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We quantify the strength of the waves and their impact on the energy cascade in
rotating turbulence by studying the wave number and frequency energy spectrum, and
the time correlation functions of individual Fourier modes in numerical simulations
in three dimensions in periodic boxes. From the spectrum, we find that a significant
fraction of the energy is concentrated in modes with wave frequency ω ≈ 0, even
when the external forcing injects no energy directly into these modes. However, for
modes for which the period of the inertial waves τω is faster than the turnover time
τNL, a significant fraction of the remaining energy is concentrated in the modes that
satisfy the dispersion relation of the waves. No evidence of accumulation of energy
in the modes with τω = τNL is observed, unlike what critical balance arguments
predict. From the time correlation functions, we find that for modes with τω < τsw

(with τsw the sweeping time) the dominant decorrelation time is the wave period, and
that these modes also show a slower modulation on the timescale τNL as assumed in
wave turbulence theories. The rest of the modes are decorrelated with the sweeping
time, including the very energetic modes with ω ≈ 0. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4868280]

I. INTRODUCTION

Restitutive forces in an incompressible fluid give rise to the development of waves when the
fluid is slightly perturbed from its state of rest. That is the case of inertial waves in rotating fluids,
inertial gravity waves in stratified fluids, or Alfvén waves in conducting fluids. However, when
the perturbation is large, the system can develop far from equilibrium dynamics, with the waves
coexisting with eddies in a fully developed turbulent flow. In such a case, and when the wave period
is much faster than the turnover time of the waves, wave turbulence theories can be used to predict
the scaling laws followed by the system.1

In the case of rotating flows, the presence of background rotation breaks down isotropy, and a
preferred direction arises along the axis of rotation (see, e.g., Refs. 2–4). As a result of a selection of
triadic interaction by resonant waves, energy is preferentially transferred towards modes in Fourier
space in the plane perpendicular to the rotation axis.5 The transfer of energy, besides becoming
anisotropic, is also slowed down, resulting in a steeper energy spectrum than in the isotropic and
homogeneous case.3, 5

Generally speaking, wave turbulence theories can be separated into theories of weak and of
strong turbulence. In the former case, the assumption of weak nonlinearities results in decorrelation
between the modes being governed by linear dispersion, and the equations can be closed to obtain
exact spectral solutions. For rotating turbulence, the theory of weak turbulence predicts an axisym-
metric energy spectrum e(k⊥, k‖) ∼ k−1/2

‖ k−5/2
⊥ ,6 but this theory only applies to a subset of modes

dominated by waves. Moreover, as energy may be transferred outside this subset of modes at finite
time, whether the turbulence can remain weak in rotating flows has been a matter of debate.7 In the
latter case, theories of strong turbulence can describe modes with eddy turnover time of the order
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of the wave period (although not the modes with zero frequency in the waves), and give a more
complete description of the flow, but rely on phenomenological approximations to obtain energy
spectra that are positive definite.1–3

Numerical simulations and experiments give results that in some cases are consistent with some
of the predictions of wave turbulence theories,8–10 but the strength and relevance of the waves is
hard to quantify. In this paper, we quantify the strength of inertial waves and their impact on the
turbulent dynamics of rotating flows in numerical simulations in periodic boxes by two means: (1)
We compute wave number and frequency spectra, in which the dispersion relation of the waves
can be directly observed (cf. Refs. 11–13). Using these spectra, the amount of energy in waves and
in eddies can be discriminated. (2) We compute time correlation functions of individual modes in
Fourier space, to identify the relevant decorrelation time depending on the scale.

Besides the analysis presented here to identify the role of the waves in setting the dominant
timescale in a rotating flow, it is important to note that a proper understanding of decorrelation
times in turbulence is relevant for many applications, as well as for other theoretical approaches to
turbulence. A somewhat different approach to study turbulence in the presence of waves is that of
Rapid Distortion Theory (RDT). In RDT, the presence of a time scale in the fluid which is much
shorter than the turnover time (or the decorrelation time) of the large scale eddies allows certain
magnitudes in a turbulent flow to be computed using linear theory (see, e.g., Refs. 14 and 15 for
reviews, and Ref. 2 for the specific case of rotating turbulence).

