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1 Introduction

Reaching higher-orders in the context of perturbative QCD implies a great challenge, but

it becomes crucial to achieve the level of accuracy required by nowadays experiments. LHC

results need to be compared to high precision theoretical predictions to unveil novel high-

energy physics phenomena. In order to achieve that goal, it is necessary to understand

the infrared (IR) divergent structure of QCD amplitudes. Within the framework of di-

mensional regularization [1, 2], a lot of work has been performed at one-loop, two-loop

and higher-order loops [3–11]. Many methods rely on the properties of the collinear/soft

limit to perform the analytical subtraction of IR divergences, which allows to obtain finite

cross-sections at colliders (for instance, see ref. [12]).

Centering in the collinear limit, it is known that scattering amplitudes and squared

amplitudes take a rather simple form in this class of kinematical configurations. Moreover,

there are proven factorization properties1 which show that IR collinear divergences exhibit

a universal process-independent behavior, although strict collinear factorization is violated

in the space-like region [14–16].

At the squared amplitude level, this universal behaviour is captured by the Altarelli-

Parisi (AP) kernels (also known as splitting functions), which were first introduced in

ref. [17] for the double-collinear limit at tree-level, and at the amplitude level by the

splitting amplitudes [18, 19]. Since then, splitting amplitudes and Altarelli-Parisi kernels

have been studied at one-loop [20–25] and two-loops [26, 27] in the double collinear limit.

A higher-order loops analysis has been performed at the amplitude level in ref. [28]. In the

multiple collinear limit, splitting functions were studied at tree-level [29–34] and there are

some results for the triple-collinear limit at one-loop order [35].

Dimensional regularization (DREG) can be implemented in various ways when per-

forming an explicit computation. This gives rise to different DREG schemes. Since theoret-

ical results have to be compared with experiments, it is expected that they do not depend

on the scheme being used. However, since splitting functions and splitting amplitudes are

not physical observables, they can exhibit some scheme dependence. For this reason, it

is necessary to understand how to relate the results obtained with different schemes. In

the double collinear limit, this topic has been discussed in ref. [36]. At one-loop level,

computations were performed using several schemes choices, for both splitting amplitudes

and AP kernels. In particular, in ref. [37], the scheme dependence for 2 → 2 processes

was studied at one-loop level and the authors also suggested a way to relate one-loop AP

kernels in some usual DREG schemes.

In this paper, we discuss the scheme dependence of splittings amplitudes at NLO.

Starting from the QCD Lagrangian in (4 − 2ǫ) dimensions, we decompose the gluon field

and define scalar-gluons associated with the extra-dimensional degrees of freedom2 (see

ref. [38, 39]). Using these artificial particles we establish a link among results in several

schemes, besides exploring novel DREG parameters’ configuration. It is also important

1See [13] and references therein.
2For this reason, some authors also call them ǫ-scalars.
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to mention that scalar-gluons were useful to solve some theoretical issues related with

factorization in QCD when working in DREG [40, 41].

This article is organized as follows. In section 2, we briefly define the different schemes

in DREG and introduce scalar-gluons in QCD. We motivate the effective Feynman rules

for these objects, starting from a Lagrangian-level decomposition. In section 3 we discuss

the kinematics of the collinear limit and introduce the splitting matrices. In section 4 we

present results for the q → gq splitting at NLO. We recover known expressions, compared

them with Catani’s formula for the IR-divergent structure and analyze the scalar-gluon

contributions. In the last part of that section, we calculate the AP kernels. In section

5, we tackle the g → qq̄ splitting and put more emphasis in the study of the scalar con-

tributions. The g → gg splitting amplitude is discussed in section 6. Since photons play

a crucial role in today’s collider physics (Higgs boson background, study of quark-gluon

plasma and jet quenching, etc.), we extend our results to cover the q → γq and γ → qq̄

splittings in section 7. Finally, conclusions are presented in section 8.

2 Dimensional regularization and QCD

In the context of perturbative QCD, when we want to compute higher-order contributions

we have to face Feynman integrals. Generally, these are ill-defined because they involve

non-integrable expressions. So, it is mandatory to introduce a regularization method to

give sense to the theory. Moreover, QCD has both ultraviolet (UV) and IR singularities, so

we need prescriptions to treat them. Due to the simultaneous treatment of UV-IR diver-

gences and gauge-invariance preserving formalism, DREG is one of the most used method

to regularize QCD.

Introduced in the late sixties [1, 2], the main idea of DREG is to modify the space-time

dimension. If DST is the new dimension of the space-time, then divergences appear as poles

in DST − 4. To keep the coupling constant dimensionless, one has to introduce a factor

µ4−DST multiplying the Lagrangian density. Also, one should extend vectors, spinors and

tensors to a DST-dimensional space.

Depending on the DREG scheme, it is possible to keep some quantities living in a

4-dimensional space. In some sense, this is equivalent to specify the symmetries of the

extended theory. We know that QCD is a quantum field theory on a 4-dimensional space-

time which is invariant under the action of the 4-dimensional Poincarè group. When

we extend the theory to a DST-dimensional space-time, it is possible to force a DST-

dimensional Poincarè invariance or just retain the physical 4-dimensional invariance. In

this work we will play with these options and explore their consequences in the final results.

2.1 DREG schemes definition

Let’s start with a general four-dimensional quantum field theory (QFT). We know that

any one-loop scattering amplitude can be written in the general form

M(1) =
∑

k

A
µ1...µnk

k

∫

d4q

(2π)4
qµ1

. . . qµnk

D
α(k,1)
σ(k,1) . . . D

α(k,n′

k
)

σ(k,n′

k
)

, (2.1)
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where Ak are coefficients depending on external momenta, color configuration and the kind

of particles involved in the process (both internal and external). The DREG changes the

space-time dimension to DST in order to allow for convergence of loop integrals. Usually,

we take DST = 4− 2ǫ (with ǫ a complex number) and perform the replacement

∫

d4q

(2π)4
→

∫

dDSTq

(2π)DST

≡ ı

∫

q

. (2.2)

Using Passarino-Veltman decomposition or any other reduction method, we can solve

tensor-type integrals and write them as

∫

q

qµ1qµ2 . . . qµm

Dα1

1 Dα2

2 . . . Dαn
n

=
∑

A

Fµ1...µm

A ({pi} , {αi} , η
DST)IscalarA ({pi · pj} , DST) , (2.3)

where {Di} and {pi} denotes the set of possible denominators (with αi ≥ 0) and physical

4-vectors defined in the 4-dimensional unregularized theory, respectively. Note that we are

using the DST-dimensional metric tensor in this expansion. This is an important point

since we can not take the limit ǫ → 0 while computing integrals, so it is not allowed to

make the replacement ηDST → η4 until we finish the calculation.

On the other hand, DREG does not impose any specific treatment of the objects that

appear in the coefficients Ak. Since Ak depend on the Dirac’s algebra dimension and the

number of fermion and boson polarizations, this means that we can change them and set an

specific convention for our computations: this is called a DREG scheme. The parameters

used to define a DREG scheme in the context of massless QCD (or massless QCD+QED,

as we discuss in the last part of this article) are

• ng: number of external gluon polarizations,

• hg: number of internal gluon polarizations,

• nq: number of external quark polarizations,

• hq: number of internal quark polarizations, and

• DDirac: dimension of the Dirac’s algebra.

There is another subtlety related with the dimensionality of particle’s momenta. DREG

forces loop momenta to be DST-dimensional to ensure convergence, but there is no restric-

tion over external momenta. For that reason, we could use them in DST or 4 dimensions

in the context of different schemes. At the amplitude level, we usually consider external

particles to be physical, so their momenta are naturally 4-dimensional. However, when

we compute squared matrix elements and perform phase space integrals, we can face IR

singularities again. This time divergences originate in some regions of phase-space where

particles have soft, collinear or soft-collinear kinematics. DREG can be used to regularize

phase space integrals [36], which implies that unobserved external momenta have to be

extended to a DST-dimensional space-time. For that reason, it is also possible to consider

external momenta being DST-dimensional.
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Following with DREG schemes definition, we first study how to relate the previously

mentioned parameters with the way that computations are performed. First of all, note

that the DST-dimensional space-time metric can be written as a direct product of a 4-

dimensional and a DST−4-dimensional contribution. So, if ηDST
µν = η4µν ⊕ηDST−4

µν , with η4µν
the usual 4-dimensional Minkowski metric, then ηDST

µν

(

ηDST−4
)µν

= DST− 4. On the other

hand, we can introduce vectors and spinors in this space.3 We write DDirac = 4−2δǫ, with

δ = 0 or δ = 1 to work with a 4-dimensional or a DST-dimensional algebra, respectively.

Spinors are defined starting from a representation R of Dirac’s algebra; that is, we have a

set of objects {γµk}k=0...DDirac−1 ∈ R which verifies

{γµ, γν} = 2(ηDDirac)µνId , (2.4)

where Id refers to the identity in the space where representation R is defined. Since fermions

are described by spinors, the number of polarizations of a massless fermion is related to

Tr(Id). In particular, we can define

TrExt(Id) = 2nq , (2.5)

TrInt(Id) = 2hq , (2.6)

where TrExt and TrInt denote the trace over external and internal fermionic states, respec-

tively, since we are treating internal and external fermions in an independent way. It is

interesting to appreciate that changing hq or nq only modifies contributions which involve

Dirac’s traces, because using Dirac algebra and cyclic-invariance of traces, it turns out that

traces are always proportional to Tr(Id). We introduced the parameters β and βR to write

nq = 2− 2βRǫ → TrExt(Id) = 4− 4βRǫ , (2.7)

hq = 2− 2βǫ → TrInt(Id) = 4− 4βǫ , (2.8)

and control the number of fermion polarizations when performing the computations.

Now let’s turn to the parameter hg which is related to the gluon propagator. Working

in an axial gauge, we write the sum over internal gluon’s polarizations as

dµν(p, n) = −
(

η4µν + αRη
DDirac−4
µν

)

+
pµnν + nµpν

p · n
, (2.9)

where n is a light-like vector which verifies n2 = 0 and n · p 6= 0. Here we introduced αR to

take into account the number of polarization associated with internal gluons. In particular,

we know that

hg = dµν(p, n)(η
DST)µν . (2.10)

Using eq. (2.9), we see that if αR = 0 then hg = 2 independently of the value of DDirac,

while if we choose αR = 1 then hg = DDirac − 2. It is important to note that this result

3In the context of smooth manifolds, vector fields are defined as sections to the tangent bundle and

spinor fields arise as representations of a Clifford algebra induced by the metric over the tangent space. So,

DDirac refers to the dimension of the tangent space and it must be DDirac = DST by definition. However,

in the context of DREG we can treat them independently, since we are ultimately interested in taking the

limit ǫ → 0 to recover physical results.
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Scheme ng hg δ αR α

CDR 2− 2ǫ 2− 2ǫ 1 1 1

HV 2 2− 2ǫ 1 1 0

FDH 2 2 0 1 0

HSA 2− 2ǫ 2 1 0 1

HSB 2 2 1 0 0

Table 1. Table of DREG schemes used in this paper. All these schemes set the number of internal

and external fermion’s polarizations to 2 (i.e β = 0 = βR).

relies in the fact that n is the DST-dimensional null-extension of a four-vector and the

metric tensor is diagonal even in DST-dimensions. Also, we can appreciate that choosing

δ = 0 (i.e DDirac = 4) removes the dependence on αR in eq. (2.9).

To control the number of external gluon’s polarizations we define

dExtµν (p,Q) =
∑

phys.pol.

ǫ∗µ(p)ǫν(p) = −
(

η4µν + αηDST−4
µν

)

+
pµQν +Qµpν

p ·Q
, (2.11)

where Q is an arbitrary null-vector which fulfills Q2 = 0 and Q · p 6= 0. When performing

the explicit computation we will take Q = n with the sake of simplifying the intermediate

steps. Again, using eq. (2.11)

ng = dExtµν (p, n)(ηDST)µν = 2− 2αǫ , (2.12)

where we express the result explicitly in terms of α.

At this point, it is important to recall some properties of the gluon’s polarization

tensors dµν(p, n) and dExtµν (p, n). Since we are working in the light-cone gauge (LCG), these

objects should fulfill the following identities:

• dµν(p, n)n
µ = 0 = dExtµν (p, n)nµ (orthogonality to n),

• dExtµν (p, n)pµ = 0 (orthogonality to external momenta p), and

• dµν(p, n)p
µ ∝ p2.

These requirements are related with some physical restrictions. The first condition is

due to the gauge choice, while the fact that external gluons are massless guarantees the

validity of the second identity. The last condition is imposed in order to recover orthog-

onality with external momenta when the virtual particle is on-shell. Having introduced a

parametrization for polarization tensors in eqs. (2.9) and (2.11), we show that

dµν(p, n)n
µ = −nν +

(p · n)nν + n2 pν
p · n

= 0 = dExtµν (p, n)nµ , (2.13)

where we use strongly that n is a light-like 4-vector (and nµηDDirac−4
µν = 0). Something

similar happens if we consider external momenta as the null-extension of a light-like 4-

vector, i.e. p = p(4) ⊕~0. In this case, we obtain

dExtµν pµ = −pν +
p2 nν + (p · n) pν

p · n
= 0 , (2.14)

– 6 –
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which shows that all the requirement are fulfilled for external momenta, independently

of the dimension of the space in which external momenta live. However in all DREG

schemes, internal momenta have to be expressed as p = p(4) ⊕ p(DST−4) (i.e. with a non

trivial component in the transverse space) and when we contract with dµν(p, n) we get

dµν(p, n)p
µ = −

(

p(4)ν + δαRp
(DST−4)
ν

)

+
p2 nν + (p · n) pν

p · n
=

= p2
nν

p · n
+ (1− δαR)p

(DST−4)
ν , (2.15)

which shows that, for certain combinations of parameters, propagators fail to fulfill some

physical consistence conditions. In the following, we discuss deeply about this fact, per-

forming some explicit computations and showing that failing to verify this conditions could

lead to some unexpected IR divergences.

Having introduced the possible parameters that we can modify in the context of DREG,

let’s explain how to recover some of the most frequently used schemes. In conventional

dimensional regularization (CDR) [1, 2, 42], internal and external particles are treated in

the same way. We consider that particle’s momenta is DST-dimensional, gluons have 2−2ǫ

polarizations and massless fermions only have 2 polarizations. In other words, CDR uses

ng = hg = 2− 2ǫ and hq = nq = 2, with DDirac = 4− 2ǫ. Equivalently, we can work in this

scheme setting α = 1, αR = 1 and δ = 1, according to our definitions.

On the other hand, we can set external particles in four-dimensions while keeping in-

ternal ones in DST-dimensions. This is the ’t Hooft-Veltman scheme (HV), first introduced

in ref. [2]. External momenta are four-dimensional and external massless fermions and

gluons have only 2 physical polarization states (i.e. ng = 2 = nq). However, internal gluons

have 2− 2ǫ polarizations (hg = 2− 2ǫ) while internal fermions only have 2 (hq = 2). Using

our parameters, we can settle in this scheme by choosing δ = 1, α = 0 and αR = 1.

Sometimes it is preferable to treat all the particles as 4-dimensional objects, although

internal ones have their momenta extended to a DST-dimensional space. In the four-

dimensional helicity scheme (FDH) [41, 43], massless fermions and gluons have 2 polar-

izations states, independently of being internal or external particles. It means that FDH

scheme is defined by setting ng = hg = 2, nq = hq = 2 and DDirac = 4, or δ = 0 and

α = 0 in our convention. The main advantage of this configuration is the possibility of

using many identities and properties derived from the helicity method, which can be used

to obtain very compact expressions.

Closely related with FDH, there is other choice called dimensional reduction

(DRED) [43, 44]. In this scheme, both external and internal particles have 4-dimensional

polarization vectors, but external momenta are continued to DST-dimensions. This forces

us to include scalar-gluons in order to achive consistency. A deep discussion about dimen-

sional reduction schemes and its implementation can be found in ref. [41].4

Beyond these three well-established schemes, changing the parameters αR, α, δ and

the value of Tr(Id), we can construct more configurations. Variations of CDR, HV and

4In this reference, the authors group DRED and FDH into the category of dimensional reduction schemes.

Moreover, they are called old and new dimensional reduction, respectively. It is important to note that

these schemes are not equivalent, but they could lead to the same results.
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FDH with Tr(Id) = 4−4ǫ were studied in ref. [36]. In particular, in that paper, the authors

analyzed the consequences of choosing those toy-models when performing a full NLO com-

putation with the subtraction method. Since we can easily modify the values of β and βR in

our codes, we give most of our results for an arbitrary number of fermion polarizations. In

the last part of this article, we also discuss the results computed in the toy-scheme (TSC)

defined by ng = nq = 2 − 2ǫ = hq = hg which was introduced in ref. [36]. Specifically, we

show that this scheme preserves the supersymmetric Ward identity at one-loop level.

Aside from allowing different values of hq and nq, here we also discuss hybrid-schemes

that use DDirac = 4− 2ǫ (δ = 1) and hg = 2 (αR = 0), with the possibility of setting ng =

2−2ǫ (α = 1) or ng = 2 (α = 0). To make the discussion easier, we call them hybrid-scheme

A (HSA) and hybrid-scheme B (HSB), respectively. A summary of all the schemes treated

in this paper is displayed in table 1. Although these new schemes seem to a valid choice,

we can anticipate that they are inconsistent unless we add some scalar-gluon contributions.

2.2 Scalar-gluons: Lagrangian level decomposition

An interesting fact is related to the appearance of new scalar-type particles when we use

certain DREG schemes in a D-dimensional space. We can decompose D-vectors into 4-

vectors plus D − 4 scalar particles [44]; this forces us to introduce new Feynman rules for

these particles and, of course, new diagrams contribute to the scattering-amplitudes. Note

that this decomposition suggests that non-physical degrees of freedom can be absorbed

into a certain amount5 of scalar-particles.

