrary point belonging to the body can be expressed in a segregated
form. In this approach, the authors consider large rotations and
displacements due to primary motions, and small rotations and
displacements due to secondary motions. As the central body is

entirely modeled as a rigid body, the expression for the absolute
velocity vector for an arbitrary point is defined as ([44,45])

_RP
1 � _R1 �QNB1�ω1 × r1� (4)

where _R1 is the velocity associated to the origin of the body-fixed

frame B1, r1 is the position vector of an arbitrary point P on the
central body, ω1 is the angular velocity vector of B1 relative to the
inertial frameN, andQNB1 :B1 → N represents a rotation tensor from
the body-fixed frame B1 to the inertial frame N.
Regarding thewings, they are allowed to deform according to pre-

established deformation patterns; hence, the absolute velocity vector
for an arbitrary point belonging to the left (right) wing is defined as

_RP
k � _Rk �QNBk � _rk � _uk � ωk × �rk � uk��; for k � 2; 3 (5)

Here, _Rk is thevelocity associatedwith the origin of the body-fixed
frame Bk, rk is the position vector of an arbitrary point P on the kth
body at the undeformed configuration, _rk is identically zero because
the differentiation is performed with respect to theBk frame, uk is the
elastic displacement vector of the point P and _uk represents its first
time derivative,ωk is the angular velocity vector of theB

k relative to
the inertial frame N, and QNBk :Bk → N represents a rotation tensor

from the body-fixed frame Bk to the inertial frame N. In Eq. (5), the
values “2” and “3” for the subscripts “k” represent the left wing and

right wing, respectively. After algebraic manipulations, Eqs. (4) and
(5) can be written as

_RP
1 � _R1 −QNB1��r1ω1� (6)

_RP
k � _Rk �QNBk _uk −QNBk �� �rk � �uk�ωk�; for k � 2; 3 (7)

where �r1, �rk, and �uk are skew-symmetric tensors associated with r1,
rk, and uk respectively, in which their actions on vectors are
equivalent to the action of cross products.

C. Wing Deformation Mechanism

As mentioned in Sec. I, all deformation patterns on the wings are
prescribed as functions of time. This is achieved by means of a
“virtual” beam element defined along the unit vector

k
b̂2; this

provides the necessary means to bend and twist the wings in a
desirable manner. The beam element adopted is an Euler–Bernoulli
model, which is considered clamped at thewing root and free tomove
at the tip. Bending motion in two perpendicular planes (in plane and
out of plane) is achieved by using expansions in terms of
eigenfunctions, and the spanwise torsion is accounted by a linear
interpolation function. The mechanism used to deform the wing
consists of two steps: first, a deformation pattern is imposed on the
virtual beam element (also called elastic axis), and, subsequently, the
displacement field is transferred to the rest of thewing. In Figs. 2a and
2b, the authors show the location of the virtual beam element inside
thewing and the position vector of an arbitrary point belonging to the
wing at the undeformed configuration. Point P on the wing’s surface
and point P 0 on the elastic axis lie in the same plane, which is
perpendicular to vector

k
b̂2 in the undeformed configuration (see

Fig. 2a). The cross section of thewing that contains pointsP andP 0 is
assumed to be rigid and the position vector of pointP relative to point
P 0 is denoted by sP

0P
k (see Fig. 2b).

After some algebraic manipulations and by expressing all of the
results in the reference basis fixed to the kth body, the elastic
displacement vector of an arbitrary pointP on thewing can bewritten
as

uk � uP 0
k − �sP

0P
k φk; for k � 2; 3 (8)

where uP 0
k is the elastic displacement vector associated to point P 0

resolved in Bk; φk � �φ1
k;φ

2
k;φ

3
k�T are small rotations due to

deformations on the elastic axis; and �sP
0P

k is a skew-symmetric matrix
associated with the column vector sP

0P
k � �s1k; s2k; s3k�T.

Each component of the elastic displacement vector uP 0
k �

�u1k; u2k; u3k�T is expressed as the product of an eigenfunction,Hj
k�η�,

and a generalized temporal coordinate, pj
k�t�, where η is the spatial

coordinate along the elastic axis at the undeformed configuration.
This can be written as

ujk�η; t� � Hj
k�η�pj

k�t�; for j � 1; 2; 3 (9)

The eigenfunctionsHj
k�η� (for j � 1, 2, 3) are obtained by solving

the differential equation that governs the free-vibration problem of an
Euler–Bernoulli beam with clamped-free boundary conditions [46]
(see Fig. 2c). The component u2k�η; t�, which accounts for axial

1B

1
1b̂

1
2b̂

1
3b̂

Center of 
mass

2
2b̂

2
1b̂

2B

2
3b̂

3B

3
2b̂

3
1b̂

3
3b̂a) b) c)

Fig. 1 Model representation and definition of reference frames: a) central body, b) left wing, and c) right wing.
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displacements, is identically zero for all t. The generalized
coordinates pj

k�t� are expressed in terms of harmonic functions. The
elastic rotations φ1

k�η; t� and φ3
k�η; t� are obtained by evaluating the

partial derivative of the displacement’s components, u1k�η; t� and
u3k�η; t�, with respect to η, respectively. Moreover, the rotation
φ2
k�η; t� is interpolated by a linear function and this rotation

represents the twist angle around the elastic axis; that is,

φ1
k�η; t� � ∂ηu3k�η; t� � dη�H3

k�η��p3
k�t�

φ2
k�η; t� � Htwist

k �η�ptwist
k �t� � η

R
ptwist
k �t� and

φ3
k�η; t� � −∂ηu1k�η; t� � −dη�H1

k�η��p1
k�t� (10)

where ∂η denotes partial derivative with respect to η, dη denotes total
derivative with respect to η, ptwist

k �t� is the generalized elastic
coordinate that regulates the time variation of thewing torsion, andR
is the wing length.
This formulation allows rewriting the elastic displacement vector

of an arbitrary point P on the wing as

uk � uP 0
k − �sP

0P
k φk � Nkpk; for k � 2; 3 (11)

where

Nk �

2
64
H1

k � s2kdη�H1
k� s3kH

twist
k 0

−s1kdη�H1
k� 0 −s3kdη�H3

k�
0 −s1kHtwist

k s2kdη�H3
k� �H3

k

3
75 and

pk � �p1
k�t�; ptwist

k �t�; p3
k�t��T

(12)

Nk is a form of shape function matrix and pk is an array containing
the elastic generalized coordinates.