Time correlation functions and decorrelation times were computed before for rotating fluids,
with the focus on their relevance to predict the acoustic emission produced by a turbulent flow, and
on the effect of flow anisotropy in the decorrelation time.16 For magnetohydrodynamic flows, time
correlation functions, and decorrelation times were recently computed in Ref. 17. In isotropic and
homogeneous turbulence, a proper understanding of the decorrelation time is needed to correctly
obtain the frequency spectrum from the Kolmogorov spectrum in terms of wavenumbers.18 In this
latter case, the dominant timescale for all modes is the sweeping time, associated with the interactions
of the small-scale eddies with the large-scale energy containing eddies.19–21 Finally, time correlation
functions are also important in turbulence closure models, for the dynamics of Lagrangian particles,22

and for the computation of turbulent diffusion of passive scalars (see, e.g., Ref. 23).

II. ROTATING FLOWS

A. Waves and eddies

The dynamics of incompressible rotating flows is described by the Navier-Stokes equations in
a rotating frame,

∂u
∂t

= −ω × u − 2� × u − ∇P + ν∇2u + F, (1)

together with the incompressibility condition

∇ · u = 0. (2)

In these equations, u is the velocity, ω = ∇ × u is the vorticity, P is the total pressure (including the
centrifugal term, and normalized by the uniform fluid mass density), � is the rotation frequency, the
rotation axis is in the z direction with � = �ẑ, F is an external mechanical force per unit of mass
density, and ν is the kinematic viscosity.

Solutions to these equations can be characterized by two dimensionless parameters, the Reynolds
number

Re = U L

ν
, (3)

and the Rossby number

Ro = U

2L�
, (4)

where U is the r.m.s. velocity, and L is the forcing scale.
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In the ideal case and in the absence of forcing, the linearized equations have helical waves hs as
solutions, with s = ±1 corresponding to the two possible circular polarizations such that ik × hs =
skhs, and with k the wave vector. These waves correspond to inertial waves with dispersion relation
ωk = s2�kz/k. The velocity field at wave vector k can then be decomposed as5

u(k, t) = a+(k, t)h+ + a−(k, t)h−. (5)

In the nonlinear case, a large number of modes are excited (and nonlinearly coupled) in the velocity
field. As a rotating flow can sustain both waves and eddies, for sufficiently strong rotation it is safe
to assume that for a large number of wave vectors k the waves will be faster than the eddies. Then,
in wave turbulence theories the amplitudes as(k, t) are further decomposed into

as(k, t) = As(T )eiωkt , (6)

where eiωkt is the fast variation at timescale τω = 2π /ωk associated with the waves, and As(T) is a
slowly varying modulation on a timescale T ∼ Ro t associated with the eddies.

Replacing this decomposition in Eq. (1), it is obtained that energy is only transferred between
modes with wave vectors k, p, and q such that2, 3, 5

k + p + q = 0 (7)

and

ωk + ωp + ωq = 0. (8)

The last relation, corresponding to the resonant condition of the waves to have net transfer of energy
when integrated over times longer than the wave period, is also associated with the development of
anisotropies in the flow. Equation (8) is trivially satisfied for modes with kz = 0 (the so-called 2D or
“slow” modes, as those modes have wave frequency ωk = 0), and Eqs. (7) and (8) drive the nonlinear
coupling to transfer energy preferentially towards modes with small kz.5 However, the problem with
wave turbulence theories is that they are not valid for small values of kz, as those modes have eddy
turnover times of the order (or faster) than the wave periods. In fact, in many theories the predicted
energy transfer towards modes with kz = 0 vanishes, and 2D modes are then completely decoupled
from wave modes.6

At this point, it is important to distinguish more precisely between theories of weak and of
strong turbulence. In weak turbulence theory it is assumed that rotation is so strong that nonlinear
interactions are weak, such that the linear decorrelation of the waves dominates over any nonlinear
decorrelation time. Such theories predict the development of anisotropy and the transfer towards
modes with smaller kz, but the transfer is arrested as the energy reaches modes with turnover
time of the order of the wave period (see, e.g., Ref. 6). In theories of strong turbulence (as, e.g.,
Eddy-Damped Quasi-Normal Markovian, or EDQNM, closures) strong nonlinear coupling can be
modeled (although the modes with kz = 0 still remain decoupled from the other modes), and nonlinear
decorrelation times can be dominant.2–4 However, for the energy to remain positive in such closures,
a damping time must be externally imposed (see Ref. 1). This damping time is often chosen as

1

τD
=

√√√√∑
i

(
1

τi

)2

, (9)

where τ i are the different times in the system (e.g., viscous, wave, and eddy turnover times), although
other empirical combinations can be used2–4 to improve the modeling of spectral anisotropy.

