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Enhancing quantum coherence with short-range correlated disorder
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We introduce a two-dimensional short-range correlated disorder that is the natural generalization of the
well-known one-dimensional dual random dimer model [D. H. Dunlap et al., Phys. Rev. Lett. 65, 88 (1990)].
We demonstrate that, as in one dimension, this model induces a localization-delocalization transition in the
single-particle spectrum. Moreover we show that the effect of such a disorder on a weakly interacting boson
gas is to enhance the condensate spatial homogeneity and delocalization and to increase the condensate fraction
around an effective resonance of the two-dimensional dual dimers. This study proves that short-range correlations
of a disordered potential can enhance the quantum coherence of a weakly interacting many-body system.
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I. INTRODUCTION

The presence of impurities usually deeply modifies the
nature of the spectrum of a quantum system and thus its coher-
ence and transport properties. In the absence of interactions,
if the impurity distribution is completely random, all states
of the spectrum are exponentially localized in dimensions
one (1D) and two (2D), while a mobility edge exists in
dimension three (3D) [1–3]. If the impurity positions are
correlated, for instance, if a minimum distance between the
impurities exists [4,5], some delocalized states can appear in
the spectrum. This was demonstrated in 1D in the context of
the random dimer model (RDM) and of the dual random dimer
model (DRDM) [6]. In 1D, the effects of correlated disorder
were studied in different physical contexts (see, for instance,
Refs. [7–11]). In 2D, the effect of correlations is almost
unexplored, except for the case of a speckle potential [12] and
for the case of pseudo-2D random dimer lattices with separable
dimensions [13]. Correlations in speckle potentials may mimic
the presence of a mobility edge [11], but in the thermodynamic
limit all states are localized [12]. Random dimers introduce a
set of delocalized states in pseudo-2D lattices [13] as in 1D [6].
From a statistical point of view, the main difference between
these two models is the decay of the correlation function that
is algebraic for the first and exponential for the second. This
“short-range” feature of the random dimer model is at the basis
of the delocalization mechanism.

In interacting systems, the presence of disordered im-
purities gives rise to a remarkable richness of phenomena.
For instance, the condensate and the superfluid fraction are
modified by the presence of the disorder [14,15], and this can
shift the onset of superfluidity [16–18] and, on lattice systems,
can induce exotic phases such as the Bose glass [19].

In this work we study the effect of a short-range correlated
disorder on a Bose gas confined on a 2D square lattice. First,
we introduce a 2D generalization of the DRDM (2D-DRDM).
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In such a model, impurities cannot be first neighbors, and each
impurity also modifies the hopping with its nearest-neighbor
sites. Using a decimation and renormalization procedure [20],
we show that, in the noninteracting regime, a resonance energy
at which the structured impurity is transparent exists, and the
states around this energy are delocalized. It is remarkable
that this resonance energy does not depend on the system
dimensionality and is the same as the DRDM in 1D [4,6]. Then,
we consider the case of a weakly interacting Bose gas confined
on such a potential. Within a Gutzwiller approach, we show
that the effect of the 2D-DRDM is to drive the homogeneity
of the ground state. The disorder induces a nonmonotonic
behavior of the condensate spatial delocalization and of the
condensate fraction as a function of the disorder strength and
enhances both in correspondence with the resonance energy
of the 2D-DRDM single-particle Hamiltonian. We show that
the dependence of such quantities on the interaction strength
can be explained by including the effect of the healing length
in the resonance condition discussion.

This paper is organized as follows. In Sec. II, we introduce
the 2D-DRDM potential, and we demonstrate its single-
particle delocalization properties in the region of the spectrum
around the resonance energy. The effect of such a potential
on a weakly interacting Bose gas is studied in Sec. III, where
we also introduce a suitable inverse participation ratio for our
many-body system and study it for the case of the 2D-DRDM
potential and for an uncorrelated random disorder. Moreover,
we compute the density distribution and the condensate
fraction as functions of the disorder strength. Our concluding
remarks in Sec. IV complete this work.

