
PHYSICAL REVIEW A 89, 023613 (2014)

Probing quantum transport by engineering correlations in a speckle potential
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1Université de Nice - Sophia Antipolis, Institut non Linéaire de Nice, CNRS, 1361 route des Luciole s, 06560 Valbonne, France
2Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina

3Instituto de Fı́sica de Buenos Aires – CONICET, Argentina
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We develop a procedure to modify the correlations of a speckle potential. This procedure, that is suitable for
spatial light modulator devices, allows one to increase the localization efficiency of the speckle in a narrow energy
region whose position can be easily tuned. This peculiar energy-dependent localization behavior is explored by
pulling the potential through a cigar-shaped Bose-Einstein condensate. We show that the percentage of dragged
atoms as a function of the pulling velocity depends on the potential correlations below a threshold of the disorder
strength. Above this threshold, interference effects are no longer clearly observable during the condensate drag.
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I. INTRODUCTION

The interplay between disorder and interactions in many-
body systems gives rise to a remarkable richness of phe-
nomena. In the absence of interactions, the presence of a
random potential induces the suppression of wave propagation,
as predicted by Anderson [1,2]. In Anderson localization,
the waves diffracted by the impurities interfere destructively
in the forward direction, with a resulting vanishing wave
transmission and exponentially localized eigenstates. On the
other hand, in the absence of disorder, interactions can induce
localized states such as gap solitons [3], and suppress transport
as in the Mott regime [4].

If an interacting quantum gas is subjected to a disorder
potential, exotic phases appear on lattice systems [4–6]. In
continuum systems, it was shown that disorder shifts the
onset of superfluidity to lower [7,8] or larger [7] critical
temperatures. In the superfluid regime, the presence of a
random potential does not perturb the dynamics of the system
in the low-energy regime. Indeed, below a critical velocity vcr

that depends on the gas density and on the disorder strength
[9–11], the system, being superfluid, does not scatter against
the potential defects. On the contrary, at velocities greater
than vcr, superfluidity breaks down and the interference of
the scattered waves may deeply modify the system transport
[12,13] unto the Anderson localization regime.

The authors of Refs. [12,13] studied the transport of a
homogeneous one-dimensional (1D) interacting Bose-Einstein
condensate (BEC) in the presence of a moving random
potential of finite extent L. They proved the presence of an
Anderson localization regime by studying the transmission
of the BEC through the potential and showing that it decays
exponentially with L. However, in ordinary ultracold-atom
experiments, BECs are trapped in a harmonic confinement
and thus they are inhomogeneous. Transmission is no longer a
well-defined observable in such a geometry; however, one can
identify the presence of some localization effects by studying
the time evolution of the BEC center of mass [14,15]. If the
center of mass follows the moving random potential, the BEC
is trapped by the random potential; it remains difficult to say
if this localization is classical or induced by the interference
of the scattered fluid.

In this paper we show that it is possible to enhance the role of
interference in the localization process of an inhomogeneous
interacting BEC by introducing tunable correlations in the
disorder potential. Our reference potential is the speckle, since
it is the paradigm of the disordered potentials in ultracold-atom
experiments [16–20]. The spectral function of a conventional
speckle has a finite-k support and decreases monotonically
with the energy. In this work, we propose a speckle whose
spectral function is also defined on a compact space but which
possesses a narrow peak whose energy position is easily tuned
by varying just one setup parameter. Our scheme, that is
illustrated in Sec. II, can be straight implemented with a spatial
light modulator device.

As shown in Sec. III, a peak in the spectral function results
in a peak of the single-particle localization efficiency at a given
energy, meaning that high-energy particles can be localized in
a selective way. This is crucial in our setup where one needs to
exceed the threshold vcr of the pulling velocity of the random
potential to break down superfluidity and observe Anderson
localization [12,13]. Thanks to the versatility of our potential,
it is possible to drive the efficiency of the localization toward
this energy range, and then to study the BEC localization
as a function of the energy by varying the relative velocity
between the BEC and the random potential. The observation
of a localization peak in the expected energy range is a clear
signature of the role of interference, and thus of the quantum
nature, in the localization process of the boson gas.