B. Wavenumber-frequency spectrum and correlation functions

Rotating turbulence is often studied using spectra of spatial fluctuations, either isotropic or
anisotropic. However, distinction between eddies and waves requires spectra also resolved in fre-
quencies, to distinguish the modes that satisfy the dispersion relation from the rest. There are studies
in which the presence of inertial waves was explicitly verified in simulations and experiments25–27

(including observations of inertial waves in the Earth core28), although studying their coexistence
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with turbulent eddies is only possible with large amounts of data. This can be understood as com-
putation of spectra resolved in time and in space require storing data of high resolution simulations
(or experiments) with a very short cadence in time (at least twice faster than the fastest waves in the
system), and for very long times (at least twice the slowest timescale in the flow).

In the following, we present spectra Eij(k, ω) for several numerical simulations, defined as

Ei j (k, ω) = 1

2
û∗

i (k, ω)û j (k, ω), (10)

where ûi (k, ω) is the Fourier transform in time and in space of the i-component of the velocity field
u(x, t), and where the asterisk denotes complex conjugate.

Information on the relevant timescales for each spatial mode, and on their decorrelation time,
can be obtained also from the time correlation function

�i j (k, τ ) =
〈
û∗

i (k, t)û j (k, t + τ )
〉
t〈|û∗

i (k, t)û j (k, t)|〉t , (11)

where ûi (k, t) is the Fourier transform in space of the i-component of the velocity field, the brackets
denote time average, and only the real part is used. If the mode ûi (k, t) is dominated by waves
in a regime that satisfies the hypothesis of weak turbulence theory, then �ii(k, τ ) ∼ cos (ωkτ ). If
nonlinear effects are important, then the mode with wave vector k should be decorrelated after a
time τD(k) following an approximate exponential decay:

�i i (k, τ ) ∼ e−τ/τD (k). (12)

In the following, we will define τD as the time at which the function � decays to 1/e of its initial value.
Note this definition is arbitrary, and some authors use the half-width of the correlation function, or
a value based on an integral timescale (see, e.g., Refs. 16 and 17),

τD(k) =
∫ ∞

0
�i i (k, τ ) dτ. (13)

We verified that no quantitative differences are obtained by using these other definitions, except for
a multiplicative factor of order one in the values of all decorrelation times.

C. Numerical simulations

Computation of the functions described above require a significant amount of storage. As a
result, only moderate resolution simulations can be performed. We performed three simulations
using grids of N3 = 5123 points, in a three-dimensional periodic box.

Equations (1) and (2) were solved using a parallel pseudospectral method, and evolved in time
with a second order Runge-Kutta scheme (for more details of the code, see Refs. 29 and 30). The
simulations were dealiased with the 2/3-rule (see, e.g., Ref. 29).

The equations are written in dimensionless units. The periodic domain has length λ0 = 2π ,
resulting in integer wavenumbers and in a minimum wave number kmin = 2π/λ0 = 1. Per virtue of
the 2/3-rule, the largest resolved wave number is kmax = N/3, associated with the smallest resolved
wavelength λmin = 2π/kmax = 6π/N . With this choice, for a characteristic velocity U0 = 1 and a
characteristic length L0 = 1, the turnover time is T0 = L0/U0 = 1, which we use as unit of time. �

is then measured in units of the inverse of time T0.
In previous studies of rotating turbulence in periodic domains, it was found that if the forcing is

applied at intermediate scales (i.e., scales smaller than the size of the domain), an inverse cascade
develops and most of the energy ends up in the 2D modes.31 Evidence of this inverse cascade has been
also observed in experiments.32 It is unclear for the moment whether this effect also takes place in
homogeneous, unbounded flows, such as those considered by wave turbulence theories.1 As a result,
we forced the system at the largest scales available, to prevent the inverse cascade from developing.
However, this has a caveat: the finite domain selects a discrete set of inertial waves which are normal
modes of the domain (see, e.g., Refs. 4 and 33). As a result of the discretized wavenumbers, the
number of modes that satisfy the resonance condition (8) depends on the wavenumber, and is smaller
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(or zero) for smaller wavenumbers, resulting in only near-resonances being available.33 As this effect
is aggravated when domains with non-unity aspect ratio are used, we restricted our study to boxes
with aspect ratio of unity.