D. Equations of Motion

Once the absolute vector of translational velocity for any point on
the body is known, the equations of motion can be derived.
Additionally, it is important to consider that a flexible body can be
constrained [45,47,48], by either linking it with other bodies or by
choosing the parameters to describe primary motions. Only
holonomic constraints are considered. The constrained Lagrange’s
equations are given by

dt�∂ _qk
Tk� − ∂qk

Tk � BT
qk
λk � QT

k (13)

which are complemented by a set of algebraic-constraint equations

expressed as

Φk�qk−1;qk;qk�1; t� � 0 (14)

where qk is as defined previously, and dt, ∂qk
, and ∂ _qk

denote the first

temporal derivative, the partial derivative with respect to qk, and the

partial derivative with respect to _qk, respectively. λk is the vector of
Lagrange’s multipliers for the kth body,Bqk

is the Jacobian matrix of

constraints associated to the set of coordinates qk, and Qk is the

generalized load vector comprising conservative and nonconserva-

tive loads.
The kinetic energy of the kth body is given by

Tk �
1

2

Z
Dk

ρk� _RP
k ⋅ _RP

k � dDk for k � 1; 2; 3 (15)

where ρk is themass density per unit of volume, anddDk is a kth body
differential subdomain. For computing the kinetic energy, the authors

use Eq. (6) for the central body and Eq. (7) for the wings.

1. Equations for Wings

Following the methodology proposed by Shabana [45], the

angular velocity vector can be expressed as the product between a

matrix Gk dependent of the particular parameterization of rotations

chosen and a 3 × 1 array _θk � � _ϕk; _θk; _ψk�T whose components are

the time derivative of the rotation parameters defined in Sec. III.A.

Equation (7) can be used to describe the velocity of an arbitrary point

on the left (right) wing. It can be rewritten in matrix notation as

_RP
k � � I3j −QNBk��rk � �uk�Gk � _qk �QNBk _uk; for k � 2; 3

(16)

where I3 is the 3 × 3 identity matrix and _qk is the time derivative of

the vector of absolute coordinates qk.
It is to be noted that _uk is the time derivative of Eq. (11). On

substituting Eq. (16) into Eq. (15), and performing algebraic

manipulations, the kinetic energy for the kth body can be obtained as

η

n = 1

n = 2

n = 3

2O
2

2b̂

Arbitrary
point P

2
2b̂

Deformed configurationUndeformed configuration

Beam element
(elastic axis)

2O

'P

2O 2
2b̂

2
1b̂

2
3b̂

2
P'R

2
P'R 'P

P

P'Ps

b)

a)

c)

Π

Fig. 2 a) Undeformed and deformed configurations of wing, b) definition of position vector of point P on wing in undeformed configuration, and
c) eigenfunctions for clamped-free Euler–Bernoulli beam.
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Tk �
1

2
_qT
kMk _qk � _pT

kMk _qk �
1

2
_pT
kBk _pk; for k � 2; 3 (17)

where Mk is the mass matrix for primary motions, which is
differentiable, symmetric, and at least positive semidefinite; Mk is
themass matrix that couples primary and secondarymotions; andBk

is the mass matrix for secondary motions, which is constant,
symmetric, and positive definite. These quantities can be expressed
by means of submatrices as

(18)

where

mRR
k � mkI3

mRθ
k � −QNBk

�Z
Dk

ρk��rk � �uk� dDk

�
Gk

mθθ
k � GT

k

�Z
Dk

ρk��rk � �uk�T��rk � �uk� dDk

�
Gk

mPR
k �

�Z
Dk

ρkN
T
k dDk

�
QT

NBk

mPθ
k � −

�Z
Dk

ρkN
T
k ��rk � �uk� dDk

�
Gk and

mPP
k �

Z
Dk

ρkN
T
kNk dDk (19)

Finally, after making use of Eq. (17) in Lagrange’s equations, the
equations of motion for the kth body can be obtained as follows:

Mk �qk �MT
k �pk � BT

qk
λk � Qh

k �Qv
k �QT

k ; for k � 2; 3

Φk � 0 (20)

where

Qv
k � − _Mk _qk � ∂qk

� _qT
kMk _qk� (21)

is a quadratic velocity vector obtained by differentiating a portion of
the kinetic energy with respect to time and with respect to the set of
coordinates qk and accounts for gyroscopic effects from primary
motions and

Qh
k � − _Mk _pk � ∂qk

� _pT
kMk _qk� (22)

results from imposition of deformations on the wings.

2. Equations for Central Body

The equations of motion for the central body are obtained by
following the same procedure discussed in Sec. III.D.1. The only
difference lies in the velocity vector expression. By using Eq. (6), the
resulting kinetic energy expression for the central body is much
simpler than that found for the wings; that is,

T1 �
1

2
_qT
1M1 _q1 (23)

where M1 is the mass matrix for the central body, which is
differentiable, symmetric, and positive definite, and _q1 is the time
derivative of the set of coordinates q1. By introducing Eq. (23) into
Lagrange’s equations, the equations of motion for the central body
can be obtained as follows:

M1 �q1 � BT
q1
λ1 � Qv

1 �QT
1 Φ1 � 0 (24)

where λ1 is the set of Lagrange’s multipliers for the central body,Bq1

is the Jacobian matrix of constraints associated with the set of

coordinates q1,Q1 is the vector of generalized conservative loads for

the central body, and Qv
1 is a quadratic velocity vector, computed in

the same way as Qv
k [see Eq. (21)].

3. Equations of Motion for MAV

Finally, the equations of motion for the complete multibody

system are obtained by assembling the equations of motion for each

body (the wings and the central body); that is,

M �q�BT
qλ � F Φ � 0 (25)

where M ∈ Rncoord×ncoord is the global mass matrix; Bq ∈ Rnc×ncoord is

the global constraint Jacobian matrix, q ∈ Rncoord×1 is the global

vector of generalized coordinates, λ ∈ Rnc×1 is the global vector of

Lagrange’s multipliers, F ∈ Rncoord×1 is the global vector of forces, in

which all the contributions previously explained are collected, and

Φ ∈ Rnc×1 is the set of all constraints for the multibody system.

E. Constraint Equations

For each wing, there are two different constraint equations:

1) position constraint, for specifying the connection point between a

wing and the central body, and 2) orientation constraint, for

specifying the orientation of each wing with respect to the

central body.
To establish the connection between each wing and the central

body, let us consider a frameCk � fkĉ1; kĉ2; kĉ3g (for k � 2, 3) fixed
at the point between a wing and the central body and oriented with

respect to the reference frame B1 by means of specific kinematics.