II. THE DRDM IN TWO DIMENSIONS

We consider the tight-binding single-particle Hamiltonian

H = −
∑
〈ij〉

tij (|i〉〈j | + |j 〉〈i|) +
N∑

i=1

εi |i〉〈i|, (1)

where εi are the on-site energies, tij are the first-neighbor
hopping terms, N is the number of sites, and 〈ij 〉 denotes the
sum over first-neighbor sites.
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FIG. 1. (Color online) Schematic representation of (a) the unper-
turbed Hamiltonian, (b) the Hamiltonian in the presence of a single
impurity, (c) the effective Hamiltonian after decimation of site 0 in the
Hamiltonian (a), and (d) the effective Hamiltonian after decimation
of site 0 in the Hamiltonian (b).

We focus on a 2D square lattice of linear dimension L

(N = L2 lattice sites) and compare the ordered lattice with
εi = 0 and tij = t ∀ 〈ij 〉, as schematized in Fig. 1(a) with a
lattice in which we introduce an impurity at site 0, ε0 = �,
that modifies the hopping terms involving this site, t0,j = t ′
[Fig. 1(b)].

Effect of correlations in the single-particle spectrum

With the aim of understanding the effect of the impurity, we
consider the Green’s function GAA(E) = 〈A|(E − H )−1|A〉
projected on subspace A, including all sites except site 0 with
coordinates (0,0). Using a decimation and renormalization
technique [20], it can be shown that

GAA(E) = (E − Heff)
−1, (2)

with

Heff =

⎧⎪⎨
⎪⎩

HAA + t2
0,j

E−ε0
if j is a first-neighbor
site of site 0,

HAA elsewhere,

(3)

where HAA = 〈A|H |A〉. The effective Hamiltonian for the
unperturbed case in Fig. 1(a) is schematically illustrated in
Fig. 1(c); the effective Hamiltonian for the case with a single
impurity in Fig. 1(b) is illustrated in Fig. 1(d). Subspace A does
not “feel” the presence of the impurity if GAA (Heff) remains
the same in the absence or in the presence of the impurity,
namely, if

t2

E
= (t ′)2

E − �
. (4)

Condition (4) is satisfied if E = Eres = − �
(t ′/t)2−1 . If Eres is

an allowed energy of the system, namely, if −4t < Eres < 4t ,

FIG. 2. (Color online) Schematic representation of the 2D DRDM.

at E = Eres the impurity will not affect the eigenstate at this
energy (in subspace A).

If we add other impurities in the system, such as the one
in Fig. 1(b), with the supplementary condition that on-site
impurities cannot occupy first-neighbor sites (Fig. 2), we
can repeat the same argument as above, properly redefining
subspace A, and we obtain exactly the same condition (4)
imposing that all the Nimp impurities do not perturb the system
(subspace A). Thus at E = Eres, the impurities are transparent
as in the 1D DRDM [6]. Indeed, with this procedure, we are
defining a 2D-DRDM, where at each “isolated” impurity there
is a corresponding structure of four hopping terms forming a
cross, as shown in Fig. 2. Let us remark that this definition
of the model provides the same condition (4) independent of
the dimensionality of the system [4,6]. However, our model is
fully 2D, and the Hamiltonian cannot be mapped onto two 1D
DRDM, in contrast to the case in Ref. [13].

With the aim of analyzing the localization properties of this
model, we consider the inverse participation ratio (IPR),

I(E) =
〈 ∑

i |ψi(E)|4( ∑
i |ψi(E)|2)2

〉
. (5)

The symbol 〈· · · 〉 denotes the average over different disorder
configurations, and ψi(E) is the wave function on site i and at
energy E. If Eα is an eigenvalue of the system and ψi(E = Eα)
is an extended state, then I decreases as a function of L. On
the other hand, if ψi(Eα) is a localized state, then I does not
depend on L (if L is larger than the localization length). In
Fig. 3 we show the behavior of ln(I) and ln(I L2) for the
Hamiltonian illustrated in Fig. 2.