To get the Feynman rules for scalar-gluons, let’s start with the usual 4-dimensional

massless-QCD Lagrangian density,

LQCD =
∑

f

Ψ̄i
f (ıγ

µDµ,ij)Ψ
j
f −

1

4
Ga

µνG
aµν , (2.16)

where {i, j} are color indices, Gµν = ∂µA
a
ν −∂νA

a
µ− gsfabcA

b
µA

c
ν is the gauge-field strength

tensor, Dµ,ij = ∂µδij + ıgsA
a
µT

a
ij is the covariant derivative and we are summing over the

possible quark flavors. Knowing that kinetic terms are associated with propagators, let’s

expand the interaction component which can be written as

LInt
QCD = Lf̄gf

QCD + L3g
QCD + L4g

QCD , (2.17)

with

Lf̄gf
QCD = −

∑

f

gsµ
ǫT a

ij Ψ̄
i
f .γ

µ.Ψj
f A

a
µ , (2.18)

L3g
QCD =

gsµ
ǫfabc
2

(

∂µA
a
ν − ∂νA

a
µ

)

Ab µAc ν , (2.19)

L4g
QCD = −

g2sµ
2ǫ

4
fabcfadeA

b
µA

c
νA

d µAe ν , (2.20)

5Specifically, since there are D − 4 transverse dimensions, there should be D − 4 scalar particles in the

problem. Note that we are using the signature (+−−−) for the space-time metric.
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which are associated to the fermion-gluon, three-gluon and four-gluon vertices, respectively.

Note that we take D = 4− 2ǫ as the space dimension.

Now, let’s consider that the space-time metric ηDµν is diagonal and can be expressed as

a direct product. We can perform the decomposition

Aa
µ = Âa

µ + Ãa
µ , (2.21)

γµ = γ̂µ + γ̃µ , (2.22)

with Â, γ̂ living in a 4-dimensional space and Ã, γ̃ in the unphysical D − 4-dimensional

transverse space. Also, we have

{γ̃µ, γ̂ν} = 0 , (2.23)

ηDµν Ã
µÂν = 0 , (2.24)

due to the orthogonality of the 4-dimensional and the (D − 4)-dimensional subspaces.

The validity of this decomposition is general. However it is suitable when we consider

that the theory only retains 4-dimensional Poincarè invariance. In this case, Ã behaves

like a 4-vector while Â does not transform under the 4-dimensional Poincarè group. This

fact motivates that Â is called scalar-gluon. On the other hand, under the assumption of

D-dimensional Poincarè invariance, a general Lorentz transformation might mix Ã and Â

although A transforms as a D-vector.

Using the expressions for the interaction terms in the Lagrangian eq. (2.16) we get

Lf̄gf
QCD = −µǫgsT

a
ij

∑

f

(

Ψ̄i
f γ̂

µΨj
f Â

a
µ + Ψ̄i

f γ̃
µΨj

f Ã
a
µ

)

, (2.25)

L3g
QCD = µǫgsfabc

[

(∂µÂ
a
ν)Â

b µÂc ν+(∂µÂ
a
ν)Ã

b µÂc ν+(∂µÃ
a
ν)Â

b µÃc ν+(∂µÃ
a
ν)Ã

b µÃc ν
]

, (2.26)

L4g
QCD = −

µ2ǫg2s
4

fabcfade

[

Âb
µÂ

c
νÂ

d µÂe ν + 2Âb
µÃ

c
νÂ

d µÃe ν + Ãb
µÃ

c
νÃ

d µÃe ν
]

, (2.27)

where we must take into account that some indices live in the 4-dimensional physical space,

while others stay only in the transverse space. In figure 1 the available vertices are drawn.

We have six possible interaction vertices which involves scalar-gluons: 2fermions-scalar,

2gluons-scalar, 2scalars-gluon, 3scalars, 2scalars-2gluons and 4scalars.

After identifying the Lagrangian terms that originate the possible scalar interactions,

we are able to deduce the corresponding Feynman rules. Introducing the functions

V3g (p
µ
1 , p

ν
2 , p

σ
3 , a, b, c) = fabc

[

(p2 − p1)ση
DST

µν + (p3 − p2)µη
DST

νσ + (p1 − p3)νη
DST

σµ

]

(2.28)

= fabcV
Cin
3g (p1, p2, p3;µ, ν, σ) , (2.29)

and

V4g(p
µ
1 , p

ν
2 , p

ρ
3, p

σ
4 , a, b, c, d) = fabefcde

(

ηDST

µρ ηDST

νσ − ηDST

µσ ηDST

νρ

)

+ facefbde
(

ηDST

µν ηDST

ρσ − ηDST

µσ ηDST

νρ

)

+fadefcbe
(

ηDST

µν ηDST

ρσ − ηDST

µρ ηDST

νσ

)

, (2.30)

the usual Feynman rules for 4-dimensional QCD reads

• fermion-gluon-fermion vertex −ıgsT
aγ̂µ,
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Figure 1. Available vertices involving scalar-gluons. Expanding QCD Lagrangian, we find six kind

of vertices: A fermion-scalar-fermion, B gluon-scalar-gluon, C triple-scalar interaction, D scalar-

gluon-scalar, E 2scalar-2gluon, and F 4scalar. Momenta associated with gluons and scalar-gluons

are considered outgoing.

Figure 2. Usual 4-dimensional QCD interaction vertices: A fermion-gluon-fermion, B triple-gluon

and C quadruple-gluon vertex. Momenta associated with gluons are considered outgoing.

• triple-gluon vertex −gsV3g(p
µ1

1 , pν12 , pσ1

3 , a, b, c)η4µ1µ
η4ν1νη

4
σ1σ

,

• and quadruple-gluon −ıg2sV4g(p
µ1

1 , pν12 , pρ13 , pσ1

4 , a, b, c, d)η4µ1µ
η4ν1νη

4
ρ1ρ

η4σ1σ
,

where we are projecting Lorentz index to the 4-dimensional space through the contraction

with η4. In figure 2 we write explicitly the usual QCD rules, to clarify momentum sign and

ordering conventions. From these rules and conventions, we get the following associated
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Feynman rules for scalar interactions;

• fermion-scalar-fermion vertex −ıgscalars µǫTaγ̃µ,

• gluon-scalar-gluon vertex −gscalars µǫV3g(p
µ1

1 , pν12 , pσ1

3 , a, b, c)ηǫµ1µ
η4ν1νη

4
σ1σ

,

• scalar-gluon-scalar vertex −gscalars µǫV3g(p
µ1

1 , pν12 , pσ1

3 , a, b, c)η4µ1µ
ηǫν1νη

ǫ
σ1σ

,

• triple-scalar vertex −gscalars µǫV3g(p
µ1

1 , pν12 , pσ1

3 , a, b, c)ηǫµ1µ
ηǫν1νη

ǫ
σ1σ

,

• 2scalar-2gluon −2ı
(

gscalars

)2
µ2ǫV4g(p

µ1

1 , pν12 , pρ13 , pσ1

4 , a, b, c, d)ηǫµ1µ
ηǫν1νη

4
ρ1ρ

η4σ1σ
,

• and 4scalar −ı
(

gscalars

)2
µ2ǫV4g(p

µ1

1 , pν12 , pρ13 , pσ1

4 , a, b, c, d)ηǫµ1µ
ηǫν1νη

ǫ
ρ1ρ

ηǫσ1σ
,

where we used the labeling introduced in figure 1 and the conventions shown in figure 2.

The additional factor 2 in the 2scalar-2gluon vertex comes from the expansion of the

Lagrangian in eq. (2.27).

As a final remark, note that when scalar-gluons appear we make the replacement

gs → gscalars . This is done because we consider scalar-gluons as a new kind of particles

which are not necessarily related with vector-gluons. So, following Landau’s principle, we

have to write the most general Lagrangian compatible with certain reasonable require-

ments. But these requirements do not exclude the possibility of having different coupling

constants, so we introduce gscalars and treat it independently of gs. Although gs = gscalars

at leading order in gs, these couplings do not evolve in the same way and, in consequence,

can differ at higher-orders (see [38, 45]).

2.3 Effective Feynman rules and other considerations for scalar-gluons

Working with scalar-gluons involves taking into account some technical details. In order

to be able to write scattering amplitudes that include scalar-particles, let’s motivate some

effective Feynman rules and explain other useful points.

Let’s start with the gluon propagator, in an axial gauge

DG (p, µ, ν) = ı
dµν(p, n)

p2 + ı0
, (2.31)

where dµν(p, n) is given by eq. (2.9), using a null-vector n. Here we explicitly indicate that

we are using the Feynman prescription to compute propagators. However, in the following

we will omit the term +ı0 in propagator denominators, although its presence is always

understood. As we shown previously, the number of gluon polarizations can be modified

changing αR and δ. Working in a DST-dimensional space-time, gluons can be treated as

DST-vectors setting η = ηDST inside the definition of the propagator (or αR = 1 and δ = 1

with our parametrization), in which case hg = dµν(p, n)(η
DST)

µν
= DST − 2. Also it is

possible to decompose them in a 4-dimensional gluon plus scalar-gluons, by setting η = η4

in DG and using the propagator

DS (p, µ, ν) = −ı
ηǫµν

p2 + ı0
, (2.32)
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for the scalar-gluon component. If we count the number of polarizations in this

case, vector-gluons contribute with d4Dµν (p, n)(η
DST)

µν
= 2 while scalar-gluons add

ηǫµν(η
DST)

µν
= DST − 4 polarizations. For this reason, scalar-gluons have to be included

when we set the number of polarizations of internal gluons to 2 − 2ǫ while working with

a 4-dimensional Dirac’s algebra. In other words, HV results could be recovered adding to

the FDH computation the corresponding scalar-gluon contribution.

It is worth noting that a completely similar analysis can be performed with external

gluons. If they are treated as DST-vectors, we can decompose them as 4-dimensional

gluons plus DST − 4 scalar particles. This implies that we can also use scalar-gluons as

external legs to compensate the number of degrees of freedom of the system when working

with DDirac = 4. Explicitly,

∑

pol.∈DST

ǫ∗µ(p)ǫν(p) =

(

−η4µν +
pµQν +Qµpν

p ·Q

)

+
(

−ηǫµν
)

(2.33)

=
∑

pol.∈4D

ǫ∗µ(p)ǫν(p) + ǫ̂∗µ̂(p)ǫ̂ν̂(p) , (2.34)

where we are using a diagonal extension of space-time metric and we interpret

{µ̂, ν̂} ∈ (DST − 4) as real (or complex) numbers.

Scalar-vector decomposition is performed with the aim of being able to use the

well-known Dirac algebra properties in integer-dimensional spaces, and, in some sense,

forget about the transverse ǫ-dimensional components artificially introduced during the

regularization process. Being more explicit, when we retain only 4-dimensional Poincarè

invariance, we are setting fermions in 4-dimensions. So, we have to consider DDirac = 4

which simplifies a lot the treatment of spinor chains.

Now, let’s tackle the associated effective Feynman rules for scalar-gluons. Before

doing that, we reinterpretate the meaning of extra-dimensions and additional gluon

polarizations. As a staring point, let’s remark that DREG is a particular dimension

extension of a 4-dimensional QFT. So, additional gluon polarizations are related to

additional space-time dimensions. Now, we have two options: we can retain only the

original invariance under the action of the 4-dimensional Poincarè group or we can force a

D-dimensional invariance. In the latest choice, we are going to have D-dimensional vector

type gluons, while in the first one we will be able to separate 4-vector type gluons from

(D − 4)-flavors of scalar type fields (which we called scalar-gluons here). Note that, in

this step, we have used that ηDST is a flat-diagonal extension of usual Minkowski metric,

which allows us to convert extra-dimensions into flavors of scalar particles. And this is

the key point to write the Feynman rules.

Using the definitions of V3g and the induced rules for scalar-gluons vertices at La-

grangian level, we can get some effective rules to work with these particles. To get them

we will modify the expressions given before, using the fact that ηDST is diagonal (i.e. it

does not mix physical and transverse contributions). So, starting with the triple vertex we

have:

• gscalars µǫfabcη
4
νσ(p2 − p3)µ̂ for the 2gluon-scalar vertex;
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• gscalars µǫfabcη
ǫ
ν̂σ̂(p2 − p3)µ for the 2scalar-gluon vertex;

• and gscalars µǫV Cin
3g (pµ̂1 , p

ν̂
2 , p

ρ̂
3, a, b, c) for the 3-scalar vertex.

Note that these rules agree with the usual form of Feynman rules for vector-scalar

interactions. Also, here ηǫρσ can be interpreted as a delta function whose value is 1 if

scalar-particles have the same index and 0 otherwise.

Following the same ideas, we can simplify quadruple interactions and we get these rules:

• −2ı
(

gscalars

)2
µ2ǫ(facefbde + fadefbce)η

4
σρη

ǫ
µν for the 2gluon-2scalar vertex;

• and −ı
(

gscalars

)2
µ2ǫV4g(µ̂, ν̂, σ̂, ρ̂, a, b, c, d) for the 4scalar vertex;

where, again, we see agreement among these expressions and the ones associated with

standard quadruple scalar-vector interactions.

Finally, let’s make a comment about the fermion-scalar interaction. This is the only

vertex which involves dealing with γ̂ matrices. Since DDirac = 4, these extra-gamma

matrices act trivially over spinors, so we do not have to include them inside spinor chains:

this leads to helicity-violation interactions. Moreover, if we have two γ̂ matrices inside

a chain, using the fact that {γ̂µ, γ̃ν} = 0 and {γ̂µ, γ̂ν} = 2ηǫµν Id we can get ride of the

transverse-dimensional indices. We give an explicit example when computing the q → gq

splitting amplitude at NLO.

2.4 Computational implementation

We implemented the computation in Mathematica and we used FeynCalc (version

8.2) [46] to handle Dirac’s algebra. FeynCalc used D as the dimension of Dirac’s algebra;

in particular, since it was used to perform Dirac and Lorentz algebra, then DDirac = D. To

compute integrals we used the results shown in the literature (for example, see ref. [25])

and the integration by parts method (IBP) [47], implemented through the Mathematica’s

package FIRE [48, 49]. We set d = 4− 2ǫ as the space-time dimension in this package.

3 Collinear limits of scattering amplitudes in QCD

To study the double collinear limit of scattering amplitudes, the first step consists in

identifying the relevant kinematical variables. We describe the momenta of the external

particles using the vectors pµ1 and pµ2 , which refer to the outgoing particles. Here it is

important to note that µ is a Lorentz index which runs over the space-time dimension

DST = 4 − 2ǫ. Since they refer to external particles, we assume that components along

the additional dimensions are zero, so pµ1 and pµ2 behave like usual four-vectors. The

momenta of the incoming particle can be obtained from momentum-conservation rules,

pµ12 = (pµ1 + pµ2 ), and its virtuality is given by

s12 = pµ12p
ν
12η

DST

µν = pµ12p
ν
12η

4
µν . (3.1)

Since we are defining ηDST
µν as a flat-extension of the usual four-dimensional Minkowski

metric, inner product with four-vectors behaves like a projection. Then, due to the fact

that we are working with massless QCD, p21 = 0 = p22.
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To describe the collinear limit, we introduce a null-vector nµ (n2 = 0) that satisfies

n ·p12 6= 0 and that is the zero-extension of a usual four-vector (we call them with the same

name to reduce the notation). Choosing that vector is equivalent to introduce a preferred

direction in space-time, which allows us to get rid of unphysical degrees of freedom. In

other words, we use n to settle in the light-cone gauge. Working in the light-cone gauge

has advantages (for example, we do not have to consider diagrams with ghosts), but it

introduces an extra-denominator in loop-integrals which makes them harder to compute.

However the most important benefit of choosing a physical gauge is the possibility to

exploit collinear factorization properties in an easier way.

Returning to the kinematics of the double collinear limit, we can introduce a collinear

null-vector, P̃ , which satisfies P̃ 2 = 0, n · P̃ 6= 0 and pµ12 → P̃µ when s12 → 0. This allows

us to define the momentum fraction of particle i as

zi =
n · pi

n · P̃
i ∈ {1, 2} , (3.2)

where we have the constraint z1 + z2 = 1 and therefore we can describe the collinear limit

using only the scalar variable z1. (Strictly speaking, we need to use also s12 and n · P̃ , but

since they are dimensionful we can guess their scaling properties and factorize them). We

can think about zi as a measure of the contribution of particle i to the longitudinal total

momentum relative to n. In other words, n is used here to parametrize the approach to

the collinear limit.

On the other hand, it is necessary to take into account the transverse component of

the outgoing particles relative to the longitudinal component proportional to P̃ . To do this

we define kµ⊥, which verifies n · k⊥ = 0 = k⊥ · P̃ . Due to the relations among n, k⊥ and P̃

we can use them to parametrize the momentum of the outgoing particles [34] as

pµ1 = z1 P̃
µ + kµ⊥ −

k⊥
2

2z1n · P̃
nµ , (3.3)

pµ2 = (1− z1) P̃
µ − kµ⊥ −

k⊥
2

2(1− z1)n · P̃
nµ , (3.4)

where zi is the momentum fraction associated with particle i and k⊥
2 = −z1(1 − z1)s12.

Note that this parametrization is consistent with the fact that both outgoing particles are

on-shell and massless. On the other hand, when performing the explicit computation we

do not need to express external momenta in terms of P̃ , n and k⊥: this decomposition is

relevant to simplify spinor chains or scalar products that appear in matrix elements. Also,

we use n · p12 = n · P̃ because

pµ12 = P̃µ +
s12

2n · P̃
nµ , (3.5)

with /p12u(n) =
/̃Pu(n).