The paper is organized as follows. In Sec. II the experimen-
tal proposal for the realization of our unconventional speckle
is illustrated and its statistical properties are analyzed. The
single-particle localization efficiency of a potential realized
with this speckle is studied in Sec. III. In Sec. IV we introduce
the time-dependent nonpolynomial nonlinear Schrödinger
equation (NPSE) that describes the condensate dynamics in the
elongated geometry and in the presence of a moving disorder
potential. In Sec. V we show that the localization efficiency
of the random potential depends on the correlations of the
potential only at small values of the disorder strength. At
larger potential strength, the percentage of localized atoms is
no longer sensitive to the microscopic details of the disorder:
the BEC is just classically trapped by the potential wells. Our
concluding remarks are given in Sec. VI.
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FIG. 1. (Color online) Schematic representation of the device allowing tunable correlations in the speckle: an incident plane wave is
diffracted by a plate with a random distribution of holes. The diffraction pattern obtained in the focal plane of a converging lens is a standard
speckle if the hole distribution is δ correlated (a), while it is a RD speckle if the hole distribution is dimerized in the z direction (b). In the
plate in the bottom row, the different borders of the hole (black continuous line and red dotted line) are a guide for the eyes to identify the
dimerization of the hole distribution.

II. SPECKLE POTENTIAL WITH TUNABLE
CORRELATIONS

To generate a speckle, we consider the setup illustrated
in Fig. 1(a). An incident plane wave of wavelength λL is
diffracted by a matte square plate of side L covered with a
random distribution of Nh identical holes of radius r . The
Fraunhofer diffraction pattern obtained in the focal plane of a
converging lens of focal length f is given by

I (y,z) = Ih(y,z)

∣∣∣∣∣
Nh∑
i=1

e
− 2iπ

λLf
(yyi+zzi )

∣∣∣∣∣
2

, (1)

where Ih(y,z) is the diffraction pattern of a single hole and
{yi,zi} are the coordinates of the ith hole. If Ih(y,z) is constant
in the scanned spatial region (r is small enough), and if the hole
distribution is δ correlated, I (y,z) (excluding the region around
y = 0 and z = 0) is a standard speckle with the two-point
correlation function C(δy,δz) = 〈I (y,z)I (y + δy,z + δz)〉 −
〈I 〉2 given by

C(δy,δz) = 〈I 〉2 sinc2

(
Lδy

λLf

)
sinc2

(
Lδz

λLf

)
, (2)

where 〈 〉 denotes both the average over disorder realizations
and over each realization. This is shown in Fig. 2 in red dotted
line, where we have plotted the rescaled correlation function
c(δz) = C(0,δz)/C(0,0) (top panel) and the corresponding
spectral function

S(q) =
∫ +∞

−∞
e−i2πqδzc(δz) d(δz), (3)

that is the well-known triangular function that goes to zero
at q = 1/σR , σR = (λLf )/L being the correlation length
(bottom panel). The compact-q support of the speckle is a
result of the finite size of the diffracting plate. These results
were obtained numerically from the random potentials used in
the dynamical simulations of Sec. IV.

The speckle properties are robust to short-distance corre-
lations in the hole distribution when the correlation range is
much smaller than the plate size [21]. But by introducing
hole correlations at larger distances, c(δz) and S(q) can
be accordingly modified. In particular, we consider a hole-
dimerized distribution, where at each hole at position {yi,zi}
corresponds another hole at position {yi,zj } with yj = yi and
|zj − zi | = d [see Fig. 1(b)]. From a distance the resulting
speckle looks similar to the standard one, but by zooming in
the presence of some order in the grain distribution is clearly
observable. Indeed, the resulting light pattern, for the case
d < L/2 where each hole has a partner at a distance d,

IRD(y,z) ∝
∣∣∣∣∣
Nh/2∑
i=1

[
e
− 2iπ

λLf
(yyi+zzi ) + e

− 2iπ
λLf

[yyi+z(zi+d)]]∣∣∣∣∣
2

=
∣∣∣∣∣
Nh/2∑
i=1

e
− 2iπ

λLf
(yyi+zzi )

∣∣∣∣∣
2

{2 cos[πzd/(λLf )]}2 (4)

is a product of the standard speckle and a sinusoidal function
with the spatial period λLf/d. The correlation function of such
a random-dimer speckle (RD speckle) corresponds roughly to
the superposition of the correlation function for a standard
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FIG. 2. (Color online) Rescaled correlation function c(δz) as a
function of δz in units of σR (top panel) and spectral function S(q)
(in units of σR) as a function of q in units of 1/σR (bottom panel)
for the case of a standard speckle (dashed-red line) and a RD speckle
(continuous-black line). We set L = 2 cm, λL = 532 nm, f = 2.3
cm, d = 1.20 cm, and Nh is of the order of 100. The results were
calculated from the random potentials of finite extent used in the
dynamical calculations of Sec. IV, averaging over 500 configurations.