We consider three sets of parameters, (i) �/t = 0.44 and
t ′/t = 1.2, (ii) �/t = 3 and t ′/t = 2, and (iii) �/t = 8 and
t ′/t = 3, that give the same resonance energy, Eres/t = −1.
In all three cases, the curves ln[I(E) L2] collapse around E =
Eres, meaning that the states are delocalized in this energy
region. Moreover, due to the large strength of the disorder, the
spectrum varies considerably for cases (ii) and (iii), and an
energy gap appears in case (iii).
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FIG. 3. (Color online) Inverse participation ratio [ln(I) in the left column and ln(I L2) in the right column] as a function of the energy E in
units of t . The plots in the first row correspond to �/t = 0.44 and t ′/t = 1.2; those in the second row correspond to �/t = 3 and t ′/t = 2, and
those in the the third row correspond to �/t = 8 and t ′/t = 3. The different curves in each plot correspond to different system sizes: L = 20
(red pluses), 30 (green crosses), 40 (blue asterisks), and 50 (magenta squares). Each curve correspond to Nimp/N � 0.15 and to an average
over 50 configurations. The data are binned in 80 (first row) and 110 (second and third rows) bins. The vertical dashed lines indicate Eres.

The inverse participation ratio, Eq. (5), in two dimensions
has the following asymptotic behavior [21]:

lim
L→∞

I(E) =
{

1/L2 for extended states,
const. for localized states.

(6)

Thus, the asymptotic behavior of the function I(E) L2 is

lim
L→∞

I(E) L2 = Ld , (7)

with d = 2 for localized states and d = 0 for extended states.
In Fig. 4 we have analyzed the exponent d as a function of the
energy for the set of parameters (iii). We observe a high-energy
band of localized states that has been created by the disorder;
the original (without noise) band has been distorted, and the

states at its boundaries are localized. The center of the band,
around Eres, is mainly composed of extended states. The width
of the feature around Eres corresponds to the width of the
resonance dip of the inverse participation ratio at this energy
value (Fig. 3).

These results confirm that our 2D extension of the DRDM
introduced by Dunlap and collaborators in Ref. [6] for 1D
systems introduces a set of delocalized states even at higher
dimensions.

III. EFFECTS OF THE INTERACTIONS

We now consider the case of weakly interacting bosons in
the presence of the potential defined in Sec. II. This system
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FIG. 4. (Color online) The exponent of Eq. (7) as a function
of the energy for �/t = 8 and t ′/t = 3. The exponent has
been obtained using calculations for lattice-linear dimensions L =
40,50,60,70,80,90,100 averaged over 20 realizations; the error bars
correspond to the standard deviation of the fit of the data to Eq. (7).
The vertical dashed line indicates Eres.

is described by the Bose-Hubbard Hamiltonian in the grand-
canonical ensemble,

HBH = −
∑
〈ij〉

tij (â†
i âj + â

†
j âi) −

∑
i

(μ − εi)n̂i

+ U

2

∑
i

n̂i(n̂i − 1), (8)

where â
†
i is the creation operator defined at lattice site i, n̂i =

â
†
i âi , U is the interparticle on-site interaction strength, and μ

denotes the chemical potential fixing the average number of
bosons.

We use a Gutzwiller approach to find the ground-state wave
function for a given set of parameters and average number of
particles. The Gutzwiller ansatz is given by the site-product
wave function in the occupation number representation,

|�GS〉 =
L×L∏

i

∑
ni

fi(ni)|ni〉, (9)

where fi(ni) are the probability amplitudes of finding ni

particles on site i. The ansatz provides an interpolating
approximation correctly describing both the Bose-condensed
and Mott-insulating phases for low and high U , respectively,
in dimensions larger than one. In addition, the approximation
becomes exact for all U in the limit of infinite dimensions
[22,23].