As we are also interested in correlation times, to prevent imposing external correlation times
with the forcing we used a coherent forcing (in opposition to a time-correlated, or delta-correlated
in time forcing function). We therefore used Taylor-Green forcing

F = F0 [sin(kTGx) cos(kTG y) cos(kTGz)x̂

− cos(kTGx) sin(kTG y) cos(kTGz)ŷ] , (14)

where F0 is the amplitude of the force, which was kept constant in time. Although the forcing
injects energy directly only into the x- and y-components of the velocity, the resulting flow is three-
dimensional because of pressure gradients that excite the remaining component of the velocity field.
This forcing injects no energy in the 2D modes, and only affects directly a few modes in Fourier
space corresponding (for the choice kTG = 1) to the mode k = (1, 1, 1) in the first quadrant, and
the modes obtained after reflections across the axes in Fourier space. As will become evident later,
forcing only these modes is better for the excitation of waves than forcing, e.g., all modes in a
spherical shell in Fourier space. Finally, Taylor-Green forcing is of interest as it mimics the flow
generated in some experiments using two counter-rotating disks.34, 35

As explained above, the forcing was applied at modes such as k = (1, 1, 1), which results
in a forced wave number kF = |k| = √

3, and in a forced length scale L = 2π/kF = 2π/
√

3. The
amplitude of the force was F0 = 0.277 in all the runs, and this value was chosen to have an r.m.s.
velocity close to 1 in the turbulent steady state in the absence of rotation (in practice, U ≈ 0.9 and
fluctuates around this value in time). The kinematic viscosity was ν = 6.5 × 10−4, resulting in a
Reynolds number in the turbulent steady state Re ≈ 5000.

Three runs were done using the following procedure. First, a simulation with no rotation (� =
0) was done starting from the fluid at rest (u = 0), and applying the Taylor-Green forcing until the
system reached a turbulent steady state. This run was continued for 12 large scale turnover times.
Using the final state of this run as an initial condition, two other runs were done, respectively, with
� = 4 and 8, and keeping the external force and all other parameters the same. Both runs were
also evolved for 12 large scale turnover times. This results in three runs with Rossby numbers,
respectively, of Ro ≈ ∞, 0.03, and 0.015. The last 6 turnover times of each run (in all cases, after
the system reached the turbulent steady state) were used to compute the spectra and correlation
functions presented below. For the analysis, data were saved with a time cadence 
t = 0.01.

III. ANALYSIS

A. Behavior of the runs in wavenumber space

Before proceeding to the analysis of the wavenumber and frequency spectrum, and to the study
of the decorrelation time for each mode, we present some spectra in wavenumber space, as is often
done to characterize turbulent flows. Besides being useful to characterize the runs, these spectra will
be also important to identify the behavior of the different modes depending on what dynamical times
are expected to be dominant.

Figure 1 shows the isotropic energy spectrum E(k) for the run with � = 0, and the reduced
perpendicular energy spectrum E(k⊥) for the two runs with rotation. The reduced perpendicular
spectrum is obtained by integrating the power spectrum of û(k, t) over cylindrical shells around the

axis of rotation, and averaging in time to obtain a spectrum that depends only on k⊥ =
√

k2
x + k2

y .

In the absence of rotation, the isotropic spectrum has a narrow range of wave numbers compatible
with Kolmogorov scaling, followed by a bottleneck and a dissipative range. In the rotating case the
spectrum becomes steeper, as expected.

The axisymmetric energy spectrum e(k⊥, k‖), obtained after integrating the power of û(k, t)
only over the azimuthal angle in Fourier space, provides more information on the anisotropy of the
flow. As rotation is along the z axis, k‖ = kz. Figure 2 shows contour plots of e(k⊥, k‖)/sin (θ k) for the
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FIG. 1. Isotropic energy spectrum E(k) in the simulation with � = 0, and reduced perpendicular energy spectra E(k⊥) in the
simulations with � = 4 and 8. In all three simulations Re ≈ 5000, while Ro ≈ ∞, 0.03, and 0.015, respectively. Kolmogorov
and ∼ k−2

⊥ slopes are shown as a reference. The simulation without rotation has a spectrum with a narrow range of scales
arguably compatible with Kolmogorov scaling and followed by a bottleneck and a dissipative range, while the runs with
rotation display a steeper spectrum.

runs with � = 4 and with � = 8, and where θk = arctan(k⊥/k‖) is the colatitude in Fourier space.
For an isotropic flow (� = 0), contours of e(k⊥, k‖)/sin (θ k) are circles. As rotation is increased,
energy becomes more concentrated near the axis with k‖ = 0.