speckle and a sinusoidal function with a well-defined spatial
frequency (see top panel of Fig. 2), that results in a peak at
q = d/(LσR) in the corresponding spectral function (bottom
panel). For the case d � L/2 few holes located at the plate
center have no partners. We have checked that these few holes
do not affect the spectral function with respect to a case where
all holes are dimerized.

Although correlations in the speckle have been previously
introduced by changing the aperture of the diffusive plate or the
spatial profile of the incident beam as proposed in Refs. [22–
24], and other strategies have been proposed in the context of
microwave experiments to introduce a nonmonotonic behavior
of the localization efficiency [25,26], the interest of the present
RD speckle lies in the possibility to control the position of the
peak in the spectral function S(q) with standard experimental
techniques. As it will be enlightened in the following, this
property allows one to scan, as a function of the energy, the
response of a system to the disorder potential generated by
the light pattern. Indeed the standard speckle and the RD
speckle can be used as disorder potentials in an ultracold-atom
experiment, the strength of the potentials being given by

V (y,z) � −I (y,z)
3πc2

light

2ω3
at

�

δ
, (5)

where clight is the light velocity, � the linewidth of the atomic
transition, and δ = ωat − ωL the detuning between the atomic
frequency ωat and the laser frequency ωL = 2πclight/λL. Fur-
thermore, as in the Born approximation the spectral function
S(q) is proportional to the inverse of the localization length;
by changing the correlation properties of the speckle one
effectively modifies the localization in the same manner.

The geometry of the random potential V (y,z) can be
varied by changing the dimensions of the plate. A 1D random
potential [17] can be realized for instance by squeezing the y

size of the diffusive plate. In this way, the transverse size of the
speckle grains can be much larger than the system transverse
size. This is equivalent to considering the 1D potential V (z) =
V (y = ȳ,z) as it will be done in the following.

III. SINGLE-PARTICLE LOCALIZATION EFFICIENCY

With the aim to clarify the effects of a RD-speckle potential
in the Anderson localization frame, we study the propagation
of a quantum particle of mass m along an infinitely long 1D
disorder potential V (z), as described by the time-independent
Schrödinger equation

− �
2

2m

∂2

∂z2
ψ(z) + V (z)ψ(z) = Eψ(z), (6)

E = �
2k2

E/2m + 〈V 〉 being the particle energy. The Lyapunov
exponent γ (E) that coincides with the inverse of the localiza-
tion length Lloc(E) is given by [27]

γ (E) = 1

Lloc(E)
= lim

|z|→∞
1

|z|
〈
ln

(
k2
Eψ2(z) + ψ ′2(z)

k2
Eψ2(0) + ψ ′2(0)

)〉
. (7)

We compute numerically γ (E) by discretizing the Schrödinger
equation on a spatial grid and writing the equation in a matrix
form: (

ψn+1

ψn

)
= Tn

(
ψn

ψn−1

)
, (8)

where ψn is the wave function at the grid position n and
Tn is a so-called transfer matrix. The final wave vector
(ψn+1,ψn)T is found by plugging in an initial vector (ψ1,ψ0)T

and solving recursively Eq. (8). We used as initial wave
(ψ0,∂zψ0) = (1,k/ tan θ ) where θ ∈ [0,2π ] is a random angle
[28] and we exploited the Numerov algorithm [29] to write
Eq. (8) at each spatial point. We propagated the wave over a
grid of 4 × 106 points with step size 0.1σR , such that the details
of the speckle function are taken into account, and averaged
over 104 realizations.

In Fig. 3 we show the behavior of γ (E) as a function of
kE for the case of a 87Rb atom (λat = 2πclight/ωat = 780 nm
and � = 2π × 6.065 MHz) subjected to a disorder potential
of strength Vdis =

√
〈V 2〉 = 0.117 �

2/mσ 2
R , generated by a

laser of wavelength λL = 532 nm. We compare the case
of a standard speckle (continuous black line) with that of
a RD speckle for different values of d. As shown for the
spectral function S(q) (Fig. 2), in the RD case a peak appears
whose position depends linearly on d (dashed, dotted, and dot-
dashed lines in Fig. 3). Thus the RD-speckle potential allows
one to achieve and control the localization of high-energy
atoms.
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FIG. 3. (Color online) Lyapunov exponent γ (E) in units of 1/σR

as a function of kEσR for a standard speckle potential (continuous
black line) and for RD-speckle potentials with d = 0.4, 1, 1.2, and
1.4 cm (colored dashed lines) from left to right. The inset shows the
same curve but in log scale, over a wider kE range.