After describing collinear kinematics, let’s settle some conventions to write scattering

amplitudes in the context of massless-QCD with photons. Due to the presence of

color charges, we will express matrix elements in color+spin space [12, 50]. A general
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Figure 3. Typical contribution to the most divergent part of an n-particle scattering amplitude in

the double collinear limit.

n-particle matrix element can be written as Mc1,c2,...,cn;s1,s2,...,sn
a1,a2,...,an (p1, p2, . . . , pn), where

{c1, c2, . . . , cn}, {s1, s2, . . . , sn} and {a1, a2, . . . , an} are respectively color, spin and flavor

indices. Of course, {p1, p2, . . . , pn} are particle’s momenta. To expand color+spin space

we can introduce an orthonormal basis {|c1, c2, . . . , cn〉 ⊗ |s1, s2, . . . , sn〉}, whose dual basis

allows us to express matrix elements as

Mc1,...,cn;s1,...,sn
a1,...,an

(p1, . . . , pn) = (〈c1, . . . , cn| ⊗ 〈s1, . . . , sn|) |Ma1,...,an (p1, . . . , pn)〉 (3.6)

where |Ma1,...,an (p1, p2, . . . , pn)〉 is a vector in color+spin space. We need to remark that

external legs are being considered as on-shell particles (and, moreover, QCD partons are

massless).

Let’s consider an n-particle scattering amplitude and assume that two particles, labeled

as 1 and 2, become collinear. Since we are interested in studying the most divergent part of

this kinematic limit, we will only consider diagrams in which 1 and 2 come from a parent leg

P , as shown in figure 3. It is important to note that, in order to simplify factorization prop-

erties, we have to perform the computation in a physical gauge (for example, see ref. [51]).

Following figure 3, and using the kinematical variables introduced in the previous

section, we can write this contribution as

Mc1,c2...;s1,s2...
a1,a2...

(p1, p2, . . .) ≈ −ı
∑

P

A
c
P ′ ,c1,c2;s1,s2
P ;a1,a2

(p12, p1, p2) Prop(P ; p12)cP c
P ′

×AcP ,c3...;s3...
P ;a3...

(p12, p3, . . .) , (3.7)

where we have introduced the amputated amplitudes A and a general propagator Prop,

which depends on the kinematics and the class of particles involved in the process. It is

important to note two facts: we are summing over all possible flavors of particle P , and

p12 is the momentum vector associated with the intermediate particle.

Since we are working in massless-QCD, P can be a gluon or a quark. If P is a quark,

a1 and a2 have to be a quark and a gluon. On the other hand, if P is a gluon, a1 and

a2 can be a quark-antiquark pair or a gluon-gluon pair. It is important to notice that a

quark-antiquark pair can become collinear because we are considering them as massless

particles, but gluons can always be collinear or soft.
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Let’s analyze what happens with each possible choice of P . If P is a quark, then its

propagator is
ıδij

/p12
=

ıδij
s12

(

/̃P +
s12

2n · P̃
/n

)

=
ıδij /̃P

s12
+O(s012) , (3.8)

where we used the definition of the light-like vector P̃ and we keep only the most divergent

contributions in the limit s12 → 0. Here, {i, j} are color indices associated to the funda-

mental representation of SU(N). Since P̃ is a null-vector, it is possible to consider P̃ as

the momenta of a massless quark. So, using the completeness relation of massless spinors,

we are able to use the expressions

/̃P =
∑

λ phys.pol.

uλ(P̃ )ūλ(P̃ ) =
∑

λ phys.pol.

vλ(P̃ )v̄λ(P̃ ) , (3.9)

with λ being a label for possible physical polarizations of intermediate quark and antiquark,

respectively. These considerations leads us to rewrite eq. (3.8) as

ıδij

/p12
=

∑

λ phys.pol.

δij
ıuλ(P̃ )

s12
ūλ(P̃ ) +O(s012) . (3.10)

Now, going back to eq. (3.7), we obtain

Mc1,c2...;s1,s2...
a1,a2...

(p1, p2, . . .) ≈
∑

λ phys.pol.

1

s12
AcP ,c1,c2;s1,s2

P ;a1,a2
(p12, p1, p2)uλ(P̃ )

×
(

ūλ(P̃ )AcP ,c3...;s3...
P ;a3...

(p12, p3, . . .)
)

≡
∑

λ phys.pol.

(

1

s12
AcP ,c1,c2;s1,s2

P ;a1,a2
(p12, p1, p2)uλ(P̃ )

)

×McP ,c3...;λ,s3...
P,a3...

(

P̃ , p3, . . .
)

, (3.11)

where, in the last line, we rearranged the factors to form an n−1 matrix element associated

with a process which replaces legs 1 and 2 with a unique on-shell massless particle P . This

can be done because we are working in a kinematical region where 1 ‖ 2, so s12 → 0 and we

put the divergent factors to the left-side of the propagator. In other words, the replacement

p12 → P̃ is possible in AcP ,c3...;s3...
P ;a3...

(p12, p3, . . .) because it is finite in the collinear limit.

If we consider now the case in which P is a gluon, we have to write the propagator as

ıdµν(p12, n)

s12
=

ı

s12

(

−ηµν +
p12µnν + p12νnµ

n · p12

)

, (3.12)

where η is a metric tensor which depends on the number of polarizations of gluons. As

done for the quark case, we can use the definition of P̃ and perform the expansion

dµν(p12, n) = −ηµν+
P̃µnν+P̃νnµ

n · P̃
+s12

nµnν

(n · P̃ )
2 ≈−ηµν+

P̃µnν+P̃νnµ

n · P̃
=dµν(P̃ , n) , (3.13)

and together with the completeness relation

dµν(P̃ , n) =
∑

λ phys.pol.

ǫ∗µ(P̃ , λ)ǫν(P̃ , λ) , (3.14)
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leads us to the expression

ıdµν(p12, n)

s12
≈

∑

λ phys.pol.

ǫµ(P̃ , λ)

s12
ǫ∗ν(P̃ , λ) +O(s012) , (3.15)

which is a valid approximation in the collinear limit. Applying these results to eq. (3.7)

we get

Mc1,c2...;s1,s2...
a1,a2...

(p1, p2, . . .) ≈
∑

λ phys.pol.

1

s12
AcP ,c1,c2;s1,s2;µ

P ;a1,a2
(p12, p1, p2) ǫµ(P̃ , λ)

×
(

ǫ∗ν(P̃ , λ)AcP ,c3...;s3...;ν
P ;a3...

(p12, p3, . . .)
)

≡
∑

λ phys.pol.

(

1

s12
AcP ,c1,c2;s1,s2;µ

P ;a1,a2
(p12, p1, p2) ǫµ(P̃ , λ)

)

×McP ,c3...;λ,s3...
P,a3...

(

P̃ , p3, . . .
)

, (3.16)

where, again, we are able to rearrange the expression in such a way that the first factor

contains all the divergent contributions and the second one is a reduced-matrix element

for a n− 1-particle process.

From eqs. (3.11) and (3.16), we can motivate the definition of splitting matrices and

amplitudes. Working in the double-collinear limit, the quark initiated splitting matrix can

be written as

Spq→a1a2
=

1

s12
|Aq,a1,a2 (p12, p1, p2)〉u(P̃ ) , (3.17)

with a1 and a2 being a gluon and a quark, respectively. When the parent particle is a

gluon, we get

Spg→a1a2
=

1

s12

∣

∣Aµ
g,a1,a2

(p12, p1, p2)
〉

ǫµ(P̃ ) , (3.18)

being a1 and a2 a quark-antiquark or a gluon pair. In both cases, |AP,a1,a2 (p12, p1, p2)〉

is the amputated scattering amplitude associated to the process P → a1a2, without being

projected over the color+spin space. If we project Sp over color+spin space we get the

so-called splitting amplitudes. To recover splitting functions (as defined in ref. [25]), we

just have to remove color information from splitting amplitudes.

Now it is important to note that we left p12 as incoming momenta in the amputated

amplitude, instead of using P̃ . This is related to the fact that the presence of divergences

in the definition of splitting matrices forces us to regularize them and keep the s12
dependence explicitly. For that reason we must consider that the incoming particle is

slightly off-shell and include all possible Feynman diagrams, also those which include

self-energy corrections to the parent leg. We will emphasize this fact when computing

explicitly some scattering amplitudes at NLO.

Finally, we have to remark that it is possible to get the divergent contribution to the

splitting matrices at NLO without performing a full computation. For the double-collinear

limit, according to ref. [14] we can write

Sp(1)
(

p1, p2; P̃
)

= Sp
(1)
H

(

p1, p2; P̃
)

+ IC

(

p1, p2; P̃
)

Sp(0)
(

p1, p2; P̃
)

, (3.19)
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with Sp
(1)
H containing only the rational dependence on the momenta p1, p2 and P̃ , and

IC

(

p1, p2; P̃
)

= cΓg
2
s

(

−s12 − ı0

µ2

)−ǫ

×

{

1

ǫ2
(C12 − C1 − C2) +

1

ǫ
(γ12 − γ1 − γ2 + b0)

−
1

ǫ
[(C12+C1−C2) f(ǫ, z1)+(C12+C2−C1) f(ǫ, 1−z1)]

}

, (3.20)

which contains all the divergent contributions and non-rational functions of z1. Here Ci

are the Casimir factors associated with the parton ai (Ci = CA for gluons and Ci = CF

for quarks), γi depend on the flavor of ai and cΓ is the D-dimensional volume factor

associated with one-loop integrals, i.e.

cΓ =
Γ(1 + ǫ)Γ(1− ǫ)2

(4π)2−ǫΓ(1− 2ǫ)
. (3.21)

If Nf is the number of quark flavors, then

γq = γq̄ =
3

2
CF , γg =

11CA − 2Nf

6
, (3.22)

and b0 = γg is the first perturbative coefficient of the QCD β function, according to our

normalization. Besides that, the function f(ǫ, z) is given by

f(ǫ, z) =
1

ǫ

(

2F1(1,−ǫ, 1− ǫ, 1− z−1)− 1
)

, (3.23)

and it is associated with the kinematical behavior of matrix elements in the collinear limit.

4 The q → qg splitting matrix

When working in the LCG, the presence of internal gluons makes more difficult to perform

an explicit computation. So, we start with the q → gq splitting and we explain the

differences among schemes. At NLO we can write the corresponding splitting matrix as

Spq→gq = Sp(0)
q→gq + Sp(1)

q→gq , (4.1)

where the LO contribution is

Sp(0)
q→gq =

gsµ
ǫ

s12
Taū(p2)/ǫ(p1)u(P̃ ) . (4.2)

Even at LO, we can decompose γµ = γ̃µ+ γ̂µ when considering DDirac = 4− 2ǫ. This leads

to the expression

Sp(0)
q→gq =

gsµ
ǫ

s12
Ta
[

ū(p2)γ̃
µu(P̃ ) + ū(p2)γ̂

µu(P̃ )
]

ǫµ(p1) , (4.3)

which includes an helicity-violating term that contributes only in CDR or HSA schemes.

However, since gluons are treated as D-dimensional vectors in CDR, it is not required
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Figure 4. Feynman diagrams associated with q(P̃ ) → g(p1)q(p2) at NLO, including the self-energy

correction to the parent parton. We show all the standard QCD contributions up to O(g3s).

to separate explicitly the helicity-violating term. The situation is going to be different

in HSA scheme because the presence of both 4 and DST-dimensional metrics leads to a

non-equal mixing between ū(p2)γ
µu(P̃ ) and ū(p2)γ̃

µu(P̃ ).

It is important to appreciate that we are starting from the amputated amplitude

related with q(p12) → g(p1)q(p2). This explains why we must take into account self-energy

corrections to the incoming particle. In other words, to calculate the NLO corrections to

the splitting matrix Spq→gq we need to include all the diagrams shown in figure 4. However,

it is necessary to take into account other kind of contributions to explore consistently the

different schemes. As we mentioned in section 2, when we treat QCD in the context of

DREG, it is possible to decompose DST-dimensional gluons into 4-dimensional vectors

and scalar particles. Due to the fact that we can make that differentiation when drawing

Feynman diagrams, it is useful to introduce the following classification of diagrams:

• standard QCD contributions (STD);

• helicity preserving interactions mediated by scalar gluons (SCA-nHV);

• and helicity-violating interactions (SCA-HV).

To compute STD contributions, we start from 4-dimensional QCD and draw the as-

sociated Feynman diagrams, using only gluons and quarks to do this. Conversely, SCA

contributions include scalar-gluons as internal or external particles. SCA-nHV only allows

the presence of internal gluons with the additional requirement that external particles do

not violate helicity conservation. To be more explicit, let’s center in the q → gq process. In

4-dimensional QCD, incoming and outgoing quarks have the same helicity because quark-

gluon interaction is represented by a vector-like vertex. So, SCA-nHV only takes into
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account that kind of diagrams. Instead of that, SCA-HV contributions only allow helicity

configurations that are forbidden by usual 4-dimensional QCD interactions.

Let’s start describing the standard NLO QCD contribution. It can be expressed as

Sp(1,STD)
q→gq = Sp(1,A)

q→gq + Sp(1,B)
q→gq + Sp(1,C)

q→gq , (4.4)

where Sp
(1,i)
q→gq refers to the diagram i ∈ {A,B,C}, as shown in figure 4. Writing each

contribution we have,

Sp(1,A)
q→gq = −

g3sµ
3ǫCF

s212
Ta ū(p2)/ǫ(p1)/p12γ

νγαγρu(P̃ )

×

∫

q

(p12 − q)αdρν (q, n)

q2t12q
, (4.5)

Sp(1,B)
q→gq =

g3sµ
3ǫ(CA − 2CF )

2s12
Ta ū(p2)γ

ργα/ǫ(p1)γ
βγνu(P̃ )

×

∫

q

(p12 − q)β(p2 − q)αdρν (q, n)

q2t2qt12q
, (4.6)

Sp(1,C)
q→gq = −

g3sµ
3ǫCA

2s12
Ta ǫµ(p1)ū(p2)γ

νγαγβu(P̃ )

×

∫

q

(p2 − q)αV
Cin
3g (p1, q,−p1 − q;µ, ν1, µ1) dβµ1

(p1 + q, n) dνν1 (q, n)

q2s1qt2q
, (4.7)

where we are not making any distinction between 4 and DST-dimensional gluons. In par-

ticular, in the context of HSA scheme, we should interpret

/ǫ(p1) = γ̃µǫµ(p1) + γ̂µǫ̂µ(p1) , (4.8)

because there are 2− 2ǫ gluon’s degrees of freedom but vector-gluons have only two polar-

izations (setting α = 0 and αR = 0) while the remaining polarizations are associated with

scalar-gluons. Also, it is useful to note that Sp
(1,A)
q→gq can be rewritten as

Sp(1,A)
q→gq = Σ(p212)Sp

(0)
q→gq , (4.9)

where Σ(p212) is the NLO correction to quark self-energy. Except for this diagram, all the

others correspond to the ones that appear when computing q → gq with massless on-shell

particles.

Now let’s turn to the scalar-gluon contributions to the splitting matrix. We only con-

sider diagrams associated with helicity configurations that are allowed by 4-dimensional

QCD interactions. Since scalar contributions are related with the fermion-gluon-fermion

and triple-gluon vertices, and we have to keep external physical particles only, diagrams con-

taining internal scalar-gluons start at NLO. As we can see in figure 5, we have corrections to

the three standard QCD diagrams (see figure 4). Explicitly, the associated contributions are

Sp(1,SCA−nHV)
q→gq = Sp(1,A′)

q→gq + Sp(1,B′)
q→gq + Sp(1,C′)

q→gq , (4.10)
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Figure 5. Feynman diagrams associated with the scalar-gluon contributions to q(P̃ ) → g(p1)q(p2)

at NLO. We show only SCA-nHV configurations.

with

Sp(1,A′)
q→gq = −

gs
(

gscalars

)2
µ3ǫCF

s212
Ta ū(p2)/ǫ(p1)/p12γ̂

νγαγ̂ρ.u(P̃ )

×

∫

q

(p12 − q)α
(

−ηǫνρ
)

q2t12q
, (4.11)

Sp(1,B′)
q→gq =

gs
(

gscalars

)2
µ3ǫ(CA − 2CF )

2s12
Ta ū(p2)γ̂

ργα/ǫ(p1)γ
β γ̂νu(P̃ )

×

∫

q

(p12 − q)β(p2 − q)α
(

−ηǫνρ
)

q2t2qt12q
, (4.12)

Sp(1,C′)
q→gq = −

(

gscalars

)3
µ3ǫCA

2s12
Ta ǫµ(p1)ū(p2)γ̂

νγαγ̂βu(P̃ )

×

∫

q

(p2 − q)αV
Cin
3g (p1, q,−p1 − q;µ, ν1, µ1) η

ǫ
νν1

ηǫβµ1

q2s1qt2q
, (4.13)

where we used the Feynman’s rules previously obtained at Lagrangian level (see section 2).

Now let’s simplify this expressions using some properties of Dirac matrices inD-dimensions:

we want to show explicitly that it is possible to use the effective Feynman rules introduced

in the end of section 2. Focusing in Sp
(1,A′)
q→gq , note that this contribution depend on

IntA
′

=

∫

q

ηǫνρ γ̂
ν
(

/p12 − /q
)

γ̂ρ

q2t12q
,

=

∫

q

1

q2t12q
γ̂ρ/p12γ̂

ρ +

∫

q

qα
q2t12q

γ̂ργ
αγ̂ρ . (4.14)

However, since p12 is a physical momenta then /p12 = (p12)σγ̃
σ. Using that {γ̃α, γ̂σ} = 0

and γ̂ργ̂ρ = −2ǫId, then we have

IntA
′

=

∫

q

1

q2t12q

(

2ǫ /p12

)

+ (A(s12) (p12)α) (γ̂
ργαγ̂ρ) , (4.15)

where we used Passarino-Veltman (PV) decomposition to write the vector-type integral

in the second term. Due to the fact that vector-type integrals only depend on physical
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vectors then we can repeat the procedure performed in the first term and we obtain

IntA
′

=

∫

q

1

q2t12q

(

2ǫ /p12

)

+

∫

q

qα
q2t12q

(2ǫγ̃α)

= 2ǫ

∫

q

(

/p12 − /q
)

q2t12q
, (4.16)

which is equivalent to use the effective scalar rules discussed in the last part of section 2.

Note that we have not used the fact that DDirac = 4, which implies this result immediately.