Based on the previous discussion on wave turbulence theory, and on previous studies of decor-
relation times in isotropic turbulence19–21 and in rotating flows,16 we can expect several timescales
to be relevant for our studies. These timescales depend on the wave vector, and assuming the shorter
one dominates the dynamics, different regions in the axisymmetric energy spectrum e(k⊥, k‖) can
be defined. The first timescale is the period of the waves

τω(k) = Cω

k

2�k‖
, (15)

where Cω is a dimensionless constant of order unity.
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FIG. 2. Isocontours of the axisymmetric energy spectrum e(k⊥, k‖)/sin (θ k) in the runs with � = 4 (above) and 8 (below);
dark means larger energy density (in logarithmic scale). Lines indicating the modes for which the wave time becomes equal
to the sweeping time, and to the turnover time, are given as references. It should be noted that the energy does not accumulate
near the modes with τω = τNL, unlike what is expected in theories dealing with the concept of critical balance.24
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TABLE I. Fraction of the energy contained in the different regions of k-space defined in Fig. 2, for the two runs with � 
=
0. � is the rotation frequency, E(2D)/E is the ratio of energy in the 2D modes to the total energy, E(τω < τsw)/E is the
fraction of energy in the modes with the wave period faster than the sweeping time, and E(τω < τNL)/E is the fraction of
the energy in the modes with the wave period faster than the turnover time.

� E(2D)/E E(τω < τsw)/E E(τω < τNL)/E

4 0.37 0.59 0.60
8 0.31 0.67 0.68

This time should be compared with the eddy turnover time τNL ∼ 1/[k
√

k E(k)]. Simple phe-
nomenological arguments suggest the isotropic energy spectrum in the inertial range of rotating
turbulence follows E(k) ∼ ε1/2�1/2k−2.8, 10, 36 Then, a possible estimation of the eddy turnover time
is

τNL(k) = CNL
1

ε1/4�1/4k1/2
, (16)

where CNL is another dimensionless constant of order unity, and where ε is the energy injection rate.
It is worth noticing that the spectrum of rotating turbulence is actually anisotropic and dependent
on k‖ and k⊥ instead of simply on k. However, for the purpose of the discussion here, and as we
are only concerned with order of magnitude estimation of the timescales, we will use the simplest
isotropic expression of E(k).

Sweeping may be the dominant process in the decorrelation of Fourier modes when the sweeping
time becomes shorter than the wave period, as is the case in isotropic turbulence,18–21 and as also
found in simulations of rotating turbulence at lower resolution.16 The sweeping time is

τsw(k) = Csw
1

Uk
, (17)

where Csw is a dimensionless constant of order unity. Finally, phenomenological theories of rotating
turbulence (see, e.g., Refs. 8, 10, and 36) often also consider an energy cascade transfer time
τtr ∼ τNL(τNL/τω), where the ratio of timescales between parenthesis expresses the fact that waves
slow down the energy cascade.

In Fig. 2, we indicate two curves, corresponding to the modes that satisfy the relations τω(k) =
τsw(k), and τω(k) = τNL(k). Modes inside the region enclosed by the former curve have the wave
period faster than any other time, and we should expect correlation functions �ii(k, τ ) for these
modes to be harmonic. Modes outside that region should decorrelate with the fastest time, which
is the sweeping time. Finally, modes outside the region enclosed by the latter curve have the eddy
turnover time shorter than the wave period, and as a result those modes cannot be considered as waves
slowly modulated by eddies. In fact, for those modes the effect of rotation should be negligible.
These considerations will be important in Subsection III C. To plot the curves τω(k) = τsw(k) and
τω(k) = τNL(k), we used Cω = 1.3, CNL = 1, Csw = 2.3; these values were obtained from the
analysis of the data in Sec. III C.

In Table I, the fraction of the energy that is contained in 2D modes, in modes with τω < τsw, and
in modes with τω < τNL is shown for the simulations with � = 4 and 8. As mentioned previously,
energy becomes more concentrated near the axis with k‖ = 0 in the presence of rotation. However,
the fraction of the energy in 2D modes actually decreases as � is increased from 4 to 8, and more
of the injected energy remains in the modes with τω < τsw (although a significant portion of the
energy, ≈30%, still escapes outside this region and concentrates in the 2D modes). The energy that
is concentrated in these modes comes solely from the leakage from the 3D modes, as no energy is
injected directly into the 2D modes by the forcing we are using.

The final motivation to use Taylor-Green forcing now becomes apparent. The modes excited
by the forcing are in the region τω < τsw, and favors modes dominated by the waves. As a result,
all energy in the region with τω > τsw, and in the region with τω > τNL, can only be accounted for
by the nonlinear transfer of energy from the modes dominated by the wave time. Weak turbulence
theories6 cannot account for this transfer.
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FIG. 3. Normalized wave vector and frequency spectrum E11(k, ω)/E11(k) for the run with � = 8. Darker regions indicate
larger energy density. The dashed curve indicates the dispersion relation for inertial waves. (Top left) Normalized E11(kx =
0, ky = 0, kz, ω). (Top right) Normalized E11(kx = 0, ky = 1, kz, ω). (Bottom left) Normalized E11(kx = 0, ky = 5, kz, ω).
(Bottom right) Normalized E11(kx = 0, ky = 10, kz, ω). Note from the maximum values in the color bars how the modes close
to the dispersion relation concentrate most of the energy in the first two cases (ky = 0 and ky = 1), while as ky is increased
energy becomes more spread.