Except for the main peak, γ (E) of the RD speckle has the
same trend as the conventional speckle displaying the effective
mobility edge at kE = π/σR [30]. This was predictable from
the calculation of the spectral function S(q) (see bottom panel
of Fig. 2) since the Lyapunov coefficient evaluated in the Born
approximation is proportional to S(2q) and kE = 2πq. The
overall behavior of the RD speckle is clearly observable in the
inset of Fig. 3 where we have plotted γ (E) using a logarithmic
scale and over a larger range of kE . In particular, we observe
several low amplitude revivals at higher energies located at
integer multiples of the position of the main peak.

IV. DYNAMICS OF A QUASI-ONE-DIMENSIONAL BEC

We study the dynamics of a system of N = 105 Bose-
Einstein condensed 87Rb atoms of mass m subject to a static
cigar-shaped harmonic trap and a time-dependent random
potential:

U (r,t) = 1
2mω2

⊥(x2 + y2) + 1
2mω2

zz
2 + V (z,t), (9)

with ω⊥ = 2π × 235.8 Hz and ωz = 2π × 22.2 Hz the
trapping frequencies in the perpendicular and longitudinal
directions, respectively. The last time-dependent term in (9)
corresponds to a random potential that is fixed in the moving
frame z′ = z − vt , v = vêz being the drift velocity. The
random potential is generated by the procedure illustrated in
Sec. II.

Under cigar-shaped trap geometry, the full 3D equation
of motion for the BEC wave function ψ(r,t) can be reduced
to the effective 1D time-dependent nonpolynomial nonlinear
Schrödinger equation (NPSE) [31],

i�
∂

∂t
f =

[
− �

2

2m

∂2

∂z2
+ 1

2
mω2

zz
2 + V (z,t)

+ �ω⊥
1 + 3asN |f |2√
1 + 2asN |f |2

]
f, (10)

with as being the s-wave scattering length that we set at
80aB and aB being the Bohr radius. To obtain Eq. (10) we
set

ψ(r,t) = f (z,t)φ(r,t) = f (z,t)
e−(x2+y2)/2σ 2(z,t)

√
πσ (z,t)

, (11)

where the transverse part φ(r,t) is modeled by a Gaussian
function with variance σ (z,t). Within the assumption that this
variance varies slowly as functions of z and t , σ (z,t) is given
by

σ 2(z,t) = 
2
0

√
1 + 2asN |f (z,t)|2, (12)

where 
0 = √
�/(mω⊥) is the oscillator length in the transverse

direction. The 3D density profile is then

ρ(r) = ρ̃(z)
e−(x2+y2)/σ 2

πσ 2
, (13)

with ρ̃(z) = |f |2 the integrated 1D density.
The NPSE is numerically solved using a split-step method

and spatial fast Fourier transforms. First we compute the
equilibrium density profile in the presence of a static disorder
potential. Then, we switch on the drift velocity v and
compute the time evolution of the condensate wave function
f (z,t).

V. QUANTUM VERSUS CLASSICAL TRANSPORT

The scheme of the proposed experiment is the following.
The disorder potential is pulled through the BEC with a
velocity v over a distance L∗. We measure the center-of-mass
shift zc.m. and we identify the ratio of localized atoms Nloc/N

with the ratio zc.m./L
∗; indeed if the whole BEC is insensible

to the disorder potential then zc.m. = 0, while if the whole BEC
is stuck on the disorder potential then zc.m. = L∗ [14].