The situation is analogous when we move to Sp
(1,C′)
q→gq , but some subtleties appear when

treating Sp
(1,B′)
q→gq . That contribution depends on

IntB
′

=

∫

q

γ̂ρ(/p2 − /q)γµ(/p12 − /q)γ̂νηǫνρ

q2t2qt12q

=

∫

q

1

q2t2qt12q
γ̂ρ/p2γ

µ
/p12γ̂ρ −

∫

q

qα
q2t2qt12q

γ̂ρ
(

/p2γ
µγα + γαγµ/p12

)

γ̂ρ

+

∫

q

qαqβ
q2t2qt12q

γ̂ργαγµγβ γ̂ρ , (4.17)

where {ρ, ν} run over the non-physical dimensions. Depending on the number of external

gluon polarizations, µ can live in 4 (ng = 2) or in DST-dimensions (ng = 2 − 2ǫ). Using

PV decomposition, the tensor-type integrals can be expanded as

∫

q

qα
q2t2qt12q

=
∑

i

Ai(s12)(pi)α , (4.18)

∫

q

qαqβ
q2t2qt12q

=
∑

i,j

Aij(s12)(pi)α(pj)β +B(s12)η
DST

αβ , (4.19)

with the inclusion of a term proportional to the DST-dimensional metric tensor. Replacing

these expansions in eq. (4.17) and using that p12 and p2 are 4-vectors, we obtain

IntB
′

= A0(s12)/p2γ̂
ργµγ̂ρ/p12 −

∑

i

Ai(s12)
(

/p2γ̂
ργµγ̂ρ/pi + /piγ̂

ργµγ̂ρ/p12

)

+
∑

i,j

Aij(s12) /piγ̂
ργµγ̂ρ/pj +B(s12) γ̂

ργαγµγαγ̂ρ ,

since γ̂ρ/pi = −/piγ̂
ρ and Aij = Aji due to symmetry properties. On the other hand,

γαγµγα = (2−DDirac)γ
µ , (4.20)

γ̂ργ̂ρ = (DST − 4)Id , (4.21)

γ̂ργµγ̂ρ = (4−DST)γ
µ + 2γ̂µ , (4.22)

where we used that Dirac’s algebra dimension is DDirac and it is equal to the number of

gamma matrices available. So, after applying these properties and the fact that

γ̂ργαγµγαγ̂ρ = γαγ̂ργµγ̂ργα + 2 (γµγ̂ργ̂ρ − γ̂ργ̂ργ
µ) = γαγ̂ργµγ̂ργα , (4.23)

– 22 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
8

we can rewrite IntB
′

as

IntB
′

= (4−DST)



A0(s12)/p2γ
µ
/p12−

∑

i

Ai(s12)
(

/p2γ
µ
/pi+/piγ

µ
/p12

)

+
∑

i,j

Aij(s12) /piγ
µ
/pj

+ B(s12) γ
αγµγα] + 2

[

A0(s12)/p2γ̂
µ
/p12 −

∑

i

Ai(s12)
(

/p2γ̂
µ
/pi + /piγ̂

µ
/p12

)

+
∑

i,j

Aij(s12) /piγ̂
µ
/pj +B(s12) γ

αγ̂µγα



 , (4.24)

where we can always express 4−DST = ηǫρν(−(ηǫ)ρν). Note that the metric tensor inside the

parenthesis comes from commuting and symmetrizing the product γ̂ργ̂ν . Also, the contri-

butions involving γ̂µ violate helicity conservation, so they vanish when we restrict external

particles to have helicity configurations compatible with standard QCD interactions.

Summarizing these observations, we conclude that the replacement

−ηǫρν γ̂
ργαγµγβ γ̂ν → (−2ǫ)γαγµγβ is valid. Thus we get an effective Feynman rule

for scalar-gluons interaction with fermions, which consists in considering them as scalar

particles with propagator −2ıǫ
p2+ı0

(see eq. (2.32)) and remove the corresponding Dirac

matrix in the vertex. On the other hand it is useful to remember that in usual DREG

schemes, if scalar-gluons are introduced then we have to set DDirac = 4. But this limit has

to be taken after replacing integrals. In other words, it is possible that some new terms

(i.e. not present in the expressions when using effective Feynman rules for scalar-gluon)

survive when applying directly Lagrangian level Feynman rules. But this terms are always

proportional to integrals which vanish in the limit DDirac → 4. This situation occurs in

Sp
(1,B′)
q→gq because there is a term proportional to γαγµγα = −2(1− ǫ)γµ (see eq. (4.24)).

So, after this discussion, we can rewrite the SCA-nHV contributions as

Sp(1,A′)
q→gq =

2 g3sµ
3ǫǫCF

s212
Ta ū(p2)/ǫ(p1)/p12γ

αu(P̃ )

∫

q

(p12 − q)α
q2t12q

, (4.25)

Sp(1,B′)
q→gq =

g3sµ
3ǫǫ(2CF − CA)

s12
Ta ū(p2)γ

α/ǫ(p1)γ
βu(P̃ )

∫

q

(p12 − q)β(p2 − q)α
q2t2qt12q

, (4.26)

Sp(1,C′)
q→gq =

g3sµ
3ǫǫCA

s12
Ta ǫµ(p1)ū(p2)γ

αu(P̃ )

∫

q

(p2 − q)α(2q + p1)
µ

q2s1qt2q
, (4.27)

where we used the effective Feynman rules for scalar-gluons setting DDirac = 4.

Finally, we want to make a brief comment about SCA-HV components. When working

in HSA/HSB schemes it is possible that STD contributions mix helicity-preserving and

helicity-violating terms, whose origin is the contraction of 4-dimensional metric tensors

(coming from the gluon propagator) with DST-dimensional structures. We discuss this

point in the next subsections, using the results for Spq→gq to give an explicit example.

4.1 Amplitude level results

Following with the study of q → gq splitting amplitude, we performed the computation

without specifying the polarization of the involved particles. This implies having larger
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spinorial structures and more complex tensor-type integrals, but this will allow us to com-

pute contributions to the NLO Altarelli-Parisi kernel in an easier way.

Let’s start with the NLO standard-QCD contribution to the splitting matrix. After

writing explicitly the corresponding Feynman diagrams and replacing the involved

loop-integrals, we find that

Sp(1,STD)
q→gq =

cΓg
3
sµ

ǫ

2s12ǫ2

(

−s12 − ı0

µ2

)−ǫ

Ta

[

C(STD,1)
q→gq ū(p2)/ǫ(p1)u(P̃ )

+C(STD,2)
q→gq

1

nP
ū(p2)/nu(P̃ )p2 · ǫ(p1)+δα,1C

(STD,3)
q→gq ū(p2)γ̂

µu(P̃ )ǫ̂µ(p1)

]

,(4.28)

where the coefficients C
(STD,i)
q→gq are given by

C(STD,1)
q→gq = 2(CA − 2CF )2F1

(

1,−ǫ, 1− ǫ,
z1

z1 − 1

)

− 2CA2F1

(

1,−ǫ, 1− ǫ,
z1 − 1

z1

)

−2
CA

(

ǫ(δǫ2 + ǫ− 3) + 1
)

− CF

(

δǫ3 + 3ǫ2 − 6ǫ+ 2
)

(ǫ− 1)(2ǫ− 1)

+(1− αR)δǫ
2CA (2ǫ+ 1 + αR)− 2CF ǫ

(ǫ− 1)(2ǫ− 1)
, (4.29)

C(STD,2)
q→gq =

2ǫ2(CA − CF )(δǫ− 1)

(ǫ− 1)(2ǫ− 1)
+

δ(1− αR)ǫ

2(1− z1)2(ǫ− 1)(2ǫ− 1)

[

2(1− z1)
2ǫ2 (2CF − CA(αR + 2))

+ CA(1− z1)
2ǫ 2F1

(

1, 1− ǫ, 2− 2ǫ,
1

z1

)

+ CAz1(ǫ− 1)2F1

(

1,−ǫ, 1− ǫ,
z1 − 1

z1

)

+ CA

(

(z21 − 4z1 + 2)ǫ+ z1
)

]

, (4.30)

C(STD,3)
q→gq = 2(1− αR)CA

[

2F1

(

1,−ǫ, 1− ǫ,
z1 − 1

z1

)

+
(1− z1)ǫ

z1(2ǫ− 1)2
2F1

(

1, 1− ǫ, 2− 2ǫ,
1

z1

)]

+
(1− αR) [2CF (1− 2ǫ)ǫ− CA (ǫ((1 + ǫδ)(1− αR)− 6ǫ+ 7)− 4)]

(ǫ− 1)(2ǫ− 1)
, (4.31)

where δ controls Dirac’s algebra dimension and we left αR as a free parameter. Note that

there is a term that explicitly involves an helicity-violating interaction. It is proportional

to 1 − αR and only contributes when we work in HSA scheme (α = 1) because external

gluons must have 2− 2ǫ polarizations in order to allow for this kind of interactions. Also,

it is worth noting that modifying αR only introduces O(ǫ2) differences in coefficients

C
(STD,1)
q→gq and C

(STD,2)
q→gq . However, expanding C

(STD,3)
q→gq we find

C(STD,3)
q→gq = 6(1− αR)CA +O(ǫ) , (4.32)

which implies that Sp
(1,STD)
q→gq acquires an additional contribution to the double ǫ pole

which is proportional to δα1(1− αR).

If we want to check our calculations, we can set αR = 1 to recover well known results

in FDH (δ = 0) and CDR/HV schemes (δ = 1). In particular, when using CDR we

have to assume that ǫµ(p1) is a DST-dimensional vector, while in the remaining schemes

ǫµ(p1) is associated to a 4-dimensional space. It is important to appreciate that we

used the properties ǫ(p1) · n = 0 (related to the definition of the null-vector n) and

ǫ(p1) · p1 = 0 (because the outgoing gluon is a physical massless vector particle, with

transverse polarization) to simplify the expressions.

– 24 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
8

Following with the study of different contributions to the splitting amplitude, we can

compute Sp(1,SCA−nHV). After replacing integrals and performing some simplifications, it

can be expressed as

Sp(1,SCA−nHV)
q→gq = cΓ

(

−s12 − ı0

µ2

)−ǫ

Ta g3sµ
ǫ

s12

ǫ (CF − CA)

(ǫ− 1)(2ǫ− 1)

[

ū(p2)/ǫ(p1)u(P̃ )

−
1

nP
ū(p2)/nu(P̃ ) p2 · ǫ(p1)

]

, (4.33)

where we consider a 4-dimensional Dirac’s algebra. Note that this expression is simpler

than the STD contribution presented before. This is due to the absence of two-gamma

matrices in the spinorial chain, which were replaced by a ǫ-dimensional metric, and

the simplification of some gluon-propagators. Also, it is worth noting that SCA-nHV

terms are finite in the limit ǫ → 0, so they can be added to the other contributions

without modifying the divergent structure. This allows us to interpret the addition to the

SCA-nHV terms to the splitting as a DREG scheme choice. Moreover, note that from

eqs. (4.28) and (4.33) we can recover the relation

Sp(1,STD,HV )
q→gq = Sp(1,STD,FDH)

q→gq + Sp(1,SCA−nHV)
q→gq , (4.34)

which tells us that HV results can be obtained from FDH ones by just adding SCA-nHV

contributions. This is a really interesting property, because sometimes it is easier to

perform the computation using 4-dimensional algebra. Moreover, this relation is still valid

when we set the polarization of external particles to the possible 4-dimensional physical

values. And, in that situation, we can take advantage of working in FDH scheme because

we can apply a wide range of novel techniques, such as the helicity method.

4.2 Scheme dependence and divergent structure

Following with the analysis of our results, we can test the decomposition suggested in

eq. (3.19). First, we assume that α = 0 (i.e. we neglect HSA scheme) and use only STD di-

agrams. If we expand in series around ǫ = 0 and rearrange divergent contributions, we find

Sp(1,STD)
q→gq = Sp

(1)
H,q→gq + IC,q→gq

(

p1, p2; P̃
)

Sp(0)
q→gq , (4.35)

with

IC,q→gq

(

p1, p2; P̃
)

=
cΓg

2
s

ǫ2

(

−s12 − ı0

µ2

)

−ǫ [

(CA − 2CF )

(

2F1

(

1,−ǫ; 1− ǫ;
z1

z1 − 1

)

− 1

)

− CA 2F1

(

1,−ǫ; 1− ǫ;
z1 − 1

z1

)]

, (4.36)

Sp
(1)
H,q→gq = cΓ

(

−s12 − ı0

µ2

)

−ǫ

Ta g3sµ
ǫ

s12

[(

CA

2(1− δǫ) + δ(1− αR)(1 + 2ǫ+ αR)

2(ǫ− 1)(2ǫ− 1)

− CF

1− αRδǫ

(2ǫ− 1)(ǫ− 1)

)

ū(p2)/ǫ(p1)u(P̃ )

+
C

(STD,2)
q→gq

2ǫ2
1

nP
ū(p2)/nu(P̃ ) p2 · ǫ(p1)

]

, (4.37)

– 25 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
8

where we left δ and αR as free parameters. The structure of IC,q→gq exactly agrees with

the expected singular behavior of unrenormalized splitting amplitudes. However, some

discrepancies appear in the finite contribution. According to ref. [14], Sp
(1)
H only contains

rational functions of z and ǫ. This is completely true when αR = 1, since it reduces to

C(STD,2)
q→gq (αR = 1) = 2ǫ2

(CA − CF )(δǫ− 1)

(ǫ− 1)(2ǫ− 1)
, (4.38)

and the finite remainder becomes

Sp
(1)
H,q→gq(αR = 1) = cΓ

(

−s12 − ı0

µ2

)−ǫ

Ta g3sµ
ǫ

s12

(CF − CA)(δǫ− 1)

(ǫ− 1)(2ǫ− 1)

[

ū(p2)/ǫ(p1)u(P̃ )

−
1

nP
ū(p2)/nu(P̃ ) p2 · ǫ(p1)

]

. (4.39)

But when considering αR = 0, this contribution involves a non-vanishing combination of

hypergeometric functions, which can not be expressed using only rational terms. So, when

we work in HSB scheme, Sp
(1)
H is no longer a pure rational function.

The situation becomes worse if we choose to work in HSA scheme, setting α = 1 and

αR = 0. In that case, it is not possible to cast Sp(1,STD) in the form expressed in eq. (4.35)

because the divergent structure verifies

Sp(1,STD)
q→gq (HSA) = cΓg

2
s

(

−s12−ı0

µ2

)

−ǫ [(

−
CA

ǫ2
+
CA log(z1)+(2CF −CA) log(1−z1)

ǫ

)

Sp(0)
q→gq

+

(

3CA

ǫ2
+
2(2CA+CF )−CA(1−z1) log(−1+z1)−CA(1+z1) log(z1)

2ǫ

)

×
Tagsµ

ǫ

s12
ū(p2)γ̂

µu(P̃ )ǫ̂µ(p1) +O(ǫ0)

]

, (4.40)

which involves additional ǫ poles that can not be absorbed in any term proportional to the

LO splitting amplitude. This indicates that something else has to be added when perform-

ing computations inside HSA scheme (or, conversely, that the definition of HSA scheme

must be different). In fact, we need to take into account all the scalar-gluon contributions,

both SCA-nHV and SCA-HV. To understand this, we remind the reader that HS schemes

assume DDirac = 4− 2ǫ = DST (i.e. δ = 1). Because gluon polarization vectors arise after

solving Euler-Lagrange equations in aDDirac-dimensional space, there must be 2−2ǫ degrees

of freedom coming from gluons. But in HS schemes, we decompose DST-dimensional gluons

into 4-dimensional vectors (i.e. vector gluons) and DST − 4 scalar particles, which forces

us to include both vector and scalar gluons simultaneously in our computations. In the

case of HSB (α = 0 = αR), external gluons are always 4-dimensional particles but we must

consider both vector and scalar virtual gluons. Since they have the same kind of couplings,

to take into account both contributions we just have to add the propagators, which leads to

D
(αR=0)
G (k, µ, ν) +DS(k, µ, ν) =

ı

k2 + ı0

((

−η4µν +
nµkν + nνkµ

nk

)

+
(

−ηǫµν
)

)

= ı
dDST
µν (k, n)

k2 + ı0
= D

(αR=1)
G (k, µ, ν) . (4.41)
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This relation tells us that the consistent version of HSB is the HV scheme (δ = 1 and

α = 0). On the other hand, in HSA scheme we must allow the presence of scalar-gluons

as external particles. Again, this is equivalent to add the same kind of diagrams but

decomposing the outgoing gluon polarization vector as ǫµ = ǫ̃µ + ǫ̂µ. In other words, if we

add all the contributions required to cure the inconsistencies of HSB, we just end in CDR

scheme (δ = 1 and α = 1). We will emphasize this point in the following subsection, when

computing Altarelli-Parisi kernels.

In summary, after analyzing the scheme dependence of our results for q → gq split-

ting amplitude and comparing them with Catani’s formula (eq. (4.35)), we conclude that

HSA/HSB configurations are not suitable choices for performing calculations. Instead,

we will use CDR, HV and FDH schemes, with the possibility of changing the number of

fermion polarizations (playing with the parameters β and βR previously defined).

4.3 NLO corrections to AP kernels

Having LO and NLO contributions to the splitting matrix we can obtain the NLO correction

to the Altarelli-Parisi (AP) kernel q → gq. In order to do that, we use the expansion

Pq→gq =
s12
2µ2ǫ

[

(

Sp(0)
q→gq

)†

Sp(0)
q→gq + 2Re

(

(

Sp(0)
q→gq

)†

Sp(1)
q→gq

)]

+O(α3
s) , (4.42)

where we must consider the regulator ǫ as a complex-valued parameter. If we sum over the

physical polarization states of outgoing particles, sum over colors (averaging the incoming

ones) and project over the helicity-space of incoming particles, we obtain the polarized AP

kernels. Also, it is possible to sum and average over the physical polarizations of the parent

parton, which leads to the definition of the unpolarized AP kernels.6

As expected, the sum over polarizations depend on the scheme being used. If we

consider FDH or HV, external particles have physical 4-dimensional polarizations, but when

we set in CDR, they live in a DST-dimensional space. So, in the last scenario, a scalar-

gluon can be considered as an external particle, which implies that we must also consider

spin-flip contributions at amplitude level. If we compute STD contributions to Spq→gq,

we can obtain AP kernels in any scheme. It is important to note that, when considering

CDR scheme, spin-flip contributions are hidden inside the definition of theDST-dimensional

polarization vector, as we saw in eq. (4.3). So, we do not need to include explicitly external

scalar-gluons, but we can use them to give a physical interpretation to some contributions.