Then, the position and orientation of the reference frame Ck and the

body-fixed frame attached to each wingBk must be coincident; both

the position and orientation are described by using different sets of

generalized coordinates (see Fig. 3). To state that the orientation of

both frames is coincident, the following three conditions must be

satisfied: 1) the first element of the reference system of Ck must

remain orthogonal to the second element of the reference systemBk;

2) the second element of the reference system Ck must remain

orthogonal to the third element of the reference systemBk; and 3) the

third element of reference system Ck must remain orthogonal to the

first element of reference system Bk. These conditions can be

expressed as

ϕ4 � �kb̂T
1Q

T
NBk��QNCk

kĉ2� � 0

ϕ5 � �kb̂T
2Q

T
NBk��QNCk

kĉ3� � 0; and

ϕ6 � �kb̂T
3Q

T
NBk��QNCk

kc1� � 0 (26)

where QNCk is the matrix representation of the rotation tensor

QNCk :Ck → N, which is obtained by means of the composition

QNB1 ∘ QB1Ck , andQB1Ck is a rotation tensor that exclusively depends

2B

N

o

3n̂
1n̂

2n̂

2
1b̂

2
3b̂

2
2b̂

2R

1R

2
joinr

2
1ĉ

2
2ĉ

2
3ĉ

1
2b̂

1
1b̂

1
3b̂

1B

Joint point

Left wing

Central body

Fig. 3 Central body–left wing attachment.
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on the adopted kinematics (for instance, the robofly kinematics or
flapping animal kinematics) to describe themotion of eachwingwith
respect to the central body.
Furthermore, to enforce that the position of the origins of both

frames, Ck and Bk, are the same, another three conditions must be
satisfied. They establish that the difference between the components
of the origin position vectors of both frames must be null and can be
expressed as

ϕ1 � n̂T
1 �Rk −R1 −QNB1rjoink � � 0

ϕ2 � n̂T
2 �Rk −R1 −QNB1rjoink � � 0; and

ϕ3 � n̂T
3 �Rk −R1 −QNB1rjoink � � 0 (27)

where rjoink is the position vector of the joint for each wing relative to
the origin of the reference frame B1 attached to the central body
(k � 2 for the left wing and k � 3 for the right wing). Finally, by
accounting the set of Eqs. (26) and (27), the authorswrite thevector of
constraint equations for each wing as

Φk�q; t� � �ϕ1;ϕ2;ϕ3;ϕ4;ϕ5;ϕ6�Tk (28)

F. Generalized Loads

The generalized loads associated with the set of absolute
coordinates are determined by using the principle of virtual work
[45,48]. These loadsmay be of very different nature. In thiswork, two
kinds of forces are considered: 1) forces that result from
aerodynamics (nonconservative) and 2) forces due to the action of
the terrestrial gravitational field (conservative). The virtual work of
an external force, f , applied to the system can be expressed as

δW � f ⋅ δr (29)

Where δr is an admissible virtual displacement contained in the
tangent space T rM to the configuration spacemanifoldM [49]. The
virtual displacement of an arbitrary point belonging to the central
body and each wing can be expressed as

δRP
1 � δR1 � δ�QNB1r1�; and (30)

δRP
k � δRk � δ�QNBk�rk � uk��; for k � 2; 3 (31)

As was stated previously, the wings can be considered rigid or
undergo deformations following a determined pattern; then, the terms
r1, rk, and uk are independent of qk for k � 1, 2, and 3, and therefore
their variations are null.
By using Eq. (31) along with Eq. (29) and carrying out some

manipulations, the following general expression for the aerodynamic
generalized loads associated with each wing can be obtained:

Qaero
k �

Xnp
i�1

�kfaero
i �T�U� Vi�; for k � 2; 3 (32)

Here, kfaero
i � Δpk

i A
k
i ê

k
i [where Δpk

i is the pressure jump
computed with Eq. (1); êki is a unit vector at the control point of, and
normal to, the ith aerodynamic element belonging to the kth body;
and Ak

i is the area of the ith element belonging to the kth body];
U ∈ R3×6 is a matrix whose components are Urs � δrs, where δrs is
the Kronecker delta, np is the number of panels of the aerodynamic
grid in eachwing, andVi ∈ R3×6 is amatrix obtained fromevaluating
the partial derivative of QNBk�rk � uk� with respect to the vector of
generalized coordinates qk.
By using Eq. (30), the generalized loads due to the terrestrial

gravitational field are obtained with a similar procedure. Therefore,
the mathematical expression for these terms is given by

Qgrav
1 � fT

1I3 Qgrav
k � fT

k �U� Vk�; for k � 2; 3 (33)

where fk � mkgn̂3, mk is the mass of the kth body, and g is the
gravity acceleration constant. Finally, the load vector for the central
body and each wing is expressed as

Q1 � Qgrav
1 ; and Qk � Qgrav

k �Qaero
k ; for k � 2; 3 (34)

It should be noted that the aerodynamic generalized loads are only
due to the lifting surfaces (i.e., thewings). Although there is evidence
that the insect’s body contributes to the lift force, such phenomenon is
not taken into account in this paper.

IV. Numerical Integration of the Index 1 DAEs

The set of equations of motion for the entire multibody system
represents an index 3 systemofDAEs. The indexof aDAE is one plus
the number of differentiations of the constraints that are needed in
order to be able to eliminate the Lagrange multipliers λ. These
dynamic equations are, in general, nonlinear. A closed-form solution
for these equations is often difficult or even impossible to obtain. To
solve them by means of standard solvers for ordinary differential
equations (ODEs), an index reduction is required for the set of DAEs
[48]. The methodology adopted in this work includes differentiation
of the constraint equations twicewith respect to time. This new set of
equations is often called constraint acceleration level and is given by,

�Φ�q; _q; t� � Bq �q� 2∂q�∂tΦ� _q� ∂ttΦ� ∂q�Bq _q� _q � 0 (35)

where ∂tt denotes the second partial time derivative. The equations of
motion for the multibody system (25) can be re-written together with
the acceleration level constraint equations, as an index 1 system of
DAEs, meaning