We minimize the average energy given by Hamiltonian
(8) as a function of the set of amplitudes fi(ni) with the
normalization and average number of particles constraint for
at least 30 disorder realizations for each set of parameters. The
minimization is done using standard conjugate-gradient and/or
Broyden-Fisher techniques [24], which provide reasonable
performance for moderate lattice sizes.

A. Characterization of the condensate delocalization

To quantify the extent of delocalization of the ground
state |�GS〉 in the interacting regime, we decompose it onto
the localized basis |ψi〉, |�GS〉 = ∑

i ci |ψi〉, representing

1

1.1

1.2

1.3

1.4
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I G
S
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2
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t /t = 1.2
t /t = 2.0
t /t = 3.0

FIG. 5. (Color online) IGSL
2 as a function of �/t for L = 20,

U/t = 10−2, and n = 20 particles per site. The different curves
correspond to different values of t ′ as indicated in the legend. The
solid symbols correspond to the 2D-DRDM potential, and the open
symbols correspond to the UN-RAND potential.

the distribution of a homogeneous condensate with average
density n on the lattice [25]. We define the many-body
ground-state IPR IGS with respect to this basis as

IGS =
* ∑N

i=1 c4
i(∑N

i=1 c2
i

)2

+
. (10)

IGS measures the homogeneity of the ground state in the
condensation regime: the smaller IGS is, the more spatially
delocalized the condensate is.

In Fig. 5 we show the behavior of IGS as a function of �

by fixing L = 20, U/t = 10−2, and n = 20 for several values
of t ′. We compare the case of 22% of correlated impurities
Nimp with the one with the same percentage of uncorrelated
impurities, where there is no restriction for the position
distribution of the on-site impurities � and no correlations
between them and the additional hopping t ′ (UN-RAND). We
note that due to the correlations present in the 2D-DRDM the
maximum percentage of allowed impurities is 50% (in this
limit the system would be an ordered checkerboard). We can
observe that, in the case of the 2D-DRDM potential, IGS has
a minimum as a function of �, whose position depends on
the value of t ′. This nonmonotonic behavior is a signature of
the resonance induced by the correlations of the disordered
potential. Indeed, it disappears for the case of the UN-RAND
potential and for large values of t ′ (strong disorder). The dip
in the IGS for the UN-RAND potential and weak disorder
(t ′/t = 1.2) indicates that some DRDM impurities may still
statistically appear in the absence of correlations. The effect
of such impurities is not fully destroyed by the other defects if
the strength of the disorder is weak.

1. The resonance effect as a function of the interactions

In the perturbative regime for negligible interactions, one
would expect that correlations modify the ground state if
Eres = EGS, with EGS being the ground-state energy per
particle, which corresponds to �−4t in the weak-disorder
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FIG. 6. (Color online) IGSL
2 as a function of �/t for L = 20,

U = 10−2t , and t ′/t = 2. The different curves correspond to different
values of the average density n as indicated in the legend. All
the curves correspond to the 2D-DRDM potential. The vertical
dashed line indicates the noninteracting resonance condition given
in Eq. (11).

regime. This condition, which can be written

� = 4t[(t ′/t)2 − 1], (11)

determines the location of the minimum of IGS at �/t = 1.67
for t ′/t = 1.2, �/t = 12 for t ′/t = 2, and �/t = 32 for
t ′/t = 3. However, in the limit of strong disorder, due to the
interactions these values strongly differ from those shown in
Fig. 5. In fact, we calculate IGS for smaller values of n and
verify that the minimum location of IGS depends on Eres and
that the shift observed is indeed an effect of the interactions.
The results are illustrated in Fig. 6, where we focus on the
case t ′/t = 2. By decreasing the value of n, the minimum
position �min/t of IGS shifts from 6.5 to about 12, as expected
from the perturbative argument. This shift can be understood
as follows. The interactions introduce the so-called healing
length ξ = √

t/(2nU ) [26] that represents a coherence
length over which the system feels the effect of an impurity,
or, in other words, the distance at which a site affects its
neighborhood. For U/t = 10−2 and n from 20 to 5, the value
of ξ ranges approximately from 1.5 to 3 times lattice spacing
�, which shows that, already for this U value, the role of the
interactions is important, effectively reducing the coherence
length. To quantify this effect, we can partition the system
into independent boxes of dimension ξ × ξ (Fig. 7) and use
a mode-matching argument to determine their ground states:
the condensate is more homogeneous if the lowest eigenvalue
of each box is the same despite the presence of an impurity.