After this brief discussion, let’s show explicit results. Starting at LO, we get

〈s| P̂ (0)
q→gq(z1, k⊥)

∣

∣s′
〉

= CF δs,s′
g2s
z1

(

1 + (1− z1)
2 − αδǫz21

)

, (4.43)

P (0)
q→gq = CF

g2s
z1

(

1 + (1− z1)
2 − αδǫz21

)

, (4.44)

for the polarized and unpolarized kernels, respectively. Note that when summing over

external fermions polarizations, we get a global factor Tr(Id) = 4 − 4ǫβ multiplying our

6In ref. [36], a distinction is made between unpolarized (i.e. averaged over initial polarization states) and

azimuthally averaged AP kernels. Here we present only polarized and unpolarized, since we can perform

the azimuthal average starting from the polarized kernels.
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Figure 6. Feynman diagrams associated with the external scalar-gluon contributions to q(P̃ ) →

φ(p1)q(p2) at NLO.

results, but it cancels with the average factor. So, q → gq AP kernels are independent of

the number of fermion polarizations. Also, we can prove that

〈s| P̂q→gq(z1, k⊥)
∣

∣s′
〉

= δs,s′Pq→gq , (4.45)

since the kernel is diagonal in helicity space. For this reason, we only present the NLO

correction to the unpolarized kernel, which is given by

P (1)
q→gq =

cΓg
2
s

ǫ2

(

−s12 − ı0

µ2

)−ǫ
[

P (0)
q→gq

(

(CF − CA)
(

ǫ(δǫ2 + ǫ− 3) + 1
)

(ǫ− 1)(2ǫ− 1)

+ (CA−2CF ) 2F1

(

1,−ǫ; 1−ǫ;
z1

z1−1

)

−CA 2F1

(

1,−ǫ; 1−ǫ;
z1−1

z1

)

+CF

)

+
g2sCF

z1

(z1 − 2)(z1 − 1)ǫ2(δǫ− 1) (CA − CF )

(ǫ− 1)(2ǫ− 1)

]

+ c.c. , (4.46)

where α = 1 in CDR and α = 0 in FDH/HV schemes. As expected, we can appreciate

that NLO corrections are independent of βR and β. On the other hand, it is important to

take into account that we must consider only the real part of the r.h.s.

To conclude this section, let’s make a remark about the role of scalar-gluons when

performing computations in CDR scheme. As we mentioned in the beginning of this section,

we can decompose a DST-dimensional gluon as a 4-dimensional vector gluon and DST − 4

scalar particles. Using the LO scalar-gluon contribution (see eq. (4.3)) and computing the

associated unpolarized AP kernel we obtain

P
(0)
q→φq =

g2sCF

4(1− βǫ)
Tr
[

/p2γ̂
µ /̃P γ̂ν

]

(

∑

scalars

ǫ̂µ(p1)ǫ̂
∗
ν(p1)

)

= −g2sǫCF δz1 , (4.47)

where φ denotes external scalar-gluons and we use the replacement suggested in eq. (2.34).

To obtain the NLO correction to this result, it is necessary to take into account some SCA-

HV diagrams and compute the corresponding splitting matrix. Since we are decomposing
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only external gluons, the required contributions can be recovered from Sp(1,STD) by just

making the replacement ǫµ(p1) → ǫ̂µ(p1). So, we can write

Sp
(1,SCA−HV)
q→φq =

(

Sp(1,A)
q→gq + Sp(1,B)

q→gq + Sp(1,C)
q→gq

)

ǫ→ǫ̂,δ→1,αR→1

=
cΓg

3
sµ

ǫ

2s12ǫ2

(

−s12−ı0

µ2

)

−ǫ

TaC(STD,1)
q→gq (αR=1, δ=1) ū(p2)γ̂

µu(P̃ )ǫ̂µ(p1) , (4.48)

with the corresponding Feynman diagrams shown in figure 6. After summing over external

particles polarizations and averaging, we get

P
(1)
q→φq =

cΓg
4
sz1CF

ǫ

(

−s12 − ı0

µ2

)

−ǫ [

CA 2F1

(

1,−ǫ; 1− ǫ;
z1 − 1

z1

)

− CF

− (CA−2CF ) 2F1

(

1,−ǫ; 1−ǫ;
z1

z1−1

)

+
(ǫ(ǫ+2)−1) (CA−CF )

2ǫ− 1

]

+ c.c. . (4.49)

We can appreciate that

PCDR
q→gq = PHV

q→gq + Pq→φq , (4.50)

which reflects the fact that additional gluon polarizations can be interpreted as scalar

particles, and, in consequence, that it is possible to recover CDR results working with

external 4-dimensional gluons and adding the remaining degrees of freedom treating them

as scalar-particles. Of course, this separation has to be performed with each external gluon

to be consistent, which makes a bit cumbersome to carry out this analysis in general.

5 The g → qq̄ splitting matrix

In the previous section we treated in great detail the splitting amplitude q → gq. Here we

focus in the process g → qq̄, which is closely related to the first one. However, due to the

fact that it is initiated by a vector particle, there are some differences.

As a starting point, we write

Spg→qq̄ = Sp
(0)
g→qq̄ + Sp

(1)
g→qq̄ , (5.1)

where the LO contribution is

Sp
(0)
g→qq̄ =

gsµ
ǫ

s12
Taū(p1)/ǫ(P̃ )v(p2) , (5.2)

where pi is the physical momentum of particle i and we associate the massless vector P̃ to

the incoming gluon in the collinear limit, in spite of having a momenta p12 which verifies

p212 = s12.

The NLO standard-QCD contribution can be expanded as

Sp
(1,STD)
g→qq̄ = Sp

(1,A)
g→qq̄ + Sp

(1,B)
g→qq̄ + Sp

(1,C)
g→qq̄ + Sp

(1,D)
g→qq̄ , (5.3)

where Sp
(1,i)
g→qq̄ refers to the diagram i ∈ {A,B,C,D}, as shown in figure 7. Note that

diagrams A and D expands the self-energy correction to the incoming gluon with a tiny

virtuality s12. For that reason, we can rewrite their contribution as

Sp
(1,A)
g→qq̄ + Sp

(1,D)
g→qq̄ = Π(p212)Sp

(0)
g→qq̄ , (5.4)
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Figure 7. Feynman diagrams associated with g(P̃ ) → q(p1)q̄(p2) at NLO. Here the incoming gluon

is off-shell and its virtuality is (p12)
2 = s12. Only STD contributions are drawn here.

where Π(p212) can be extracted from Πµν(p12) after contracting with two gluon polarization

vectors ǫ∗µ(P̃ )ǫν(P̃ ). (See appendix B for further details on the computation of Π(s12) and

Σ(s12)).

For this process, there are four possible SCA-nHV diagrams which contribute to the

amplitude. Following figure 8 and using Feynman rules at Lagrangian level, we have

Sp
(1,SCA−nHV)
g→qq̄ = Sp

(1,A′)
g→qq̄ + Sp

(1,A′′)
g→qq̄ + Sp

(1,B′)
g→qq̄ + Sp

(1,C′)
g→qq̄ , (5.5)

with

Sp
(1,A′)
g→qq̄ = −

g3sµ
3ǫ

s212
CAT

a ǫµ(P̃ )ū(p1)γ
νv(p2) dνν1 (p12, n) (5.6)

×

∫

q

(

−ηǫρρ1
)

dσσ1
(p12 − q, n)V Cin

3g (−p12, q, p12 − q;µ, ρ, σ)

q2t12q

×V Cin
3g (−q, p12, q − p12; ρ1, ν1, σ1) ,

Sp
(1,A′′)
g→qq̄ = −

g3sµ
3ǫ

2s212
CAT

a ǫµ(P̃ )ū(p1)γ
νv(p2) dνν1 (p12, n) (5.7)

×

∫

q

ηǫρρ1η
ǫ
σσ1

V Cin
3g (−p12, q, p12 − q;µ, ρ, σ)

q2t12q
V Cin
3g (−q, p12, q − p12; ρ1, ν1, σ1) ,

Sp
(1,B′)
g→qq̄ = −

g3sµ
3ǫ

2s12
CAT

a ǫµ(P̃ )ū(p1)γ̂
ρ1γαγ̂σ1v(p2) η

ǫ
ρ1ρ

ηǫσ1σ
, (5.8)

×

∫

q

(p1 − q)αV
Cin
3g (−p12, q, p12 − q;µ, ρ, σ)

q2t1qt12q
,

Sp
(1,C′)
g→qq̄ =

g3sµ
3ǫ

2s12
(CA − 2CF )T

aū(p1)γ̂
ργα/ǫ(P̃ )γβ γ̂σv(p2)

∫

q

qα(q − p12)β
(

−ηǫρσ
)

q2t1qt12q
. (5.9)

When we discussed the structure of the contributions to q → gq splitting amplitude,

we mention the possibility of having q2ǫ -type integrals. Here we face the problem explicitly
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when analyzing Sp
(1,A′)
g→qq̄ . If we expand the triple gluon vertex, we find

Sp
(1,A′)
g→qq̄ =

g3sµ
3ǫ

s212
CAT

a ǫµ(P̃ )ū(p1)γ
νv(p2) dνσ1

(p12, n) η
ǫ
ρρ1

∫

q

qρqρ1 dµσ1
(p12 − q, n)

q2t12q
.

(5.10)

Since the scalar contribution is computed setting DDirac = 4, we can write the involved

integral as

IntA
′′

=

∫

q

qρqρ1 dµσ1
(p12−q, n)

q2t12q
= F1(ki · kj)η

4
ρρ1

η4µσ1
+
∑

P

F2(ki · kj , P )η4a1a2(ki)a3(kj)a4

+
∑

P,Q

F3(ki · kj , P,Q)(ki1)a1(ki2)a2(ki3)a3(ki4)a4 , (5.11)

where P is a permutation of Lorentz indices {ρ, ρ1, µ, σ}, ki ∈ {p12, n} and Q is a ordering

of {ki}. The important fact here is that IntA
′′

only has 4-dimensional components, which

implies η4αβ(η
ǫ)αβ = 0. Thus, Sp

(1,A′)
g→qq̄ = 0 when using a standard scheme for scalar-gluon

contributions. The remaining terms of the splitting matrix can be written as

Sp
(1,A′′)
g→qq̄ =

g3sµ
3ǫ

s212
ǫCAT

a ǫµ(P̃ )ū(p1)γ
νv(p2) dνν1 (p12, n)

∫

q

(2q−p12)µ(2q−p12)ν1
q2t12q

, (5.12)

Sp
(1,B′)
g→qq̄ =−

g3sµ
3ǫ

s12
ǫCAT

a ǫµ(P̃ )ū(p1)γ
αv(p2)

∫

q

(p1 − q)α(p12 − q)µ
q2t1qt12q

, (5.13)

Sp
(1,C′)
g→qq̄ =−

g3sµ
3ǫ

s12
ǫ (CA − 2CF )T

aū(p1)γ
α/ǫ(P̃ )γβv(p2)

∫

q

qα(q − p12)β
q2t1qt12q

, (5.14)

where we used the same argument presented in the previous section to make the replace-

ments γ̂aγcγ̂b → −(ηǫ)abγc and γ̂aγcγdγeγ̂b → −(ηǫ)abγcγdγe.

Related with the scalar-gluon contributions, here we saw an important fact. Although

many diagrams can be constructed by using the effective rules, some of them are going to

be zero due to the presence of only q2ǫ -integrals. This integrals appear when a transverse

index contracts with the loop-momentum q. So, to avoid them, transverse indices should

form closed chains, that is

(ηǫ)a1a2(η
ǫ)a2a3 . . . (ηǫ)ana1 = (ηǫ)a1a1 , (5.15)

which is equivalent to say that each chain is going to be proportional to the trace of the

transverse metric tensor (Tr [ηǫ] = −2ǫ = (ηǫ)µµ).

5.1 Amplitude level results

Before showing the explicit results for the g → qq̄ splitting matrix, let’s work out the

possible spinorial structures which are going to appear. First of all, LO contribution is

proportional to ū(p1)/ǫ(P̃ )v(p2) and there will be a term proportional to this in Sp
(1)
g→qq̄.

Due to the symmetry p1 ↔ p2, the properties

ū(p1)/p12v(p2) = 0 (5.16)
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Figure 8. Feynman diagrams associated with SCA-nHV contribution to g(P̃ ) → q(p1)q̄(p2) at

NLO.

p12 · ǫ(P̃ ) = n · ǫ(P̃ ) = P̃ · ǫ(P̃ ) = 0 , (5.17)

and the presence of only two physical vectors (p12 and n), we can only have one additional

spinor-chain with one gamma matrix inside: ū(p1)/nv(p2)p1 · ǫ(P̃ ). Although there can be

spinor-chains of up to five gamma-matrices, Dirac’s algebra and the previous properties

allow to reduce them to combinations of ū(p1)/ǫ(P̃ )v(p2) and ū(p1)/nv(p2)p1 ·ǫ(P̃ ). For these

reasons, after replacing Feynman integrals in the expressions for Sp
(1,i)
g→qq̄, we get

Sp
(1,STD)
g→qq̄ =

cΓg
3
sµ

ǫTa

ǫ2s12

(

−s12 − ı0

µ2

)−ǫ [

C
(STD,1)
g→qq̄ ū(p1)/ǫ(P̃ )v(p2)

+ C
(STD,2)
g→qq̄

1

nP
ū(p1)/nv(p2)p1 · ǫ(P̃ )

]

, (5.18)

for the NLO standard contribution, where the coefficients C
(STD,i)
g→qq̄ are given by

C
(STD,1)
g→qq̄ = Nf

2(ǫ− 1)ǫ(1− βRǫ)

4(ǫ− 2)ǫ− 3
+ CF

ǫ
(

3− (2 + δ)ǫ+ 2δǫ2
)

− 2

(ǫ− 1)(2ǫ− 1)

+CA

(

3 + ǫ2(2(ǫ− 2) + δ(1 + 2(ǫ− 2)ǫ))

(ǫ− 1)(3− 2ǫ)(2ǫ− 1)
− 2F1

(

1,−ǫ; 1− ǫ;
z1 − 1

z1

)

− 2F1

(

1,−ǫ; 1− ǫ;
z1

z1 − 1

)

+ 2

)

, (5.19)

C
(STD,2)
g→qq̄ = 0 ,

where we set αR = 1 since we will not use HSA/HSB schemes here. It is interesting to note

that the full NLO correction to the splitting matrix is proportional to Sp
(0)
g→qq̄. Besides

that, we can appreciate that C
(STD,1)
g→qq̄ is symmetric when interchanging particles 1 and 2.

Again, when using α = 1 we have to assume that µ is a DST-dimensional Lorentz

index, while in the remaining schemes µ is associated to a 4-dimensional space. Moreover,
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if we rearrange the contributions to Sp
(1)
g→qq̄ in the last scenario, we find that it verifies

Sp
(1)
g→qq̄ = Sp

(1)
H,g→qq̄ + IC,g→qq̄

(

p1, p2; P̃
)

Sp
(0)
g→qq̄ , (5.20)

with

IC,g→qq̄

(

p1, p2; P̃
)

=
cΓg

2
s

ǫ2

(

−s12 − ı0

µ2

)

−ǫ [

3CA − (3ǫ+ 2)CF + 2ǫb0

− CA

(

2F1

(

1,−ǫ; 1−ǫ;
z1−1

z1

)

+2F1

(

1,−ǫ; 1−ǫ;
z1

z1−1

))]

, (5.21)

Sp
(1)
H,g→qq̄ = cΓg

2
s

(

−s12 − ı0

µ2

)

−ǫ [

CA

(

2− 3δ

6(3− 2ǫ)
+

1− δ

ǫ− 1
+

δ − 18

2(2ǫ− 1)

)

+ CF

(

δ − 1

ǫ− 1
+

8

2ǫ− 1

)

+Nf

6βR(1− ǫ) + 8ǫ− 10

3(4(ǫ− 2)ǫ+ 3)

]

Sp
(0)
g→qq̄ , (5.22)

as expected according to eqs. (3.19) and (3.20). In contrast to the q → gq splitting,

Sp
(1)
g→qq̄ depends on βR. However, this parameter seems to define a well-behaved scheme

since it respects the universal divergent structure of splitting amplitudes and the finite

remainder is kept composed only by rational functions.

On the other hand, for the scalar-gluon contribution we have

Sp
(1,SCA−nHV)
g→qq̄ = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ (2(2− ǫ)ǫ− 1)CA + (4(ǫ− 2)ǫ+ 3)CF

(ǫ− 1)(2ǫ− 3)(2ǫ− 1)
Sp

(0)
g→qq̄ ,

(5.23)

and we can recover the relation

Sp
(1,STD,HV )
g→qq̄ = Sp

(1,STD,FDH)
g→qq̄ + Sp

(1,SCA−nHV)
g→qq̄ , (5.24)

which tells us, again, that HV results can be recovered from FDH ones by just adding

SCA-nHV contributions.

5.2 NLO corrections to AP kernels

Finally we can compute the contributions to both polarized and unpolarized AP kernel.