(36)

where κ � −2∂q�∂tΦ� _q − ∂ttΦ − ∂q�Bq _q� _q.
The numerical integration of Eq. (36) is susceptible to instabilities

as a consequence of truncation procedures and round-off errors. The
most easily discernible instability is that the position and velocity
constraints are no longer exactly satisfied; that is, a constraint drift
occurs. Moreover, the drift magnitude and the error in generalized
positions and velocities grow with time, in the worst case,
quadratically. This is not because of the employed numerical method,
but because the system is itself mildly unstable [50–53]. In the
literature, several stabilization methods to correct this numerical drift
can be found, amongwhich themost widely used due to its simplicity
is Baumgarte’s technique [50,54]. However, this technique may not
be sufficient in certain situations, and the choice of the parameters has
proved to be difficult in practice. Another technique currently used to
stabilize Eq. (36) is based on the projection of the solution onto the
constraint manifold, or at least part of it. There are two basic ways to
perform this projection: one of them consists of redefining the ODE
by adding new Lagrange’s multipliers, based on projected invariants,
and the other approach consists of discretizing numerically the ODE,
which at the end of each discretization step, the approximate solution,
is projected onto the selected constraints manifold. This procedure is
called coordinate projection [53]. In this work, the authors have
adopted the coordinate projection method to control/eliminate the
numerical drift that arises during the numerical integration of the
index 1 DAEs.

A. Integration Scheme

The approach followed in this work treats the structural model
(called Simulator 1) and the airflow model (called Simulator 2) as
different subsystems of a single dynamical system. These two
simulator engines exchange information bi-directionally in an
iterative sequence in order to continuously improve the estimation of
the structure’s response and the aerodynamic loads, respectively. On
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the one hand, the numerical scheme used by Simulator 2 is well
known and can be found in texts such as [39,42]. On the other hand,
the numerical procedure adopted for Simulator 1 to solve the
equations of motion of theMAVis based onHamming’s fourth-order
predictor-corrector method [39,55]. This schemewas chosen for two
main reasons: 1) Simulator 2 behaves better when the loads are
evaluated at integral time steps, and 2) aerodynamic loads contain
contributions that are proportional to the accelerations (the so-called
added-mass effects). These contributions come from the term ∂tφ,
where φ�x; t� is the velocity potential in Bernoulli’s equation and it is
proportional to the velocity. For both reasons, Runge–Kutta-type
methods are not suitable for Simulator 1.
The set of second-order differential equations presented in Eq. (36)

must be re-written as a first-order system to integrate equations in the
time domain as follows:
1) At t � 0, the initial conditions are known.
2) At t � Δt, the solution is predicted by the explicit Euler

method, and then corrected iteratively through the modified Euler
method.
3) At t � 2Δt, the solution is predicted by the two-step Adams–

Bashforth method, and then corrected iteratively with the two-step
Adams–Moulton method.
4) At t � 3Δt, the solution is predicted by the three-step Adams–

Bashforth method, and then corrected iteratively with the three-step
Adams–Moulton method.
5) At t � 4Δt, 5Δt, 6Δt; : : : , the solution is predicted and

corrected by the fourth-order modified method of Hamming.
It is important to remark that Lagrange’smultipliers are obtained at

every time step as a part of the solution.

B. Co-Simulation Strategy

Recently, modern engineering applications are becoming
difficult to solve because the modeling process is increasingly
complex. The common practice to solve such large systems is to
perform a decomposition and use specific solvers for each partition
(while continuously updating in each the information of the other)
and iterating until numerical convergence is reached. In the context
of this paper, simulation refers to a numerical solution of a
continuous system, whereas co-simulation describes the concept of
simultaneous executions of multiple interacting subsystem
simulators [36]. During a time step Δt, the wakes are consistently
convected to their new positions with the requirement that vorticity
moves with the fluid particles, while, simultaneously, the structure
of the MAV moves to their new position as a result of the acting
forces and constraint equations. This concept is implemented by
performing the following sequence of steps to calculate the solution
at time t� Δt as follows:
1) Simulator 2 is used to convect the wakes to their new positions.

A fluid particle in the wake moves from its current position x�t� to its
new position x�t� Δt� according to Eq. (2). During the rest of the
procedure for this time step, the wake is frozen.
2) Simulator 1 uses the current loads computed by Simulator 2 to

predict the response of the MAV structure.
3) The current state of theMAVis used as input of Simulator 2 and

the loads are recalculated, but as stated above, the wake remains
frozen. Then, these loads are used as input of Simulator 1 and the state
of the MAV is updated. This step is repeated until convergence.
Usually, three to seven iterations are required to reduce the error to be
less than 10−10.
4) Then, the final position and velocity of the MAVare evaluated

by Simulator 1, and these values are used by Simulator 2 to
recalculate the flow field and obtain the final estimate for the
aerodynamic loads.
The procedure described above needs information from four

previous time steps. At the beginning of the procedure, this
information does not exist, and so the authors have used a special
starting scheme: at t � 0, the initial conditions are used by Simulator
2 to calculate the aerodynamic loads ignoring the contribution of ∂tφ.
Mostly, it is not important to capture this contribution accurately at
this step because the response of the structure is being determined for

an arbitrary initial disturbance. However, further studies on this issue
are needed to definitively state that ∂tφ can be neglected at t � 0.
Although Simulator 1 and Simulator 2 are computational

implementations of physical fields independently modeled as the
aerodynamics and the MAV structure, the coupling procedure is
indeed strong because information is bidirectionally exchanged, and
the chosen step, which advances the solution in time, is unique for
both simulation environments. In Fig. 4, a detailed flowchart for the
proposed aerodynamics-structural dynamics co-simulation frame-
work is presented.