Therefore, this mode-matching argument fixes the value
of �. For the case U/t = 10−2 and n = 20, ξ � 1.6�, and
this gives 4.24 < �/t < 6, while for n = 5, ξ � 3.2�, and
we expect to find 8.4 < �/t < 12, in good agreement with
the results shown in Fig. 6. Namely, the larger ξ is, the better
we recover the noninteracting condition (11). This effect is
summarized in Table I.

We remark that this mode-matching condition is equivalent
to matching the resonance energy Eres with the lowest
eigenvalue of the unperturbed system of size ξ × ξ . These
simple arguments allow us to understand the shift of � as

(c)

(b)

ξ 2
√

2

ξ 2

ξ(a)

FIG. 7. (Color online) Boxes of different sizes, in the presence
and in the absence of an impurity.

a function of the interaction energy Un and the role of the
structured impurities in the presence of the interactions.

2. The resonance effect as a function of the system size

We study the scaling behavior of IGSL
2 with respect to L.

Analogous to the case of the single-particle IPR I(E) [see
Eq. (7)], we expect that

lim
L→∞

IGS L2 = Ld , (12)

with d = 2 for a condensate localized on few sites and d =
0 for a homogeneous extended condensate. The behavior of
IGSL

2 for different values of L is shown in Fig. 8. We observe
that the minima, corresponding to different system sizes, all
collapse together, meaning that the ground state corresponds to
a spatially homogeneous condensate in the parameter regime
where the correlations are dominant. At lower values of �,
IGSL

2 scales as L−ε , and for larger values of �, IGSL
2 scales

as Lε′
, with ε and ε′ > 0. This sort of “superdelocalization”

in the low-� region is determined by the large value of t ′ that
compensates, in the structured impurities, for the effect of the
site defect. Indeed, we observe an analogous behavior for the
UN-RAND potential. For such a potential, where the effect of
t ′ is no longer dominant, all the curves collapse together. Thus
we expect that in this region the effect of the uncorrelated
impurities on the ground-state density distribution does not
depend on the system size.

B. Condensate delocalization and condensate fraction

With the aim of characterizing the ground-state configura-
tions in the different regions, we show in Figs. 9–11 the spatial

TABLE I. Effective linear dimensions ξ and positions of the
expected resonance � for the weakly interacting bosons in the
2D-DRDM.

ξ Figure �

� 7(a)
√

2t [(t ′/t)2 − 1]
2� 7(b) 2t [(t ′/t)2 − 1]
2
√

2� 7(c) 2
√

2t[(t ′/t)2 − 1]
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FIG. 8. (Color online) IGSL
2 as a function of �/t for t ′/t = 2,

U/t = 10−2, and n = 20 particles per site. The different curves
correspond to different values of L as indicated in the legend. The
solid symbols correspond to the 2D-DRDM potential, and the open
symbols correspond to the UN-RAND potential.
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FIG. 9. (Color online) Lattice density plots together with site and
bond impurities locations for t ′/t = 2, �/t � 2 and (top)DRDM
disorder and (bottom) UN-RAND.
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FIG. 10. (Color online) Same as Fig. 9 for �/t = 6.6.

density distribution ni for L = 20, n = 20 at �/t � 2 (Fig. 9),
�/t � 6.6 (Fig. 10), and �/t � 15 (Fig. 11) together with a
pattern showing the locations of impurities.