For the LO contribution we get

〈µ| P̂
(0)
g→qq̄(z1, k⊥) |ν〉 = −g2s(1− βǫ)TR

(

(ηDDirac)µν +
4(z1 − 1)z1

k2⊥
kµ⊥k

ν
⊥

)

(5.25)

P
(0)
g→qq̄ =

g2s(1− βǫ)TR

(1− αǫ)
((1− z1)

2 + z21 − αδǫ) , (5.26)

where we can appreciate that the results depend explicitly on β (i.e. the number of ex-

ternal fermions polarizations). Due to the fact that Sp
(1)
g→qq̄ is proportional to LO, NLO

corrections to AP kernels can be written as

P
(1)
g→qq̄ =

cΓ
ǫ2

g2s

(

−s12 − ı0

µ2

)−ǫ

CSTD,1
g→qq̄ P

(0)
g→qq̄ + c.c. , (5.27)

where we kept only the real part of the r.h.s. We can appreciate that this expressions

depends on both β and βR, and it is not possible to cancel this dependence by setting

β = βR. But it is interesting to appreciate that the additional factors in eq. (5.26)

disappear in TSC scheme.
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Figure 9. Feynman diagrams associated with the standard QCD contribution to g(P̃ ) → q(p1)g(p2)

at NLO. Here the incoming gluon is off-shell and its virtuality is (p12)
2 = s12.

6 The g → gg splitting matrix

Finally, we arrive to the g → gg splitting amplitude. It is worth noticing that this case

involves dealing with many properties of polarization vectors, but it has the advantage of

being free of spinor chains. For that reason, here we deal only with scalar products which

are well-defined in DREG for every value of D.

As done with the previous configurations, the splitting matrix can be decomposed as

Spg→gg = Sp(0)
g→gg + Sp(1)

g→gg , (6.1)

where the LO contribution is

Sp(0)
g→gg =

2gsµ
ǫ

s12
Ta(A)

(

p1 · ǫ(P̃ ) ǫ(p1) · ǫ(p2)− p1 · ǫ(p2) ǫ(p1) · ǫ(P̃ )

+ p2 · ǫ(p1) ǫ(p2) · ǫ(P̃ )
)

, (6.2)

where pi is the physical momentum of particle i and (Ta(A))bc = ıfabc are the generators

of SU(3)C in the adjoint representation.

The NLO standard-QCD contribution can be expanded as

Sp(1,STD)
g→gg = Sp(1,A)

g→gg + Sp(1,B)
g→gg + Sp(1,C)

g→gg + Sp(1,D)
g→gg + Sp(1,E)

g→gg , (6.3)

being Sp
(1,i)
g→gg associated with diagram i ∈ {A,B,C,D,E}, as shown in figure 9. We have

to remark that due to symmetry properties, diagrams C and D only describe the associated

topology. In other words, there are two diagrams C (and D), which are obtained from the

displayed graph by interchanging particles 1 and 2; Sp(1,C) and Sp(1,D) include the sum

over all the possible relabellings of final-state particles associated with the process.

On the other hand, diagrams A and B expands the self-energy correction to the

incoming gluon with a tiny virtuality s12. As we have done in the g → qq̄ splitting, we

can rewrite their contribution as

Sp(1,A)
g→gg + Sp(1,B)

g→gg = Π(p212)Sp
(0)
g→gg , (6.4)

with Π(p212) given in appendix B.
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Figure 10. Feynman diagrams associated with the scalar-gluon contribution to g(P̃ ) → g(p1)g(p2)

at NLO. We only consider diagrams which contribute non-trivially to the splitting amplitude.

When dealing with the scalar-gluon contribution, we find many possible diagrams.

However, as we have seen in the previous computations (explicitly in Sp
(1)
g→qq̄), the only

non-trivial terms arise from taking the trace of transverse metrics. In other words,

transverse indices have to form a closed chain and be completely contracted with metric

tensors; otherwise, we will have q2ǫ -integrals, which are set to zero when DDirac = 4. So,

following figure 10 and using effective Feynman rules for scalar-gluons, the SCA-nHV

contribution can be written as

Sp(1,SCA−nHV)
g→gg = Sp(1,A′)

g→gg + Sp(1,D′)
g→gg + Sp(1,E′)

g→gg , (6.5)

with

Sp(1,A′)
g→gg = −

g3sµ
3ǫǫ

s212
CAT

a(A) ǫµ(P̃ )ǫν(p1)ǫρ(p2) dαα1
(p12, n) V

Cin
3g (−p12, p1, p2;α1, ν, ρ)

×

∫

q

(2q − p12)µ (2q − p12)α
q2t12q

, (6.6)

Sp(1,D′)
g→gg = −

g3sµ
3ǫǫ

2s12
CAT

a(A) ǫµ(P̃ )ǫν(p1)ǫρ(p2)

∫

q

(2q − p12)µ
q2t12q

×

[

(2q − p1)ν (2q − 2p1 − p2)ρ
t1q

−
(2q − p2)ρ (2q − 2p2 − p1)ν

t2q

]

, (6.7)

Sp(1,E′)
g→gg = 0 . (6.8)

It is important to note that Sp
(1,E′)
g→gg is zero due to color properties. In fact, we get

fade (fbexfcdx + fbdxfcex) = 0 , (6.9)

where we have contracted the effective 2scalar-2gluon vertex with a factor fade coming

from the triple-gluon interaction.

6.1 Amplitude level results

As a first step, let’s study the possible structure of the splitting matrix. In this process

we have three physical momenta (p1, p2 and P̃ , or equivalently, n) and three physical

on-shell polarizations vectors. Since external legs are massless on-shell particles we have

the constraints

P̃ · ǫ(P̃ ) = 0 = n · ǫ(P̃ ) ⇒ p12 · (P̃ ) = 0 , (6.10)
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pi · ǫ(pi) = 0 = n · ǫ(pi) , i ∈ {1, 2} , (6.11)

where we have forced all the polarization vectors to vanish when contracted with the

null-vector n, relying in the gauge invariance. So, we have the following non-zero scalar

products:
{

p1 · ǫ(p2) , p2 · ǫ(p1) , (p1 − p2) · ǫ(P̃ )
}

, (6.12)

and
{

ǫ(p1) · ǫ(p2) , ǫ(p1) · ǫ(P̃ ) , ǫ(p2) · ǫ(P̃ )
}

, (6.13)

where we are using p1 · ǫ(P̃ ) = −p2 · ǫ(P̃ ). Now we have to form all the possible structures

that involve the three polarization vectors and that are compatible with the symmetry of

the system when interchanging particles 1 and 2. Thus we get

E1 = ǫ(p1) · ǫ(p2) p1 · ǫ(P̃ ) , (6.14)

E±
2 = p2 · ǫ(p1) ǫ(p2) · ǫ(P̃ )± p1 · ǫ(p2) ǫ(p1) · ǫ(P̃ ) , (6.15)

E3 = p1 · ǫ(p2) p2 · ǫ(p1) p1 · ǫ(P̃ ) , (6.16)

and notice that E+
2 is symmetric while E1,E

−
2 ,E3 are antisymmetric. After replacing

Feynman integrals in the expressions for Sp
(1,i)
g→gg and summing all the contributions, we

realize that only two structures survive: E1 + E−
2 (this is proportional to LO splitting)

and E1 −
2
s12

E3. So, we can write

Sp(1,STD)
g→gg =

cΓg
3
sµ

ǫTa(A)

ǫ2s12

(

−s12 − ı0

µ2

)−ǫ

×

[

C(STD,1)
g→gg

(

ǫ(p1) · ǫ(p2) p1 · ǫ(P̃ )+p2 · ǫ(p1) ǫ(p2) · ǫ(P̃ )−p1 · ǫ(p2) ǫ(p1) · ǫ(P̃ )
)

+ C(STD,2)
g→gg p1 · ǫ(P̃ )

(

ǫ(p1) · ǫ(p2)−
2

s12
p1 · ǫ(p2) p2 · ǫ(p1)

)]

, (6.17)

for the NLO standard contribution, where the coefficients C
(STD,i)
g→gg are given by

C(STD,1)
g→gg = 2CA

[

1− 2F1

(

1,−ǫ; 1− ǫ;
z1

z1 − 1

)

− 2F1

(

1,−ǫ; 1− ǫ;
z1 − 1

z1

)]

, (6.18)

C(STD,2)
g→gg =

2ǫ2 ((δǫ− 1)CA +Nf (1− βRǫ))

(ǫ− 1)(2ǫ− 1)(2ǫ− 3)
,

where we set αR = 1 to exclude HSA/HSB schemes.

Following eq. (3.19), Sp
(1)
g→gg can be rewritten as

Sp(1)
g→gg = Sp

(1)
H,g→gg + IC,g→gg

(

p1, p2; P̃
)

Sp(0)
g→gg , (6.19)

with

IC,g→gg

(

p1, p2; P̃
)

=
cΓg

2
s

ǫ2

(

−s12 − ı0

µ2

)−ǫ

CA

(

1− 2F1

(

1,−ǫ; 1− ǫ;
z1 − 1

z1

)

− 2F1

(

1,−ǫ; 1− ǫ;
z1

z1 − 1

))

(6.20)
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Sp
(1)
H,g→gg = cΓ

(

−s12 − ı0

µ2

)−ǫ

Ta(A)
2g3sµ

ǫ

s12

CA(δǫ− 1) +Nf (1− βRǫ)

(ǫ− 1)(2ǫ− 3)(2ǫ− 1)

×p1 · ǫ(P̃ )

(

ǫ(p1) · ǫ(p2)−
2

s12
p1 · ǫ(p2) p2 · ǫ(p1)

)

, (6.21)

as expected. Moving to the scalar-gluon contribution we obtain

Sp(1,SCA−nHV)
g→gg =

cΓg
3
sµ

ǫǫCAT
a(A)

s12(ǫ− 1)(2ǫ− 3)(2ǫ− 1)

(

−s12 − ı0

µ2

)−ǫ

p1 · ǫ(P̃ )

×

(

ǫ(p1) · ǫ(p2)−
2

s12
p1 · ǫ(p2) p2 · ǫ(p1)

)

, (6.22)

and comparing it with STD contributions in different schemes we get

Sp(1,STD,HV )
g→gg = Sp(1,STD,FDH)

g→gg + Sp(1,SCA−nHV)
g→gg , (6.23)

which agrees with the relation found for q → gq and g → qq̄ splittings.

6.2 NLO corrections to AP kernel

Finally we can compute the contributions to the Altarelli-Parisi kernels. At LO we have

〈µ| P̂ (0)
g→gg(z1, k⊥) |ν〉 = −

2g2sCA

z1(1− z1)

[

(1− 2(1− z1)z1)
(

(1− α)(η4)µν + α(ηDST)µν
)

+ 2
(1− z1)

2z21
k2⊥

kµ⊥k
ν
⊥ (1− αδǫ)

]

, (6.24)

P (0)
g→gg =

2g2s(1− (1− z1)z1)
2CA (1− αδǫ)

(1− z1)z1(1− αǫ)
, (6.25)

for the polarized and unpolarized kernels, respectively. Note that when we set α = 1, then

external gluons have 2−2ǫ polarizations and they are treated like DST-dimensional vectors.

So, we must set δ = 1, which allows us to cancel the α dependence in the unpolarized kernel.

Moving to NLO, we obtain

〈µ| P̂ (1)
g→gg(z1, k⊥) |ν〉 = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ [CA

ǫ2

(

1− 2F1

(

1,−ǫ; 1− ǫ;
z1 − 1

z1

)

− 2F1

(

1,−ǫ; 1− ǫ;
z1

z1 − 1

))

〈µ| P̂ (0)
g→gg(z1, k⊥) |ν〉

+
2g2sCA (1− 2αδ(1− z1)z1ǫ) (CA(δǫ− 1) +Nf (1− βRǫ))

s12(1− z1)z1(ǫ− 1)(2ǫ− 3)(2ǫ− 1)
kµ⊥k

ν
⊥

]

+c.c. , (6.26)

P (1)
g→gg = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ CA

ǫ2

[

g2sǫ
2 (1− 2αδǫz1(1− z1)) (CA(δǫ− 1) +Nf (1− βRǫ))

(1− αǫ)(ǫ− 1)(2ǫ− 3)(2ǫ− 1)

+

(

1−2 F1

(

1,−ǫ; 1−ǫ;
z1−1

z1

)

−2F1

(

1,−ǫ; 1−ǫ;
z1

z1−1

))

P (0)
g→gg

]

+c.c., (6.27)

where α = 1 in CDR and α = 0 in FDH/HV schemes. It is worth noticing that the polarized

kernel contains some terms proportional to P̃µ and nµ, but since P̃ · ǫ(P̃ ) = n · ǫ(P̃ ) = 0

we neglect them to simplify the result.
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7 Splittings matrices involving photons

Let’s consider an extension of massless QCD with the inclusion of a QED photon. This is a

natural step when we want to study photon-production in the context of hadron colliders,

since photons represent a very clean signal in the detector and QCD corrections can not

be ignored. This model can be described by extending the gauge group to SU(3)C ×U(1)E
which involves adding a new vector field Aµ. The associated D-dimensional Lagrangian

reads

LQCD+QED = LQCD −
∑

Q

geµ
ǫEQδij Ψ̄

i
Qγ

µΨj
QAµ −

1

4
FµνFµν , (7.1)

where {i, j} are color indices, ge is the electromagnetic coupling (i.e. the absolute value

of electron charge), EQ is the charge of quark’s flavor Q (Eu,c,t = 2/3 and Ed,s,b = −1/3)

and Fµν = ∂µAν − ∂νAµ is the gauge-field strength tensor for the Abelian group U(1)E .

From the interaction term, we can deduce that the Feynman rule for the quark-photon-

quark vertex is −ıgeµ
ǫEQ γµ and it is proportional to the identity matrix IdC in the

color space. Since quarks belong to the fundamental representation of SU(3)C , then

Tr(IdC) = NC = CA which is going to be important when computing AP kernels.

In the next subsections, we show the associated splitting functions at NLO in the QCD

coupling constant αs: Spq→γq and Spγ→qq̄. It is worth noticing that processes involving

two photons and one gluon (i.e γ → γg or g → γγ) vanish due to color conservation,

because they are proportional to Tr(Ta(F )) = 0. On the other hand, there are not

splittings with one photon and two gluons, because they involve a fermion loop with three

vectors attached to it and, after summing all diagrams, we arrive to an expression which

is again globally proportional to Tr(Ta(F )) = 0.

It is worth noticing that we can check the divergent structure of splitting matrices

involving photons using a formula similar to eq. (3.19). For 1 → 2 processes, any splitting

can be written as

Sp(1)
(

p1, p2; P̃
)

= Sp
(1)
H

(

p1, p2; P̃
)

+ I
γ
C

(

p1, p2; P̃
)

Sp(0)
(

p1, p2; P̃
)

, (7.2)

with Sp
(1)
H finite in the limit ǫ → 0 and containing only rational functions of p1, p2 and P̃ ,

and

I
γ
C

(

p1, p2; P̃
)

= cΓg
2
s

(

−s12 − ı0

µ2

)−ǫ

×

{

1

ǫ2
(C12 − C1 − C2) +

1

ǫ
(γ12 − γ1 − γ2)

−
1

ǫ
[(C12 + C1 − C2) f(ǫ, z1) + (C12 + C2 − C1) f(ǫ, 1− z1)]

}

, (7.3)

associated with the divergent contributions. Note that eq. (7.3) is very similar to eq. (3.20),

with the exception of single pole proportional to b0. Explicitly,

I
γ
C

(

p1, p2; P̃
)

= IC

(

p1, p2; P̃
)

− cΓg
2
s

(

−s12 − ı0

µ2

)−ǫ b0
ǫ
, (7.4)
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Figure 11. Feynman diagrams associated with q(P̃ ) → γ(p1)q(p2) at LO and NLO. We include

also the SCA-nHV contributions.

which is related to the fact that this kind of splitting only involves two colored-particles

and we have to remove the single ǫ-pole coming from the renormalization of QCD coupling.

Also, we have to take into account that Cγ = 0 = γγ because photons do not carry color.

Finally, since we are interested in studying the scheme dependence of splitting ampli-

tudes, we are treating external photons and gluons in the same way. In other words, we

can adapt the conventions shown in section 2 for gluons to obtain

nγ = 2− 2αǫ , (7.5)
∑

phys.pol.

ǫµ(p)ǫ
∗
ν(p) = −

(

η4µν + αηDST−4
µν

)

+
pµnν + pνnµ

n · p
, (7.6)

where ǫ(p) denotes the polarization vector associated to photons. The advantage of choos-

ing this gauge is that it allows us to make a straightforward reduction from the pure QCD

splittings, since this implies that ǫ(p) · n = 0 also for photons.

7.1 q → γq

This process can be considered as an Abelianization of q → gq, because it is not possible to

have a triple-gluon vertex contribution. So, having performed a detailed study of q → gq

in previous sections, we are able to extract some important results for q → γq without

doing a full computation again.

First of all, the list of possible Feynman diagrams up to O
(

α2
s

)

is shown in figure 11.

Note that they are essentially the same that we used for q → gq (see figures 4 and 5),

except for the diagrams that include a triple-gluon vertex. At LO we have

Sp(0)
q→γq =

geEQµ
ǫ

s12
IdC ū(p2)/ǫ(p1)u(P̃ ) , (7.7)
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while the NLO standard-QCD corrections can be written as

Sp(1,STD)
q→γq = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ

IdC
geEQµ

ǫCF

s12ǫ2

[

C(STD,1)
q→γq ū(p2)/ǫ(p1)u(P̃ )

+ C(STD,2)
q→γq

1

nP
ū(p2)/nu(P̃ )p2 · ǫ(p1)

]

, (7.8)

where the coefficients C
(STD,i)
q→γq are given by

C(STD,1)
q→γq =

ǫ2(δǫ− 1)

(ǫ− 1)(2ǫ− 1)
+ 2− 2 2F1

(

1,−ǫ; 1− ǫ;
z1

z1 − 1

)

, (7.9)

C(STD,2)
q→γq =

1− δǫ

(ǫ− 1)(2ǫ− 1)
. (7.10)

Analogously, for the NLO scalar-gluon contribution we have

Sp(1,SCA−nHV)
q→γq = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ

IdC
ǫgeEQµ

ǫCF

s12(2ǫ− 1)(ǫ− 1)

[

ū(p2)/ǫ(p1)u(P̃ )

−
1

nP
ū(p2)/nu(P̃ )p2 · ǫ(p1)

]

, (7.11)

and it is straightforward to verify that

Sp(1,STD,HV )
q→γq = Sp(1,STD,FDH)

q→γq + Sp(1,SCA−nHV)
q→γq , (7.12)

which shows that the cancellation of scalar degrees of freedom occurs separately in Abelian

and non-Abelian vertices.