C. Stabilization Scheme

A technique based on the coordinate projection is used in this
work in order to control/eliminate the numerical drift that arises
from the integration of Eq. (36). This approach consists in
discretizing numerically the index 1 DAEs, computing the
solution at tn�1 by means of Hamming’s scheme, and then, at the
end of each discretization step, projecting the approximate
solution onto the constraints manifold. It is possible to choose
three different ways to project the approximate solution: 1) onto
the position constraints manifold, 2) onto the velocity constraints
manifold, or 3) onto both, which may be more expensive. Such a
projection is performed as

zn�1 � ~zn�1 − γL� ~zn�1; tn�1�h� ~zn�1; tn�1� (37)

where zn�1 � �qn�1; _qn�1�, ~zn�1 is the solution computed from
the Hamming’s method at t � tn�1, and h� ~zn�1; tn�1� form an
invariant set of the index 1 DAEs, which depend on the selected
constraints manifold to project the solution [51–53] and is given
by the following expression

h�z; t� �
�

Φ�q; t�
Bq _q� ∂tΦ�q; t�

�
� 0 (38)

The stabilization scheme (37) shows the desired stability
behavior if CL is positive definite, with C � ∂zh andL being the
stabilization matrix. For most mechanical systems in engineering,
the projection scheme (37) results asymptotically stable for
0 < γ < 2, and for the choice γ � 1, which certainly depends on the
discretization step size Δt is close to be optimal. Computation of
the stabilization matrix L is generally a complex process, and to
ensure poststabilization effectiveness, one must design L so that
kI −CLk < 1 [56]. Three possible choices for L widely used in
multibody dynamics are as follows:

L�BT
q�BqB

T
q�−1

�
Inc 0

−h∂q�Bq _q��∂q�∂tΦ�iBT
q�BqB

T
q�−1 Inc

�

(39)

L � BT
q�BqM

−1BT
q�−1

�
Inc 0

0 Inc

�
(40)

L � BT
q�BqB

T
q�−1

�
Inc 0

0 Inc

�
(41)

where Inc is the nc × nc identity matrix, and 0 is the nc × nc null
matrix. More details about the selection criteria for matrix L can
be found in [52,53]. The definitions presented above for matrixL
help generate different poststabilization schemes, successfully
implemented in this work. These schemes are listed next:
1) S-full: using the stabilization scheme (38) with projection on

both velocity and position levels using the L matrix defined
in Eq. (39).
2) S-both: using the stabilization scheme (38) with projection on

both velocity and position levels using the L matrix defined
in Eq. (41).
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3) S-both-m: using the stabilization scheme (38)with projection on
both velocity and position levels using the L matrix defined
in Eq. (40).
4) S-pos: using the stabilization scheme (38) with projection only

on position level constraint using the L matrix defined in Eq. (41).
5) S-vel: using the stabilization scheme (38) with projection only

on velocity level constraint using the L matrix defined in Eq. (41).
It should be mentioned that the S-full scheme is not commonly

used because it is expensive. Instead, the samedegree of precision can
be obtained by applying the S-both scheme twice, denoted
commonly in the literature as S-both2. An algorithm for
implementing S-both2 can be found in [56].
Finally, another issue to mitigate constraint violations is to start an

integration process with a set of initial conditions on the coordinates
and velocities that satisfy their corresponding constraints. To find an
adequate set of initial conditions, the authors used the procedure
described by Nikravesh [57], which is based on a partition of
coordinates and velocities into dependent and independent sets. It is
important to mention that this method does not consider any
correction in the estimated values of the independent variables.
Therefore, the kinematics constraints at coordinate and velocity
levels are restated as

Φ�qind;qdep; t� � 0 (42)

and

�
Bqdep

Bqind

0 IDOF

��
_qdep

_qind

�
�

�
−∂tΦ
_qind

�
(43)

where ind stands for independent coordinates; dep stands for
dependent coordinates; Bqdep

is selected to be a nonsingular matrix,
with dimension nc × nc;Bqind

is a matrix, with dimension nc × nDOF;
and IDOF represents an identitymatrix, with dimension nDOF × nDOF.
The equation set (42) is solved iteratively by theNewton–Raphson

method, and set (43) is solved as a set of linear algebraic equations.

V. Numerical Results

In this section, results obtained from the implementation of the
proposed methodology written in Fortran 90 are presented. This
implementation is highly structured in a modular organization; that
is, each component can be individually removed and replaced, aswell
as the capability of adding newmodelswithoutmodifying the general
structure of the program. Automatic optimization options, which are
specific for Intel processors, have been used to improve performance.
For all cases, the code was run on a desktop computer with an i7
processor, RAM DDR3 of 8 GB, and a hard disk of 2 TB.
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Fig. 4 Co-simulation framework: a) coupling scheme between Simulator 1 and Simulator 2, and b) flowcharts for Simulator 1 and Simulator 2.
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The results obtained by using the current numerical tool are
compared against other published numerical results and experimental
data to assess the validity and limitations of the present code. The
aerodynamic model used in this work was previously validated by
Roccia et al. [16]. Some of these validations are incorporated here for
convenience. Then, the stability of the numerical integration scheme
is validated and so is the dynamic model by means of comparing
numerical results with analytical formulas. Finally, the aerodynamics
and dynamics of a fruit fly are analyzed in free hover flight. As part of
this study, specific deformation patterns on the wings are applied in
order to evaluate their influence on the aerodynamic performance.
Finally, to validate the quality of the numerical results, the authors
have compared the aerodynamic loads obtained from the numerical
simulations with experimental force data published by Fry et al. [58].

A. Validation of Model for Aerodynamics

1. Flapping/Twisting Wing

Neef and Hummel [59] considered a rectangular wing of AR � 8,
a NACA 0012 profile, a flapping amplitude of 15°, and a reduced
frequency k � 0.1 (k is defined asnfc∕2V∞, wherenf is the flapping
frequency, c is the wing chord, and V∞ is the free-stream velocity
magnitude). The flapping motion is sinusoidal, and an out-of-phase
wing rotation, twist, around the leading edge is imposed linearly
along the span, with 4° of twist at the tip. The flapping period Tf was
discretized into 40 equal time steps. In Fig. 5a, the kinematic pattern
is provided. Two sets of comparative results of the lift coefficient for a
flapping/twisting wing with its root chord inclined at two constant
angles of attack (αroot) of 0° and 4° are presented in Fig. 5b. The
results of Neef andHummel [59] were computed by solving the Euler
equations, and the results of Stanford and Beran [12] by using their
own version of the UVLM. It is observed that the agreement among
the three sets of results is excellent. The minor differences between
the lift force computed by Stanford and Beran and the one calculated
in this work lie in the specification of some user-defined parameters,
such as the cutoff radius and differences in the two versions of
Bernoulli’s equation. In the current numerical experiment, the wing–
tip vortex system has been omitted.