It should also be noted that in Fig. 2 the energy does not accumulate near the modes with
τω = τNL, as it is expected in theories dealing with the concept of critical balance.24 In critical
balance, it is argued that in the case of strong turbulence, energy in the weak turbulence modes
cascades towards larger values of k⊥, while energy in modes with τω < τNL (which are outside the
domain of weak turbulence, and are, therefore, strong) cascade inversely towards smaller values
of k⊥.24, 37 This establishes a balance with τω = τNL; energy accumulates in the modes that satisfy
this balance and then cascades towards larger values of k along this curve. No such accumulation is
visible in Fig. 2, and as only modes with τω < τsw are forced, the energy in the domain τω > τNL

can only come from a transfer from the wave modes to the vortical modes in the direction opposite
to that needed to establish the balance.

B. Wave vector and frequency spectrum

Figure 3 shows the wave vector and frequency spectrum E11(k, ω)/E11(k) for different values
of k, where

E11(k) =
∫

E11(k, ω) dω. (18)

With this choice for the normalization, the frequencies that concentrate most of the energy for each
k are more clearly visible.

When kx = 0, ky = 0, and kz is varied, most of the energy is concentrated near ω = 2�, especially
for kz < 10. For larger values of kz, the width of the band that concentrates most of the energy increases
(compare this with the regions in Fig. 2 corresponding to modes with τω(k) < τsw(k), and to modes
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with τω(k) < τNL). The wave vector and frequency spectrum for the other components of the velocity
were also calculated, showing similar behavior.

When kx = 0, ky is kept fixed, and kz is varied, most of the energy is still concentrated near the

linear dispersion relation ω = 2�kz/
√

k2
y + k2

z in the cases with ky = 1 and ky = 5. However, for ky

= 10 and larger, energy is more evenly distributed among all values of ω, and most of the energy is
in the modes with ω ≈ 0.

Leaving aside the energy in the modes with ω ≈ 0, the modes that concentrate energy
near the linear dispersion relation could in principle be treated by weak turbulence theories,
where energy is transferred through wave interactions. But it is worth pointing out also that
the accumulation of energy in these fast modes makes (at least for a subset of the wave num-
bers) some magnitudes in the turbulent flow treatable by RDT.2, 14 This has been used to study
the early time evolution of the system when rotation is turned on in an initially isotropic
flow38).

C. Correlation functions and decorrelation times

Figure 4 shows the time correlation function �11(k, τ /τ t) for the x-component of the velocity,
with the time being normalized by a total effective time τ t, and for different modes in Fourier space.
The total effective time is defined as

(
1

τt

)2

=
(

1

τω

)2

+
(

1

τsw

)2

, (19)

such that for τω � τsw, τt ≈ τω, and for τω � τsw, τt ≈ τsw. With this definition, �11(τ /τ t) = 1/e at
a time τ /τ t of order unity for all modes.

By inspection of these functions, we identified three different behaviors that are illustrated by a
few modes in the figure. Modes near the k‖ axis (and for sufficiently small k‖) have � ∼ cos (ωkτ ),
the behavior expected for waves (τ t ≈ τω for these wavenumbers). As k‖ is increased (and as k⊥ is
increased as well), the correlation functions still show a wave-like behavior, but also display a slower
decay in their modulation in a time that can be associated with the eddy timescale τNL (following
Eq. (6), the eddy or “slow” timescale T is of order one when t ∼ Ro−1; in that timescale the
decay time of the correlation functions is given by τNL). It is interesting that the slow modulation
takes place on a timescale of the order of Ro−1, as some studies suggest that this is the time
in which energy is transferred outside the region of weak turbulence in Fourier space, and for
which rotating turbulence becomes strong.7 Finally, for even larger values of the wavenumber, the
correlation functions decay exponentially and resemble those obtained in the absence of rotation.
Correlation functions for the other components of the velocity were also calculated, showing similar
behavior.