As a consistency check, following eq. (7.2), we rewrite Sp
(1)
q→γq as

Sp(1)
q→γq = Sp

(1)
H,q→γq + I

γ
C,q→γq

(

p1, p2; P̃
)

Sp(0)
q→γq , (7.13)

with

I
γ
C,q→γq = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ 2CF

ǫ2

(

1− 2F1

(

1,−ǫ; 1− ǫ;
z1

z1 − 1

))

, (7.14)

Sp
(1)
H,q→γq = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ

IdC
geEQµ

ǫCF (δǫ− 1)

s12(2ǫ− 1)(ǫ− 1)

[

ū(p2)/ǫ(p1)u(P̃ )

−
1

nP
ū(p2)/nu(P̃ )p2 · ǫ(p1)

]

, (7.15)

where we see that the divergent part (which contains ǫ-poles and branch-cuts) is isolated

into I
γ
C , while Sp

(1)
H only contains rational functions and is finite in the limit ǫ → 0.

Moreover, the new spinor chain which appears in the NLO computation is entirely

contained in Sp
(1)
H .

Finally, we can compute the corresponding contributions to the Altarelli-Parisi kernel.

Since it is a quark initiated process, the polarized kernel verifies

〈s| P̂q→γq(z1, k⊥)
∣

∣s′
〉

= δs,s′Pq→γq , (7.16)
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due to helicity conservation. So, the unpolarized kernel at LO is given by

P (0)
q→γq = g2eE

2
Q

1 + (1− z1)
2 − αδǫz1

z1
, (7.17)

where we can appreciate that the result is independent of the number of fermion polariza-

tions. On the other hand, at NLO we have

P (1)
q→γq = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫCF

ǫ2

[(

2 + ǫ(ǫ(3 + δǫ)− 6)

(ǫ− 1)(2ǫ− 1)
− 2 2F1

(

1,−ǫ; 1− ǫ;
z1

z1 − 1

))

× P (0)
q→γq +

g2eE
2
Qǫ

2(z1 − 1)(z1 − 2)(1− δǫ)

z1(2ǫ− 1)(ǫ− 1)

]

+ c.c. , (7.18)

where α is a parameter that allows us to change between CDR (α = 1) and HV/FDH

(α = 0) schemes.

7.2 γ → qq̄

Finally, we arrive to Spγ→qq̄. Starting with g → qq̄, we have to replace the incoming leg

with a photon, which forces us to eliminate self-energy correction (diagrams A and D in

figure 7) and other term which includes a triple-gluon vertex. So, up to O
(

α2
s

)

, we only

have the diagrams shown in figure 12. The LO contribution reads

Sp
(0)
γ→qq̄ =

geEQµ
ǫ

s12
IdC ū(p1)/ǫ(P̃ )v(p2) , (7.19)

while standard NLO correction is

Sp
(1,STD)
γ→qq̄ = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ

IdC
geEQµ

ǫ

ǫ2s12

[

C
(STD,1)
γ→qq̄ ū(p1)/ǫ(P̃ )v(p2)

+ C
(STD,2)
γ→qq̄

1

nP
ū(p1)/nv(p2)p1 · ǫ(P̃ )

]

, (7.20)

with

C
(STD,1)
γ→qq̄ = CF

ǫ(3− ǫ(2− δ(2ǫ− 1)))− 2

(ǫ− 1)(2ǫ− 1)
, (7.21)

C
(STD,2)
γ→qq̄ = 0 . (7.22)

On the other hand, for the NLO scalar-gluon contribution we have

Sp
(1,SCA−nHV)
γ→qq̄ = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ CF

ǫ− 1
Sp

(0)
γ→qq̄ , (7.23)

and, again, we find that the relation

Sp
(1,STD,HV )
γ→qq̄ = Sp

(1,STD,FDH)
γ→qq̄ + Sp

(1,SCA−nHV)
γ→qq̄ , (7.24)

is fulfilled.
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Figure 12. Feynman diagrams associated with γ(P̃ ) → q(p1)q̄(p2) at LO and NLO. We include

also the SCA-nHV amplitudes.

Testing the divergent structure of Sp
(1)
γ→qq̄ we find that

Sp
(1)
γ→qq̄ = Sp

(1)
H,γ→qq̄ + I

γ
C,γ→qq̄

(

p1, p2; P̃
)

Sp
(0)
γ→qq̄ , (7.25)

with

I
γ
C,γ→qq̄ = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ

CF

(

−
2

ǫ2
−

3

ǫ

)

, (7.26)

Sp
(1)
H,γ→qq̄ = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ

CF
2(3 + δ)ǫ− 7− δ

(ǫ− 1)(2ǫ− 1)
Sp

(0)
γ→qq̄ , (7.27)

as expected according to eq. (7.2).

Finally, the corresponding contributions to the Altarelli-Parisi kernels are

〈µ| P̂
(0)
γ→qq̄(z1, k⊥) |ν〉 = −g2eE

2
QCA(1− βǫ)

(

(ηDDirac)µν +
4(z1 − 1)z1

k2⊥
kµ⊥k

ν
⊥

)

, (7.28)

P
(0)
γ→qq̄ =

g2eE
2
QCA(1− 2(1− z1)z1 − αδǫ)(1− βǫ)

1− αǫ
, (7.29)

for the LO terms and

P
(1)
γ→qq̄ = cΓg

2
s

(

−s12 − ı0

µ2

)−ǫ CF

ǫ2
ǫ
(

2δǫ2 − (δ + 2)ǫ+ 3
)

− 2

(ǫ− 1)(2ǫ− 1)
P

(0)
γ→qq̄ + c.c. , (7.30)

for the unpolarized NLO correction. The NLO polarized kernel can be expressed as

〈µ| P̂
(1)
γ→qq̄(z1, k⊥) |ν〉 =

P
(1)
γ→qq̄

P
(0)
γ→qq̄

〈µ| P̂
(0)
γ→qq̄(z1, k⊥) |ν〉 (7.31)

because Sp
(1)
γ→qq̄ is proportional to Sp

(1)
γ→qq̄.

8 Conclusions

In this work we have studied the double collinear limit and we computed the associated

splitting matrices at NLO in αs for both pure QCD and QCD plus photon-quark inter-

actions. As a first consistency check, we have verified that the divergent structure of

splitting matrices agrees with the general form shown in the literature (for example, in
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refs. [3, 14, 16]). Moreover, we found that the scheme dependence can be predicted up to

O
(

ǫ0
)

using eq. 11 in ref. [35]. Also, we compared our results for usual DREG schemes

with those available in ref. [25], and, again, we found an agreement.

Besides the comparison of explicit results, we shown that FDH and HV schemes can

be related at the amplitude level by introducing scalar-gluons. In fact, we verified that

the relation

Sp(1,STD,HV ) = Sp(1,STD,FDH) + Sp(1,SCA−nHV) , (8.1)

is always fulfilled. Moreover, if we only consider fixed helicity configurations allowed by

standard 4-dimensional QCD interactions, then we can extend the validity of eq. (8.1) to

include the CDR scheme. This is an important fact because it allows us to perform the

same computation following two different paths, each of them having advantages in certain

situations. For example, if we want to compute fixed-polarization splitting amplitudes (or

matrices) in the CDR/HV scheme, it is more suitable to work with the r.h.s. of eq. (8.1),

because we settle DDirac = 4 and many useful identities can be used. In particular, we

can use Fierz identities to contract spinor chains and reduce them to bispinor products.

The improvement in the treatment of results can be much better when more particles are

involved (for instance, when studying the multiple-collinear limit).

On the other hand, if we want to compute Altarelli-Parisi kernel corrections, it is

better to use the l.h.s. of eq. (8.1) and work with DDirac = 4 − 2ǫ. The reason is that

when we close spinor chains and sum over polarizations, we get rid of spinors and obtain

traces which involves Dirac’s matrices. Since the relations that we use to solve Dirac’s

traces are valid with any value of DDirac, then we can simplify them and the final result

only contains scalar products. Also, we do not have to compute each helicity configuration

separately, which makes the computation straightforward. This can be considered a great

advantage, even if this procedure involves dealing with tensor type integrals which can

have up to three free Lorentz indices. (In appendix A we collect all the integrals required

for the double collinear limit).

In the context of AP kernels, we also showed that it is possible to relate CDR and HV

computations by just taking into account external scalar gluons. In fact, for the q → gq

process, we find

PCDR
q→gq = PHV

q→gq + Pq→φq , (8.2)

which is a complement to eq. (8.1) at the squared-amplitude level. Of course this relation

can be extended to more general processes: we just have to decompose external gluons

into 4-dimensional vectors plus scalar particles and compute each contribution separately.

Finally, let’s make some comments about the alternative schemes studied in this arti-

cle. In section 2 we introduced some parameters that allowed us to control Dirac’s algebra

dimension (δ), the number of gluon polarizations (αR and α for internal and external

particles, respectively) and the number of fermion polarizations (βR for internal fermions

and β for external ones). By examining the behavior of Sp
(1)
q→gq with different parameter’s

values and comparing the divergent structure predicted by eqs. (3.19) and (3.20), we
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conclude that the hybrid-schemes (i.e. αR = 0) are not consistent unless we include the

corresponding scalar-gluon contributions. But, after adding these contributions, we get

the same results provided by HV and CDR schemes. In other words, we show that the

consistent version of HSA and HSB schemes are CDR and HV, respectively.

As anticipated in section 2, FDH and TSC schemes are compatible with the super-

symmetric Ward identity, even at one-loop level. In ref. [36], it was shown that tree-level

Altarelli-Parisi kernels computed in FDH and TSC schemes fulfilled this identity, i.e.

Pg→gg(z) + Pg→qq̄(z) = Pq→qg(1− z) + Pq→qg(z) , (8.3)

given that we set CA = CF = TR = Nf . In this situation, if we identify quarks and gluinos

then QCD is similar to N = 1 super Yang-Mills theory. From a physical point of view,

this is possible because we consider the same number of bosonic and fermionic degrees of

freedom. However, from eqs. (4.46), (5.27) and (6.27) we can explicitly show that eq. (8.3)

is verified at one-loop level, for both FDH and TSC schemes. This result makes TSC an

interesting choice, since it has a very symmetric and democratic way of treating all the

particles involved in the computation.

It is interesting to appreciate that we performed the computations following a path

that allowed us to keep track of Lorentz indices and metric tensors. In other words, we

replaced integrals in Sp(1) before contracting with Sp(0) and summing over polarizations.

This involved dealing with tensor-type integrals, which makes the calculation more

complicated. If we were only interested in obtaining NLO corrections to AP-kernels, we

could have first performed the contraction, and then replace the corresponding scalar

integrals. However, scalar q2ǫ -integrals could appear in all schemes, with the exception of

CDR. In spite of that, this approach is better suited when considering multiple-collinear

splitting amplitudes, because tensor-type integrals become very lengthy and complicated

when increasing the number of external physical momenta.

The natural next-step of this work is to extend the analysis to cover the multiple-

collinear limit, and the possibility of computing them using recursion-relations [52], even

at loop-level.
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A Loop integrals in the light-cone gauge

Here we show the list of Feynman integrals used to perform the computations of standard

double-collinear splitting functions. First of all, following ref. [25], we introduce the
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auxiliary functions

f1(z) =
2cΓ
ǫ2

(

−Γ(1− ǫ)Γ(1 + ǫ)z−1−ǫ(1− z)ǫ −
1

z
+

(1− z)ǫ

z
2F1(ǫ, ǫ; 1 + ǫ; z)

)

= −
2cΓ
ǫ2z

2F1

(

1,−ǫ; 1− ǫ;
z − 1

z

)

, (A.1)

f2 = −
cΓ
ǫ2

, (A.2)

where z ∈ [0, 1], since it is a partonic momentum fraction. On the other hand, due to the

fact that double-collinear limit only involves 1 → 2 processes, we will have bubble and

triangle integrals.

Let’s start with scalar integrals. We have three different types of bubbles

I1 =

∫

q

1

q2(q − p12)2
=

f2ǫ(−s12 − ı0)−ǫ

2ǫ− 1
, (A.3)

I2 =

∫

q

1

q2(q − p12)2nq
=

f2(−s12 − ı0)−ǫ

nP
, (A.4)

I3 =

∫

q

1

q2(q − p12)2n · (q − p1)
=

cΓ(−s12 − ı0)−ǫ

nPz1(1− 2ǫ)ǫ
2F1

(

1, 1− ǫ; 2− 2ǫ;
1

z1

)

, (A.5)

and three triangle integrals

I4 =

∫

q

1

q2(q − p1)2(q − p12)2
= −

f2
s12

(−s12 − ı0)−ǫ , (A.6)

I5 =

∫

q

1

q2(q − p1)2(q − p12)2nq
=

f1(z1)(−s12 − ı0)−ǫ

s12nP
, (A.7)

I6 =

∫

q

1

q2(q + p1)2(q − p2)2nq
=

(z1(2− 4ǫ) + 2ǫ− 1) I1 + ǫnP I3
nPs12(z1 − 1)z1(2ǫ+ 1)

, (A.8)

where pi are the four-momenta associated with the outgoing massless particles i, p12 = p1+

p2 is the incoming particle momentum, which satisfies p212 = s12, and nP = n·p12 = n·P̃ . It

is important to note that more scalar integrals are required for the computations performed

in this work, but we can recover them from these results by just changing variables or

relabeling momenta. Moreover, when using conventional schemes (FDH, HV and CDR),

contributions proportional to I3 and I6 vanish.

Since in intermediate steps we left many Lorentz indices uncontracted, we also

required tensor-type integrals with up to three free indices. To get them, we used

Passarino-Veltman decomposition and the Mathematica package FIRE [48, 49] to reduce

scalar integrals. The required bubble integrals were

I7(µ) =

∫

q

qµ

q2(q − p12)2
= −

f2(−s12 − ı0)−ǫ

2(1− 2ǫ)
pµ12 , (A.9)

I8(µ, ν) =

∫

q

qµqν

q2(q − p12)2
=

2− ǫ

2(3− 2ǫ)
I1

(

pµ12p
ν
12 −

s12
4− 2ǫ

ηµν
)

, (A.10)

I9(µ) =

∫

q

qµ

q2(q − p12)2nq
=

ǫf2(−s12 − ı0)−ǫ

nP (2ǫ− 1)

(

pµ12 −
s12
2nPǫ

nµ
)

, (A.11)
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I10(µ, ν) =

∫

q

qµqν

q2(q − p12)2nq
=

ǫf2(−s12 − ı0)−ǫ

4nP (ǫ− 1)(2ǫ− 1)

(

s12η
µν + pµ12

(

2(ǫ− 1)pν12 −
s12
nP

nν
)

+
s12
nP

nµ
( s12
ǫnP

nν − pν12

))

, (A.12)

I11(µ) =

∫

q

qµ

(q + p1)2(q − p2)2nq
=

1

2nP 2
[s12n

µ (I3nP (1− 2z1)− 2I1)

+ 2nPpµ12 (I1 + I3nP (1− z1)) + 2I3nP
2pµ2
]

, (A.13)

I12(µ, ν) =

∫

q

qµqν

(q + p1)2(q − p2)2nq
= s12η

µν (1− 2z1)I1 + 2I3nP (1− z1)z1
4nP (ǫ− 1)

+
pµ2p

ν
2

2nP

(

(2z1 + 1)I1 + 2I3nPz21
)

+
pµ1p

ν
1

2nP

(

(2z1 − 3)I1 + 2I3nP (1− z1)
2
)

+
s212n

µnν

4nP 3(ǫ− 1)
((2z1 − 1)(2ǫ− 3)I1 + I3nP (2(z1 − 1)z1(2ǫ− 3) + ǫ− 1))

+
s12 (p

ν
2n

µ + pµ2n
ν) ((z1(6− 4ǫ)− 1)I1 + 2I3nPz1(z1(3− 2ǫ) + ǫ− 2))

4nP (ǫ− 1)

+
s12 (p

ν
1n

µ + pµ1n
ν) ((z1(6− 4ǫ) + 4ǫ− 5)I1 − 2I3nP (z1 − 1)(z1(2ǫ− 3)− ǫ+ 1))

4nP (ǫ− 1)

+
pµ2p

ν
1 + pµ1p

ν
2

2nP
((2z1 − 1)I1 + 2I3nP (z1 − 1)z1) . (A.14)

Tensor-type triangle integrals used in this this work were

I13(µ) =

∫

q

qµ

q2(q − p1)2(q − p12)2
= −

f2(−s12 − ı0)−ǫ ((ǫ− 1)pµ1 + ǫpµ2 )

(2ǫ− 1)s12
, (A.15)

I14(µ, ν) =

∫

q

qµqν

q2(q − p1)2(q − p12)2
=

f2(−s12 − ı0)−ǫ

4(1− ǫ)(2ǫ− 1)

(

2ǫ

s12
pµ2 ((ǫ− 2)pν1 + (ǫ− 1)pν2)

+
2(ǫ− 2)

s12
pµ1 ((ǫ− 1)pν1 + ǫpν2) + ǫηµν

)

, (A.16)

I15(µ, ν, ρ) =

∫

q

qµqνqρ

q2(q − p1)2(q − p12)2
=

f2(−s12 − ı0)−ǫ

4(1− ǫ)(2ǫ− 3)(2ǫ− 1)

×

[

ǫ

(

pρ1(ǫ− 2)

(

ηµν + 2
(ǫ− 1)(ǫ− 3)

s12(ǫ− 2)
pµ2p

ν
2

)

+ pν1(ǫ− 2)

(

ηµρ + 2
(ǫ− 3)

s12
pµ2p

ρ
1 + 2

(ǫ− 1)(ǫ− 3)

s12(ǫ− 2)
pµ2p

ρ
2

)

+ (ǫ− 1)

(

(pρ2η
µν + pν2η

µρ) + pµ2

(

ηνρ + 2
(ǫ− 2)

s12
pν2p

ρ
2

)))

+ pµ1 (ǫ− 2)