2. Hovering Wing

In this sub-subsection, the lift forces obtained from numerical
simulations are presented and compared with the experimental data
reported by Dickinson et al. [40]. The experiment carried out by
Dickinson and co-workers consists of a dynamically scaled model of
a Drosophila melanogaster, called the Robofly. The motions of the
two wings are driven by an assembly of six computer-controlled
stepper motors, and each wing is capable of rotational motions about
three axes. The wings are immersed in a one-by-two-meter cross-
section tank filled with mineral oil with density ρ � 880 kg∕m3 and
kinematic viscosity ν � 115cSt. The wings perform an insect-like
flappingmotion at a frequency of 0.145Hz and thewing tips trace out
a flat figure of eight. The kinematic pattern employed in this earlier

work is characterized by a stroke amplitude of 160° and an angle of
attack at midstroke equal to 40°, for both the upstroke and
downstroke. A comparison of the lift force obtained using the
aerodynamic simulation framework and the experimental results
published by Dickinson et al. [40] is presented in Fig. 6, for three
different phase relations between wing rotation and the reversal
stroke: 1) wing rotation precedes the reversal stroke by 8% of the
wing–beat cycle; 2) wing rotation occurs symmetrically with respect
to the reversal stroke; 3) wing rotation is delayed with respect to the
stroke reversal by 8% of the stroke cycle.
The numerical results obtained applying the proposed approach

are encouraging, because they show better agreement than those
reported in previously published comparisons; for instance, the CFD
study by Sun and Tang [7], which shows relatively poor agreement
with the experimental data from Dickinson et al. [40], and the 2D
aerodynamic model developed by Ansari et al. [60,61], which shows
similar trends for lift and thrust forces, but the magnitude of positive
and negative spikes for lift and thrust, overestimates the experimental
measures reported by Birch and Dickinson [62]. The current results
are significant because they justify the use of the nonlinear UVLM to
characterize 3D aerodynamic behavior of insects executing different
maneuvers. For a detailed validation of this aerodynamic simulation
framework by using a modified version of the UVLM applied to
flapping wings, the reader can consult the work of Roccia et al. [16].

B. Validation of Model for Dynamics

To validate the numerical integration scheme and the current
model for vehicle dynamics, a simplified version of the problem is
considered in which the aerodynamic loads on the insect’s wing are
suppressed leaving it in a free fall. Data reported by Bos et al. [63]
about the kinematics of a fruit fly (D. melanogaster) in hover flight
are used to describe the pattern of wing motion over a flapping cycle.
The setup for the numerical experiment shown in this subsection has
the following parameters: 1) a flapping frequency nf � 200 Hz and
2) an integration step size � Δt � 0.01 units.
In Table 1, the authors show the magnitude of the constraint

violations (numerical drifts) based on runs done by using the four-
order Hamming method with a constant step size. Numerical
simulations for three flapping cycleswere carried out by implementing
the following coordinate-projection schemes: S-full, S-both,
S-both2, S-pos, S-vel, and S-both-m, respectively. It can be observed
that the stabilization at the position level, when S-pos, S-both, and
S-both2 are used, yields good results, whereas S-pos and S-both

stabilizations do not yield good results for the velocity level. Of all
these variants, the stabilization S-both2 is preferred because it
produces the best results on both position and velocity levels.
In addition, other stabilization procedures, such as Baumgarte

method, were tested, but all these techniques showed a significant
numerical drift in the orientation constraints at the position level. The
poor capability of Baumgarte method to adequately control the
numerical drift associatedwith the orientation constraints is possibly due
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Fig. 5 a) Flapping and twisting motions used by Neef and Hummel [59] and b) comparison of lift coefficient obtained from current study with previous
numerical results.
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to anumberof factors, amongwhich the followingarehighlighted:1) the

step size adopted, which finally depends on the aerodynamic

discretization, 2) the heterogeneity of the aeronautical system (rate

mcentral body∕mwing ≈ 200), and 3) the complexity of the orientation

constraint equations, which explicitly depend on time.

To finally validate the dynamic model presented in Sec. III, the

authors compare the vertical coordinate of the center of mass of the

MAVagainst the formula 1∕2gt2. As before, the aerodynamic loads

were suppressed and two cases of study are considered: 1) the wings

remain fixed to the central body, and 2) the wings have a prescribed
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Fig. 6 Comparison of numerical results and experimental measurements for the Robofly apparatus (first stroke cycle) [16].

Table 1 Numerical drift for different coordinate projection schemes

Drift position Drift velocity

Stabilization Connection constraint Orientation constraint Connection constraint Orientation constraint

S-full 6.0 × 10−7 1.5 × 10−5 4.0 × 10−7 3.0 × 10−4

S-both 6.0 × 10−10 1.5 × 10−8 2.0 × 10−7 5.0 × 10−4

S-both2 2.0 × 10−16 9.0 × 10−9 1.0 × 10−11 9.0 × 10−8

S-pos 6.0 × 10−10 1.0 × 10−8 7.0 × 10−8 8.0 × 10−3

S-vel 1.5 × 10−9 1.0 × 10−4 4.0 × 10−17 4.0 × 10−15

S-both-m 6.0 × 10−8 1.0 × 10−3 5.0 × 10−7 4.0 × 10−2
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motion with respect to the central body. Numerical simulations were
carried out for three flapping cycle (300 time steps with Δt � 0.01).
It should be noted that the variable Δt is dimensionless and each
flapping cycle is discretized in 100 steps.
From Fig. 7, it is clear that the vertical coordinate predicted by the

current model for dynamics of the MAV in free fall without
prescribed wing motion coincides exactly with the results obtained
by the simple formula 1∕2gt2. Moreover, whether a prescribed
motion is added, small differences from the previous curves are
observed. This is because the initial velocity associated with the
wings is the initial velocity of the whole mechanical system (in this
case downward).

C. Computational Dynamics of MAV-Like Flapping Wings

In this sub-subsection, numerical results are presented for the
aerodynamic anddynamic behavior of a flapping-wingMAV(fruit fly)
inhovering flight.Data reported byFryet al. [58] on thekinematics of a
fruit fly in hover are used to describe the pattern of wing motion over a
flapping cycle with respect to the central body, as presented in Fig. 8.
Because of the complex motions the wings undergo during a stroke
cycle due to the real kinematics (a slightly deformed eight pattern), the
wake shed from the leading edge during the downstroke is cut by the
wing when it moves in the opposite direction (upstroke). The wake
rupture model is not yet available, and therefore, for consistency, the
leading-edge separation model was deactivated.