From the correlation functions the decorrelation time τD can be measured directly.
Figure 5 shows τD for the x-component of the velocity for modes along the ky axis (i.e., for
kx = kz = 0), and along the kz axis (i.e., for kx = ky = 0). In the case with k‖ = 0, the modes
seem to decorrelate with the sweeping time independently of the value of �, as also found in
Ref. 16, although in the rotating case and for small k⊥ (k⊥ � 10) the behavior seems to be compati-
ble with τD ∼ τNL. Note that in the runs with rotation, these modes correspond to the 2D or “slow”
modes, with zero wave frequency. As a result, these modes can only be vortical.

The modes with k⊥ = 0 decorrelate with the sweeping time in the run without rotation, but
in the runs with rotation τD has a transition at τω(k) = τsw(k). For k‖ such that τω(k) < τsw(k), τD

≈ τω. For k‖ such that τω(k) > τsw(k), τD ≈ τsw. This transition was also found in the simulations in
Ref. 16. The nonlinear time plays no clear role in the decorrelation. A similar behavior is obtained if k
is varied along the diagonal with ky = kz and kx = 0 (see Fig. 6), or if k is kept fixed and the colatitude
θ k in Fourier space is varied (see Fig. 7). This former case is interesting as for small values of k
the decorrelation time τD is closer to the wave period, while for larger values of k the decorrelation
is closer to the sweeping time (i.e., approximately constant with θ k). As explained above, the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  157.92.4.4

On: Wed, 01 Apr 2015 19:20:13



035106-10 Clark di Leoni et al. Phys. Fluids 26, 035106 (2014)

0 10 20 30 40 50 60 70 80
τ/τt

−1.0

−0.5

0.0

0.5

1.0

Γ

k = (0, 0, 2)

0 10 20 30 40 50 60 70 80
τ/τt

−1.0

−0.5

0.0

0.5

1.0

Γ

τNL/(τt Ro)

k = (0, 0, 10)

0 10 20 30 40 50 60 70
τ/τt

−1.0

−0.5

0.0

0.5

1.0

Γ

k = (0, 0, 32)

k = (0, 0, 44)

k = (0, 0, 55)

FIG. 4. Correlation function �11(τ ) for different modes, the wave-like behavior is quite evident in the first two panels. Time
is normalized such that �11(τ ) = 1/e at a time of order unity. See text for the definition of τt. (Top) A mode with τω � τsw.
(Middle) A mode with τω < τsw. Here τω still dominates, and the correlation function shows the oscillating behavior expected
for a wave-like mode, but with a slow decay in its modulation proportional to the nonlinear time (indicated by the arrow).
(Bottom) A mode with τω > τsw, here all wave-like behavior is lost.

modes dominated by the faster timescale τω satisfy conditions akin to the hypothesis made in
RDT.2, 14

The dimensionless constants Cω, CNL, and Csw in Eqs. (15)–(17) were chosen from the data in
Figs. 5–7, and are the same for all runs (independently of the mode k studied, and of the value of �).
Note these amplitudes only account for an arbitrariness in the definition of the decorrelation time,
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FIG. 5. (Top) Decorrelation time τD for the modes with k‖ = 0, as a function of k⊥, and for the three different values of �.
(Bottom) Same for the modes with k⊥ = 0, as a function of k‖. In all figures, the data correspond to the dots connected by
dashed lines; the wave period τω , the sweeping time τsw, the nonlinear time τNL, and the total effective time τt are given as
references.

which from the time correlation function and as explained above can be defined based on the time
to decay to 1/e of its value, based on its half-width, or on an integral timescale.

From these observations, it becomes apparent that the effective time τ t gives a good approxima-
tion to the actual decorrelation time τD in all figures. It is interesting that the choice to average the
relevant times in Eq. (19) is similar to the choice used in the simplest EDQNM models of rotating
turbulence to estimate the eddy damping.2, 3

From these figures, we can also conclude that the modes in the region enclosed by the curve
τω = τsw in Fig. 2 have wave-like behavior with decorrelation dominated by the waves, while the
rest of the modes are dominated by sweeping effects (similar to what happens in isotropic and
homogeneous turbulence19).
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FIG. 6. (Top) Decorrelation time τD for the modes with k⊥ = k‖, as a function of k =
√

k2
⊥ + k2

‖ . Labels for the curves are

as in Fig. 5.
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FIG. 7. Decorrelation time τD for modes with k = constant, as a function of θ k (the colatitude in Fourier space). (Top)
τD(θ k) for k = 10. (Bottom) Same for k = 40. Labels for the curves are as in Fig. 5.