(

ǫ

(

ηνρ + 2
(ǫ− 3)

s12
pν2p

ρ
1 + 2

(ǫ− 1)(ǫ− 3)

s12(ǫ− 2)
pν2p

ρ
2

)

+ 2
(ǫ− 3)

s12
pν1 ((ǫ− 1)pρ1 + ǫpρ2)

)]

, (A.17)

I16(µ) =

∫

q

qµ

q2(q − p1)2(q − p12)2nq
=

(−s12 − ı0)−ǫ

2nPs12(1− z1)

(

pµ2
z1f1(z1)− 2f2

1− z1

− f1(z1)p
µ
1 −

s12(f1(z1)− 2f2)

2nP (1− z1)
nµ

)

, (A.18)

I17(µ, ν) =

∫

q

qµqν

q2(q − p1)2(q − p12)2nq
= −

(−s12 − ı0)−ǫ

s12nP

[

f5,aa(z1)p
µ
1p

ν
1

+ f5,ab(z1)
pµ1p

ν
2 + pµ2p

ν
1

2
+ f5,bb(z1)p

µ
2p

ν
2 +

( s12
2nP

)2

f5,qq(z1)n
µnν
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+ s12f5,aq(z1)
pµ1n

ν + nµpν1
2nP

+ s12f5,bq(z1)
pµ2n

ν + nµpν2
2nP

+ s12f5,gη
µν

]

, (A.19)

I18(µ) =

∫

q

qµ

q2(q + p1)2(q − p2)2nq
=

(1− 2ǫ)I1
2nPs12(1− z1)z1ǫ

(

(1− z1)p
µ
1 + z1p

µ
2 −

s12
2nP

nµ
)

+
I3

2s12(1− z1)z1

(

(1− z1)p
µ
1 − z1p

µ
2 +

s12(1− 2z1)

2nP
nµ

)

, (A.20)

I19(µ, ν) =

∫

q

qµqν

q2(q + p1)2(q − p2)2nq
=

1

4nP s12z1(1− z1)

[

f19,aa(z1, s12, nP )pµ1p
ν
1

+ f19,ab(z1, s12, nP )
pµ1p

ν
2 + pµ2p

ν
1

2
+ f19,bb(z1, s12, nP )pµ2p

ν
2

+ f19,qq(z1, s12, nP )nµnν + f19,aq(z1, s12, nP )
pµ1n

ν + nµpν1
2

+ f19,bq(z1, s12, nP )
pµ2n

ν + nµpν2
2

+ f19,g(z1, s12, nP )ηµν
]

, (A.21)

where coefficients {f5,ij , f5,g} are given in ref. [25] and

f19,aa(z1, s12, nP ) =
1− z1

z1(2ǫ− 1)

[

I1nP (2z1ǫ+ ǫ− 1) + Ī13s12(ǫ− 1) + nPz1(2I3nP (z1 − 1)ǫ

+ I4s12(ǫ− 1))] , (A.22)

f19,ab(z1, s12, nP ) =
2ǫ(nP (−2I1z1 + I1 + z1(I4s12 − 2I3nP (z1 − 1))) + Ī13s12)

2ǫ− 1
, (A.23)

f19,bb(z1, s12, nP ) =
z1

(1− z1)(2ǫ− 1)

[

I1nP ((2z1 − 3)ǫ+ 1) + Ī13s12(ǫ− 1)

+ nPz1(2I3nP (z1 − 1)ǫ+ I4s12(ǫ− 1))] , (A.24)

f19,qq(z1, s12, nP ) =
s212

4nP 2(1− z1)z1(2ǫ− 1)
[I1nP (2z1 − 1)(2(z1 − 1)z1(2ǫ− 1)− ǫ+ 1)

+ s12(ǫ− 1)(Ī13 + I4nPz1) + 2I3nP
2(z1 − 1)z1 (2(z1 − 1)

× z1(2ǫ− 1) + ǫ)] , (A.25)

f19,aq(z1, s12, nP ) = −
s12

nPz1(2ǫ− 1)
[I1nP (2z1(−2z1ǫ+ z1 + ǫ) + ǫ− 1)

+ s12(ǫ− 1)(Ī13 + I4nPz1) + 2I3nP
2(z1 − 1)z1(−2z1ǫ+ z1 + ǫ)

]

, (A.26)

f19,bq(z1, s12, nP ) =
s12

nP (z1 − 1)(2ǫ− 1)
[I1nP (2z1(z1(2ǫ− 1)− 3ǫ+ 2) + ǫ− 1)

+ Ī13s12(ǫ− 1) + nPz1(2I3nP (z1 − 1)(2z1ǫ− z1 − ǫ+ 1)

+ I4s12(ǫ− 1))] , (A.27)

f19,g(z1, s12, nP ) =
s12(nP (−2I1z1 + I1 + z1(I4s12 − 2I3nP (z1 − 1))) + Ī13s12)

2(2ǫ− 1)
, (A.28)

with Ī13 = I13(α)n
α.

Finally, let’s make a brief comment about q2ǫ -integrals. They appear if we introduce

4-dimensional metric tensors when performing the computation with DDirac = 4 − 2ǫ.

This situation is only possible in the context of HSA/HSB schemes, which were defined

in section 2. To compute q2ǫ -integrals we require tensor-type Feynman integrals with rank

greater than 2, and then we have to contract them with a transverse-dimensional metric

tensor ηǫ. The scalar integrals required in our computations are

Iǫ1 =

∫

q

q2ǫ
q2(q − p1)2(q − p12)2

=
(4−DDirac)f2ǫ

4(ǫ− 1)(2ǫ− 1)
(−s12 − ı0)−ǫ , (A.29)
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Iǫ2 =

∫

q

q2ǫ
q2(q − p1)2(q − p12)2nq

=
(4−DDirac)f5,g(z1)

nP
(−s12 − ı0)−ǫ , (A.30)

Iǫ3 =

∫

q

q2ǫ
q2(q + p1)2(q − p2)2nq

=
(DDirac − 4)

4nP (1− z1)z1(1− 2ǫ)2
[I1(2z1 − 1)(2ǫ− 1)

+ I2 nP (ǫ− z1) + z1(2ǫ− 1)(2I3 nP (z1 − 1) + I4s12)] , (A.31)

and, also, we used some vector-type q2ǫ -integrals

Iǫ4(µ) =

∫

q

qµq2ǫ
q2(q + p1)2(q − p2)2n · (q + p1)

=
DDirac − 4

8(1− z1)(2ǫ− 1)

[

(2I2 − s12z1I5)p
µ
1

+

(

2(1−2z1)I2+s12z
2
1I5

z1 − 1
+

2I2
1− ǫ

)

pµ2+

(

z1(2I2−s12I5)

z1 − 1
+

2I2
ǫ− 1

)

s12n
µ

2nP

]

, (A.32)

Iǫ5(µ) =

∫

q

qµq2ǫ
q2(q + p1)2(q − p2)2nq

=
DDirac − 4

8(2ǫ− 1)(ǫ− 1)

[

2 ((1− z1)(2ǫ− 1)I3 − ǫI2) p
µ
1

+ 2 (z1(1− 2ǫ)I3 − ǫI2) p
µ
2 + (2ǫI2 + (2z1 − 1)(2ǫ− 1)I3)

s12n
µ

nP

]

. (A.33)

B Parton self-energies

B.1 Gluon self-energy

When computing the gluon self-energy at one-loop level, we find that there are two

Feynman diagrams which contribute to Πµν . They are shown in figure 13. Using

conventional Feynman rules, we define

Πµν(p) = Πµν
A (p) + Πµν

B (p) , (B.1)

with

Πµν
A (p) =

(

g2sµ
2ǫNfTr

[

TaTb
])

∫

q

Tr
[

γν/qγµ(/q − /p)
]

q2(q − p)2
, (B.2)

Πµν
B (p) =

g2sµ
2ǫfadcfdbc
2

∫

q

dσσ′(q)dρρ′(p− q)

q2(q − p)2

×V Cin
3g (−p, q, p− q;µ, σ, ρ)V Cin

3g (−q, p, q − p;σ′, ν, ρ′) , (B.3)

where we are using p as the external momenta which verifies p2 = s.

After integrating the loop-momentum we arrive to

Πµν
A (p) =

2f2g
2
s(ǫ− 1)ǫNf (1− βRǫ)δab (sη

µν − pµpν)

4(ǫ− 2)ǫ+ 3

(

−s− ı0

µ2

)−ǫ

, (B.4)

Πµν
B (p) =

f2g
2
sCAδab

2np2(4(ǫ− 2)ǫ+ 3)

(

−s− ı0

µ2

)−ǫ
(

np2s
(

−(D + 38)ǫ+ 16ǫ2 + 24
)

ηµν + np pµ

− ((D−2)np ǫ pν−8s(ǫ−1)(2ǫ−3)nν)+8s(ǫ−1)(2ǫ−3)nµ (snν−np pν)) , (B.5)

where f2 = −cΓ/ǫ
2. Note that there some terms which are proportional to D. To

understand the origin of these terms, we put a flag multiplying the metric tensor inside
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Figure 13. Diagrams contributing to the gluon self-energy Πµν at NLO. We explicitly indicate the

conventions used for labeling momenta and color and Lorentz indices.

dµν and we follow it until we arrive to the final result. The conclusion is that they are

always proportional to the contraction of two gluon propagators, so this D is related to

the number of polarizations of internal gluons. Thus, we replace D → 4− 2δǫ, with δ = 0

in FDH and δ = 1 in HV/CDR schemes.

With the aim of simplifying the result, we study separately each tensorial structure

and reduce the associated coefficients. Our final result is

Πµν(p) = f2g
2
s

(

−s− ı0

µ2

)−ǫ

δab

[

CA(ǫ((δ + 8)ǫ− 21) + 12) + 2(ǫ− 1)ǫNf (1− βRǫ)

4(ǫ− 2)ǫ+ 3

× (sηµν − pµpν) +
4s(ǫ− 1)CA

2ǫ− 1

(

pµpν

s
−

nµpν + nνpµ

np
+

s

np2
nµnν

)]

. (B.6)

Before moving forward, let’s define the following factor

Π(p2) = −f2g
2
s

(

−s− ı0

µ2

)−ǫ CA(ǫ((δ + 8)ǫ− 21) + 12) + 2(ǫ− 1)ǫNf (1− βRǫ)

4(ǫ− 2)ǫ+ 3
, (B.7)

which is the same that we introduced in eq. (5.4).

To conclude this section, let’s mention some properties of Πµν . First of all, it satisfies

current conservation, that is

pµΠ
µν(p) = 0 = pνΠ

µν(p) . (B.8)

If we contract it with two gluon-propagators we get

ıdµ′µ(p)

s
(−ıΠµν(p))

ıdνν′(p)

s
= ıδab

[

Π(p2)

(

−ην′µ′ +
pν′nµ′ + nν′pµ′

np

)

+ g2sf2

(

−s− ı0

µ2

)−ǫ 4(ǫ− 1)CAnν′nµ′

np2(2ǫ− 1)

]

, (B.9)

and if we only consider the leading contribution in the limit s → 0, we obtain

ıdµ′µ(p)

s
(−ıΠµν(p))

ıdνν′(p)

s
≈ Π(p2)δab

ıdµ′ν′(p)

s
, (B.10)

that is proportional to dµ′ν′(p).
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Figure 14. Diagram contributing to the quark self-energy Σ at NLO. We explicitly indicate the

conventions used for labeling momenta and Lorentz indices.

On the other hand, if we contract Πµν(p) with a propagator and a polarization vector

associated with a massless external leg with momentum

P̃µ = pµ −
s

2np
nµ , (B.11)

then we obtain

ıdµ′µ(p)

s
(−ıΠµν(p)) ǫν(P̃ ) = Π(p2) ǫµ′(P̃ ) , (B.12)

where we have used that pνǫν(P̃ ) = 0 = nνǫν(P̃ ) to simplify the expressions. Again, we

note that the result is a numerical factor times the polarization vector, which explains why

self-energy corrections are proportional to Sp(0) (see eqs. (5.4) and (6.4)). And, moreover,

that numerical factor is the same that we found when we contracted Πµν(p) with two

gluon propagators.

B.2 Quark self-energy

In this case, there is only one Feynman diagram which contributes to Σ and it is shown in

figure 14. Using conventional Feynman rules, we define

Σij(p) = g2sµ
2ǫ(TaTa)ij

∫

q

γν(/p− /q)γµ

q2(q − p)2
dµν(q) , (B.13)

where we use the definitions introduced in previous sections.

After integrating the loop-momentum we arrive to

Σ(p) = −
f2g

2
sµ

2ǫCF ((D − 2)npǫ/p + 4s(ǫ− 1)/n)

2np(2ǫ− 1)

(

−s− ı0

µ2

)−ǫ

. (B.14)

Note that there are some terms which are proportional to D. The situation is different

from what was happening with the gluon self-energy. In the previous case we can have

the contraction of two dµν ’s, which originates a terms proportional to the number of gluon

polarizations. However, here we only have one gluon propagator. But, working with the

Dirac chain we find

γν(/p− /q)γ
µ = −γνγµ(/p− /q) + 2(p− q)µγν , (B.15)
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and taking into account that dµν = dνµ, we can interchange µ− ν indices, and we get

γνγµ(/p− /q) dµν(q) = γµγν(/p− /q) dµν(q) (B.16)

=
1

2
{γµ, γν} (/p− /q) dµν(q)

= −(/p− /q) (2− 2ǫδ) ,

where we used ηµνdµν(q) = −(2− 2ǫδ).

With the aim of simplifying the result, we study separately each spinorial structure

and reduced the associated coefficients. Our final result is

Σij(p) = −f2g
2
s

(

−s− ı0

µ2

)−ǫ

CF

(

ǫ(δǫ− 1)

1− 2ǫ
/p−

2s(ǫ− 1)

np(1− 2ǫ)
/n

)

. (B.17)

Now let’s study some properties of Σ(p). As a first step, if we contract it with two quark

propagators, we get

ı/p

s
(−ıΣ(p))

ı/p

s
= ıg2sCF f2

(

−s− ı0

µ2

)−ǫ((ǫ(δǫ− 5) + 4)

s(2ǫ− 1)
/p+

2(ǫ− 1)

np(2ǫ− 1)
/n

)

,(B.18)

and if we take only the most divergent part in the limit s → 0, we obtain

ı/p

s
(−ıΣ(p))

ı/p

s
≈

(

g2sf2CF

(

−s− ı0

µ2

)−ǫ ǫ(5− δǫ)− 4

1− 2ǫ

)

ı/p

s
, (B.19)

which is proportional to the quark propagator and motivates the following definition

Σ(p2) = g2sf2CF

(

−s− ı0

µ2

)−ǫ ǫ(5− δǫ)− 4

1− 2ǫ
. (B.20)

On the other hand, we can contract Σ(p) with a quark propagator and a massless spinor

u(P̃ ), and we get

ı/p

s
(−ıΣ(p))u(P̃ ) = Σ(p2)u(P̃ ) , (B.21)

which turns out to be a numerical factor times u(P̃ ). Moreover, that factor is the same

that we found when contracting Σ with two propagators, in the limit s → 0. And, again,

this explains the result shown in eq. (4.9).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[46] R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of

Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

[47] K. Chetyrkin and F. Tkachov, Integration by parts: the algorithm to calculate β-functions in

4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[48] A. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107

[arXiv:0807.3243] [INSPIRE].

[49] A. Smirnov and V. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by

parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].

[50] S. Catani and M. Seymour, The dipole formalism for the calculation of QCD jet

cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277]

[INSPIRE].

[51] D. Pritchard and W.J. Stirling, QCD calculations in the light cone gauge. 1,

Nucl. Phys. B 165 (1980) 237 [INSPIRE].

[52] S. Catani, P. Draggiotis and G. Rodrigo, Recursion relations for the multiparton collinear

limit and splitting functions, PoS(LL2012)054 [arXiv:1210.0698] [INSPIRE].

– 54 –

http://dx.doi.org/10.1088/1126-6708/2006/09/053
http://arxiv.org/abs/hep-ph/0607240
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607240
http://dx.doi.org/10.1103/PhysRevD.83.114005
http://arxiv.org/abs/1102.5353
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.5353
http://dx.doi.org/10.1016/j.physletb.2005.08.112
http://arxiv.org/abs/hep-ph/0508203
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508203
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.016
http://arxiv.org/abs/0807.4424
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4424
http://dx.doi.org/10.1016/0550-3213(73)90146-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B63,277
http://dx.doi.org/10.1016/0370-2693(79)90282-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,B84,193
http://dx.doi.org/10.1016/0550-3213(80)90244-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B167,479
http://arxiv.org/abs/0706.2982
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.2982
http://dx.doi.org/10.1016/0010-4655(91)90130-D
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,64,345
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B192,159
http://dx.doi.org/10.1088/1126-6708/2008/10/107
http://arxiv.org/abs/0807.3243
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3243
http://dx.doi.org/10.1016/j.cpc.2013.06.016
http://arxiv.org/abs/1302.5885
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5885
http://dx.doi.org/10.1016/0370-2693(96)00425-X
http://arxiv.org/abs/hep-ph/9602277
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9602277
http://dx.doi.org/10.1016/0550-3213(80)90086-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B165,237
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LL2012)054
http://arxiv.org/abs/1210.0698
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.0698

	Introduction
	Dimensional regularization and QCD
	DREG schemes definition
	Scalar-gluons: Lagrangian level decomposition
	Effective Feynman rules and other considerations for scalar-gluons
	Computational implementation

	Collinear limits of scattering amplitudes in QCD
	The q -> q g splitting matrix
	Amplitude level results
	Scheme dependence and divergent structure
	NLO corrections to AP kernels

	The g -> q barq splitting matrix
	Amplitude level results
	NLO corrections to AP kernels

	The g -> gg splitting matrix
	Amplitude level results
	NLO corrections to AP kernel

	Splittings matrices involving photons
	q -> gamma q
	gamma -> q barq

	Conclusions
	Loop integrals in the light-cone gauge
	Parton self-energies
	Gluon self-energy
	Quark self-energy