According to observations performed by Ellington [64] and Ennos
[65] on the wing kinematics of hoverflies, involving quantitative
measurements of wing–tip paths and qualitative descriptions of wing
deformation, twist is increased from zero to some constant value at
the beginning of either downstroke or upstroke and kept constant
during the midportion of the half stroke. Near the end of the half
stroke, twist decreases until it becomes zero at the end of the half
stroke. They also detected that the geometric angle of attack varied
approximately linearly along the wing span (termed linear twist).
Walker et al. [66] showed that twistwas approximately constant in the
mid–half stroke, similar to that described by Ellington and Ennos.
However, around the stroke reversal, the twist wasmuch larger than at
the mid–half stroke. On the basis of these observations, in the current
study, the authors have assumed that the twist deformation varies
linearly along thewing span. The temporal evolution of the spanwise
twist through the stroke cycle can be approximatelymatched by using
harmonic functions. The effect described in [66] on the reversal
stroke might be partially modeled by changing the phase angle
between the twist deformation and the wing motion.
Because of the lack of data on how flying insects bend their wings

during the flapping cycle, the authors propose, as a first approach, to
use eigenfunctions to prescribe the bending along the wing span
(normal and tangential to the wing chord) and harmonic functions to
account for the time variation during the stroke cycle.
Specifically, two cases are presented. In the first one, a rigid model

of the wing is considered, and in the second one, a flexible wing is
considered and a specific deformation pattern is imposed. Such a
pattern is a combination of torsion and bending in the normal and
tangential direction of the wing chord. The generalized coordinates
pj
k�t� (recall k � 2 for left wing, and k � 3 for right wing), which

describe the temporal bending and torsionvariations, are specified by
the following harmonic functions:

pj
k�t� � ajk sin�ωj

kt� βjk� for j � 1; : : : ; 3 (44)

where ωj
k is the circular frequency, β

j
k is the phase angle between the

temporal coordinate pj
k�t� and the stroke position angle previously

defined, and ajk is the deformation amplitude associated with the
wingtip.
The values specified in Table 2 for the three different deformation

patterns are based on a detailed study carried out by the authors on the
influence of spanwise twisting and bending on the lift force generation
in flapping-wing MAVs [67]. To show the important role of wing
flexibility in the production of lift, the parameters that regulate the
deformation patterns were tuned in order to increase the lift force
throughout the stroke cyclewith respect to the rigidwingmodel. In this
table, the acronym OPB means out-of-plane bending and IPB means
in-plane bending. To simplify the shape functionmatrixNk inEq. (12),
the authors have assumed that the wing surface (at the reference
configuration) lies on the plane spanned by the unitary vectors

kb̂1 and
kb̂2, and by recalling that the cross section of thewing is assumed to be
rigid and orthogonal to

k
b̂2, Eq. (12) for Nk is reduced to

Nk �

2
64

H1
k 0 0

−s1kdη�H1
k� 0 0

0 −s1kHtwist
k H3

k

3
75 (45)

The setup of the numerical experiments shown in this section is
described by the following parameters: flapping frequency
nf � 210 Hz, wing length R � 2.5 mm, wing area
S � 2.21 mm2, air density ρair � 1.2 kg∕m3, MAV mass of
0.84 mg, and a fully spatial discretization of the MAV of 1405
aerodynamic panels. Two hundred panels are used to discretize each
of the wings and 1005 panels are used to discretize the central body
(the head, thorax, and abdomen of the insect). Only one stroke cycle
is simulated (first), which is discretized in 100 time steps. The set of
initial conditions for the two cases of study is body angle � 75° and
stroke plane angle � 15°. These values produce a horizontal stroke
plane, which results in a hover flight configuration. Both the linear
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velocity of the central body mass center and the angular velocity
vector of such body are zero at t � t0.
In Fig. 9, the authors show the lift and horizontal forces obtained

numerically for both the rigid wing model and the flexible wing
model, along with experimental measurements carried out by Fry
et al. [58] for a fruit fly in hovering. The most important requirement
of hovering flight is undoubtedly thevalue of thevertical force, which
must efficiently compensate for the insect weight. In Fig. 9a, the peak
force at the middle of each half stroke is shown, mainly during the
upstroke. Specifically, the peak force produced by the flexible wing
model is approximately 30%higher than that of the rigidwingmodel.
This fact is also reflected in Fig. 10b, in which the degree of freedom
associated with the vertical displacement of the mass center of the
central body is plotted.When a rigidwingmodel is used, the lift force
produced can hardly support the insect weight, showing a slight
downward movement at the end of the stroke cycle. On the other
hand, when a suitable deformation pattern is applied, not only is the
lift generated sufficient to balance the insect weight, but also it rises
almost continuously.
To validate the numerical simulations carried out in this section,

the aerodynamic forces obtained numerically are compared with
those obtained experimentally. As it can be observed in Fig. 9a, both
rigid and flexible wings show a form and trend similar to those
reported by Fry et al. [58]. Nevertheless, the lift levels predicted by
the numerical models are lower than those obtained experimentally
(approximately 14% lower for a flexible wing).
Possibly this fact is due to two factors: 1) LEVphenomenon is not

taken into account and 2) the wing deformation is not exactly that
exhibited by insects, but it is prescribed by means of harmonic
functions. Regarding the horizontal force, which represents the
induced drag, it presents differencesmuchmoremarked than the lift
force, comparedwith the results published by Fry et al. (see Fig. 9b).
However, it should be noted that the aerodynamic model used is
inviscid and therefore viscous effects are not captured. Furthermore,
because the UVLM is based on thin airfoil theory, it does not
account for the leading-edge suction [68], and only the normal
component to the noncirculatory velocity is retained, that is, the
contribution of pressure to the local lift. The contribution of the
forces on the lattice elements to the induced drag/thrust is aligned

with the instantaneous noncirculatory velocity, and it can be
computed, for example, through the approximation proposed by
Katz and Plotkin [69], by the analogy adopted from Sane [70], or by
the method developed by Ehlers and Manro [71], in which the
leading-edge suction is calculated in the same computation that is
used to evaluate the pressure distribution due to the leading-edge
vortex.
To accurately compute the thrust generated by the flappingmotion

of a planar wing, the contribution of the leading-edge suction force
must be included in calculations, causing the resultant aerodynamic
force vector to tilt toward the leading edge. Because this feature is not
taken into account, the total thrust level is certainly underestimated.
However, the shape and tendency of it is well captured, as seen from
Fig. 9b. This figure is also illustrative of how the horizontal force is
always opposite to the wing motion, leading to a longitudinal
oscillation of the insect’s body. This dynamic behavior can be noted
from Fig. 10a. Unlike forward thrust and lift, sideways thrust
(sideslip) cancels instantly due to the bilateral symmetry of the wing
motion (see Fig. 10d.) Similarly, as each wing contributes to yaw and
roll torque with opposite orientations, these moments sum to zero at
each point in the stroke cycle, provided that the motion of the two
wings is bilaterally symmetric; again, this can be discerned from
Fig. 10d. On the contrary, the sign and magnitude of the pitch torque
is the same for both wings, resulting in a strongly fluctuating time
characteristic during the whole stroke cycle.
As can be noted from Fig. 10c, this fact directly affects the pitch