D. Decorrelation times and anisotropy

The fact that modes with τω > τsw has decorrelation dominated by the sweeping time should
not be interpreted as that the effects of waves and of rotation are negligible for these modes. This is
evidenced quite clearly in Fig. 2, where anisotropic spectral distribution of energy can be observed
even for modes with τω > τsw. Isotropy is expected to be recovered at the Zeman wavenumber k�

for which τω(k�) = τNL(k�).39 This wavenumber is equivalent to the Ozmidov wavenumber in a
stratified flow, and that isotropy is recovered in rotating turbulence at that wave number has been
recently confirmed in high resolution numerical simulations.10

From the expressions in Sec. III A, assuming that when isotropy is recovered k⊥ ≈ k‖ and
therefore k ≈ √

2k‖, we can write the condition τω = τNL at k = k� as

CNL

ε1/4�1/4k1/2
�

= Cω√
2�

⇒ k� = C�

(
�3

ε

)1/2

,

where C� = 2(CNL/Cω)2 ≈ 1.18.
This expression is compatible with the one found in Ref. 10, where C� = 1 was found from

direct observation of the scale at which isotropy was recovered. For the simulation with � = 4,
k� ≈ 150 (which lies in the dissipative range of the simulation), and for the simulation with � = 8,
k� ≈ 460 (which lies outside the domain of resolved scales).

It is interesting that the characteristic timescales discussed here present another interpretation
of the Zeman scale: isotropy is recovered not when all modes satisfy the condition τNL ≤ τω (which
happens in the runs with � = 4 and 8 at much larger wave numbers, see Fig. 2), but when a significant
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fraction of the modes satisfy this condition (i.e., when the modes in the diagonal with k⊥ ≈ k‖ satisfy
the equality of timescales).

IV. CONCLUSIONS

The results presented here indicate that: (1) A significant fraction of the energy is concentrated
in modes with ω ≈ 0, which have correlation functions corresponding to that of strong turbulence
(i.e., vortical modes). In this respect, the simulations are limited to finite domains and we cannot
conclude from this what the behavior is for a homogeneous (infinite) flow as is often considered in
wave turbulence theories. (2) For modes with τω � τsw, a significant fraction of the remaining energy
is concentrated near the dispersion relation ω(k) of inertial waves. However, the dispersion relation
is not visible anymore in E(k, ω) as the wave number is increased. (3) For τω < τsw, the correlation
functions behave as expected for modes in weak turbulence theories: waves slowly modulated by
eddies. For τω � τsw, waves dominate and the correlation functions are harmonic in τ . The rest
of the modes decorrelate with the sweeping time. However, the effects of rotation only become
negligible (e.g., to reobtain isotropy) for modes with τNL ≤ τω.

Previous studies of the time correlation function at lower Reynolds number and at lower spa-
tial resolution, using 2563 grid points, obtained similar results.16 This indicates that the results
are not very sensitive to the value of the Reynolds number, at least in the range of parameters
considered in the present study. To further confirm this, in the Appendix, we present a compar-
ison of our results with simulations with 2563 grid points and with Re ≈ 3100. Studying flows
with higher Reynolds numbers is currently out of our reach, as computation of time correlation
functions and of the wave number and frequency spectrum require storage of vast amounts of data
which increase rapidly as spatial resolution is increased. Such higher Reynolds numbers studies
would determine the degree of applicability of the current results to the fully developed turbulence
regime.

Finally, the results presented here were obtained for a forcing function that only excites a few
modes in the region of Fourier space dominated by the wave timescale. For isotropic, random,
delta-correlated in time forcing, preliminary studies indicate that at the same Rossby number the
effect of the waves is weaker.
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APPENDIX: SIMULATIONS WITH LOWER REYNOLDS NUMBER

We briefly compare here the results obtained from the simulations with 5123 grid points and
Re ≈ 5000, with simulations at lower resolution and lower Reynolds number. We performed a set
of simulations with the same Rossby numbers as the 5123 simulations, but with larger viscosity and
using N3 = 2563 grid points, resulting in a Reynolds number Re ≈ 3100.

Figure 8 presents a comparison of the decorrelation times in the simulations with 2563 and
5123 grid points, both with � = 4. This figure is equivalent to Fig. 5, in which only the results for
the 5123 simulation were shown. The sweeping time and the wave period are almost the same for
both simulations, as the forcing amplitude and the value of � were kept the same. No significative
differences are observed between both simulations, and the decorrelation time presents the same
behavior with k‖ and k⊥ in both cases. Small differences observed are due to the fact that the r.m.s.
velocity is not exactly the same in both runs.

We also verified that other quantities (such as �11, the correlation functions) also act sim-
ilarly in the Re = 3100 and Re = 5000 cases, lending some confidence that the results de-
scribed above are not very sensitive to the Reynolds number at the modest values considered
here.
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