The addition of a hopping term t ′ favors the delocalization
of the density for both the 2D-DRDM and UN-RAND
disorders. However, in the case of the 2D-DRDM, it is more
beneficial as it tends to partially compensate the decrease in
the density caused by the site impurity, reducing the decrease
by means of the structured disorder. For small values of �

(see Fig. 9), in the region where the effect of t ′ is dominant,
the density in the impurity regions is even larger with respect
to the density elsewhere. For large values of � (see Fig. 11),
the effect of both types of disorder is similar as the change
in the on-site energies dominates. This limit gives rise to
a strongly depleted density at the impurity location plus a
rather uniform background. The largest differences among the
2D-DRDM and UN-RAND results are seen at the minimum
of IGS (see Fig. 10), where we can clearly observe a more
homogeneous density spread over the lattice (lower IGS) and
a consequently larger delocalization for the 2D-DRDM than
for the UN-RAND potential.
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FIG. 11. (Color online) Same as Fig. 9 for �/t = 15.1.

The density behavior determines the condensate fraction
which is well approximated by nc = ∑

i |〈�GS|ai |�GS〉|2/n,
as shown in Fig. 12. At the minimum of the function IGS, we

0.92
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0.98

1
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n
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Δ/t
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L=50

FIG. 12. (Color online) Condensate fraction nc as a function of
�/t for t ′/t = 2, U/t = 10−2, and n = 20 particles per site. The
different curves correspond to different values of L as indicated in
the legend. The solid symbols correspond to the 2D-DRDM potential,
and the open symbols correspond to the UN-RAND potential.

observe that the condensate fraction nc does not depend on the
system size in the presence of the 2D-DRDM potential. The
resonance condition minimizes the fluctuations with respect to
the chosen homogeneous basis |ψi〉 and fixes nc. At a lower
value of �, we observe a superdelocalization (IGSL

2 scales as
L−ε), and for both the 2D-DRDM and UN-RAND potentials,
the large value of t ′ enhances the coherence, and nc increases
with system size.

At larger values of �, where IGSL
2 scales as Lε′

, the 2D-
DRDM impurities create holes in the system, and nc decreases
with system size. For the case of the UN-RAND potential,
one can observe a monotonic behavior of nc as a function of
�. As for the case of the 2D-DRDM, the region where all
the curves IGSL

2 collapse together corresponds to a region
where nc does not depend on the system size. The difference
from 2D-DRDM is a larger decrease of nc in this region. For
2D-DRDM, only one value of � has this peculiarity, and the
maximum position of the condensate fraction comes before
this point. Let us remark that the minimum of IGS corresponds
to the minimum deviation with respect to a homogeneous
condensate, and because of border effects, this target state
is not necessarily the one that ensures a maximum value of nc

in finite systems.
The predicted condensate fraction enhancement for the

DRDM at low �, which is very small, could be very difficult
to measure. However the nondiminishing of the coherence
in a range of about 5� should be observable and could be
directly compared with the result for UN-RAND, for which
the decrease of the coherence should be sizable.

IV. CONCLUSIONS

In summary, we introduce a correlated disorder model that
is the natural extension of DRDM in 2D. We show that, in
the noninteracting regime, such a disorder introduces some
delocalized states if the resonance energy characterizing these
structures belongs to the spectrum of the unperturbed system.
In the presence of weak interactions, 2D-DRDM drives the
density spatial fluctuations. By means of a mode-matching
argument that includes the effect of the interactions, we show
that the resonance energy is at the origin of these phenomena.
A direct consequence is a nonmonotonic behavior of the
condensate fraction as a function of the disorder strength
and its enhancement for values close to the resonance
condition. This work shows that short-range correlations in
a disordered potential can modify and enhance the coherence
of a many-body system in the weak-interaction regime. Such
effects could be measured in the context of ultracold atoms
with an accurate measurement of the density and coherence
via, for instance, a fringe contrast interference experiment.
Our results could also be extended to homogeneous systems
provided one is able to engineer suitable impurities that are
transparent for a given energy.
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