angle. In thework of Fry et al. [58], it can be observed that the average
pitch torque over a complete cycle is zero, and therefore the insect’s
body undergoes an oscillation in the pitch angle. In real insects, this
phenomenon is controlled by the wing kinematics, the flapping
frequency, and the precisemotion of the head and abdomen relative to
the insect’s thorax [72,73]. Such a control mechanism is essential to
prevent the pitch torque from growing indefinitely and eventually
tumbling the insect. In this work, no control strategy has been
applied, and therefore the pitch angle behaves very differently than
expected. It decreases continuously for most of the flapping cycle,
showing a slight increase toward the end of the upstroke phase (see
Fig. 10c). If this behavior is extended to subsequent cycles, the insect
would undoubtedly crash.

Table 2 Deformation pattern configuration

Pattern Phase angle βjk, rad Circular frequency ωj
k, rad∕s Amplitude, ajk Description

Twisting (j � twist) 0.5π 2πnf 10° Advanced twisting pattern
OPB (j � 3) 0.5π 2πnf 0.1R Advanced OPB pattern
IPB (j � 1) −0.5π 2πnf 0.1R Delayed IPB pattern

IPB, in-plane bending; OPB, out-of-plane bending.
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D. Discussions and Future Improvements

Although the numerical results obtained with the present

framework have been validated by using several well-known results
in the literature, and the simulation results match experimental
observations in the considered comparison cases, there are

limitations with the current work that needs to be noted.
One of these limitations is that the aerodynamic model used is the

result of an asymptotic approximation to the Navier–Stokes

equations for a Reynolds number tending to infinity, which means
that a model of the boundary layer is not included. During the

computation of velocity using the Biot–Savart law, if the distance
between a control point and a vortex segment was small enough,

some problems may arise. This results in an unreasonably
overestimated velocity, therefore resulting in unrealistic displace-

ments of the aerodynamic nodes that define the vortex segments in
the wakes. These numerical instabilities are much more significant

in flight configurations, inwhich thewakes remain close and around
an MAV’s structure, hovering being an extreme condition, where

the free-stream velocity is zero. Another significant limitation is
that related to the common situation when a lifting surface cuts

through its own wake; this issue is not addressed in this work, but it
should definitely be considered in future studies.
As enhancements, the current aerodynamic model will be

extended to describe wakes as collections of vortex particles. This

will help improve the numerical treatment and smoothness
characteristics of the wakes [14,74,75]. In addition, the use of the

fast-multipole method to rapidly compute the velocity contribution
from the time-varying wakes will also be very desirable [14,74,76].

Relative to the model for vehicle dynamics, one can conclude
that the only significant limitation is related to the mechanism

developed for prescribing deformation patterns on the considered
MAV wings, which is valid only for small elastic displacements.

Because of the importance of the elastic effects in the natural flight,
the authors areworking currently in a flexiblewingmodel (by using a

geometrically exact 3D beam; Cardona’s beam model [77]) to carry

out aeroelastic studies of flying insects as well asMAVs like flapping
wings inspired by biology.
Despite the limitations outlined in the preceding paragraphs, the

present computational dynamics framework is believed to be a
credible alternative for studying flapping wings flight. Another
feature that makes the current strategy attractive is the low
computational cost compared with CFD simulations and/or finite
element method–based approaches.

VI. Conclusions

In this paper, a co-simulation strategy for studying the dynamics
and unsteady aerodynamics of flapping-wing micro-air-vehicles
(MAVs) has been presented. The subsystem involving the dynamic
model takes the inertial effects of the wings on the central body
(fuselage) of the MAV into account and allow imposition of different
deformation patterns on thewings such as torsion, bending in and out
of the plane, and combinations of both. This dynamic model has also
been successfully coupled in a strong way with the subsystem that
models the aerodynamics, which is based on an expanded version of
the unsteady vortex lattice method previouslymodified and validated
by the authors of this paper. The numerical integration of the
dynamical equations was performed successfully in the time domain
by using a modified scheme proposed in this work. This modified
scheme consists of the Hamming’s fourth-order predictor-corrector
method coupled with a poststabilization procedure based on the
coordinate projection. The integration procedure as well as the
vehicle dynamics model was validated by comparing the results with
formula-based free fall results.
Some important inferences can be drawn from the preceding

sections. The findings help to better understand the underlying
physics associated with the unsteady aerodynamics and nonlinear
dynamics of flapping wings, whose complexity is well-accepted but
at the same time not usually well-understood. The numerical
framework has been validated by comparing the numerical results
with the data published by Fry et al. corresponding to a fruit fly in free
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hovering flight. The lift force predicted for both the rigid wingmodel
and the deformable wing model shows good agreement in terms of
trends and experimental findings reported in the literature. However,
it is acknowledged that the thrust magnitude was underestimated,
possibly due to the noninclusion of the additional separation from the
leading edge. Furthermore, the predicted horizontal force does have
more marked differences from the experimental findings, and this is
perhaps because the unsteady vortex-lattice method cannot account
for viscous effects. However, the longitudinal coordinate shows a sort
of oscillation in the horizontal direction, consistent with the
experimental measurements.
Also, it should be noted that the imposition of suitable

deformation patterns on the wings produces an increase in the lift
force of 30% during upstroke, relative to the rigid wing model. This
fact undoubtedly indicates that wing elasticity plays a fundamental
role in the context of flapping-wing flight. This geometrical change
in the wings, which does not necessarily match a real wing
deformation pattern, is significant enough to produce the necessary
lift increase to effectively compensate for the weight of the MAV
and in turn to elevate it. Finally, a decrease, almost constant, in the
value of the pitch angle for most of the beating cycles can be
observed, which differs from the oscillatory feature reported in the
literature. This observation points to the importance of control
mechanisms to achieve a sustained and stable flight with flapping
wings. These findings suggest the strong possibility that the
aerodynamics–dynamics co-simulation strategy presented in this
paper could play a role in decision-making systems designed for
MAVs and other aircrafts.
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