Since we expect to observe localization for v � c, c =√
μ/2m being the 1D speed of sound [13,14,32] with μ the

chemical potential, we tune the position of the localization
peak in this region and choose the value of the dimer length d

to enhance the interference effects. With this purpose, we study
the localized BEC fraction Nloc/N as a function of v/c for the
case of a RD speckle of potential strength Vdis = 0.05�ω⊥
and different values of d: d = 0.4 cm (blue circles), d = 0.8
cm (turquoise crosses), and d = 1.2 cm (black plus signs).
This is shown in Fig. 4 where we can observe that the best
resolved peak corresponds to d = 1.2 cm. By identifying the
drift velocity v with �kE/m, this corresponds to a γ (E) peak
at v � 1.1c. Here and in the following we average over 30
configurations; in all simulations we fix L∗ � 56σR , value that
corresponds to ∼1.4 times Lloc evaluated at the peak position
of the case d = 1.2 cm, which is the d value that we set from
now on.

The localized BEC fraction as a function of v/c is shown
in Fig. 5 for different values of the potential strength Vdis for
the case of a standard speckle (red squares) and a RD speckle
(black crosses). We observe that, at large values of Vdis, the
behaviors of Nloc/N of the standard and the RD speckles are
quite similar [panel (a) of Fig. 5]. By lowering Vdis, the global
localization efficiency of the disorder potential decreases but a
peak appears at v/c � 1.4 for the case of a RD speckle [panels
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FIG. 4. (Color online) Localized BEC fraction as a function of
v/c for the case of a RD speckle with d = 0.4 cm (blue circles),
d = 0.8 cm (turquoise crosses), and d = 1.2 cm (black plus signs).

(b) and (c) of Fig. 5], as already outlined in Fig. 4. Moreover,
this peak is preceded by a strong inhibition of the localization
with respect to the standard speckle in agreement with the
behavior of γ (E) [panel (d) in Fig. 5], where the curves for
the standard and the RD speckles intersect before the peak.

Although the peak in Nloc/N(v) can be attributed to the
interference effects giving rise to the one of γ (E), its position
is shifted and the shape broader. Indeed the calculation
of γ (E) is done in the single-particle approximation for
a steady potential, while the BEC is an inhomogeneous
and interacting many-particle system. The system is then
continuously disturbed by pulling the disorder potential; thus
many factors may contribute to the shift and the broadening
of the peak. We can also observe that the peak widens by
increasing the disorder strength Vdis.

The behavior of the Nloc/N peak for the RD speckle as
a function of Vdis is shown in Fig. 6. In this figure we have
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FIG. 5. (Color online) Panels (a)–(c): localized BEC fraction as a
function of v/c for the case of a standard speckle (red square) and of a
RD speckle (black crosses). (a) Vdis = 0.39�ω⊥, (b) Vdis = 0.16�ω⊥,
and (c) Vdis = 0.05�ω⊥. The vertical arrows indicate the position of
the γ (E) peak. Panel (d): γ (E) in units 1/σR as a function of v/c with
v = �kE/m for the standard speckle (dashed lines) and RD speckle
(solid lines). All calculations correspond to d = 1.2 cm.
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FIG. 6. (Color online) Visibility V of the peak of the function
Nloc/N as a function of Vdis in units of �ω⊥. The line is a guide to the
eye.

plotted the visibility V of the peak, defined as

V =
(

Nloc
N

)
max

− (
Nloc
N

)
min(

Nloc
N

)
max

+ (
Nloc
N

)
min

, (14)

where (Nloc/N)max and (Nloc/N)min are respectively the
peak and the hollow preceding the peak of the function
(Nloc/N) (v/c). For all values of Vdis considered in Fig. 6,
the chemical potential μ is of the order of 7.8�ω⊥, and thus
the drift kinetic energy at the peak location (v � 1.4c) is of the
order of 2μ � 15.6�ω⊥, a quite large value with respect to the
potential strengths Vdis considered in this work. However, in
the standard speckle, as well as in the RD one, the probability
for high-intensity grains is not vanishing and the BEC can be
trapped by few potential wells to quite low values of Vdis as
it happens for the case Vdis = 0.39�ω⊥ [panel (a) of Fig. 5].
Moreover, because of the sinusoidal function [see Eq. (4)]
that modulates the standard speckle on a smaller scale with
respect to the size grains, the probability to have very high
grains is larger for the RD speckle than for the standard
speckle. This explains the fact that at Vdis = 0.39�ω⊥, the
localization efficiency of the RD speckle is larger than that
of the standard speckle over the whole v/c range. In order to
observe interference effects in the localization dynamics, one
needs to reduce Vdis further so as to decrease the probability
to have speckle grains over a given threshold. Indeed the peak
in the Nloc/N function becomes clearly visible (V � 0.2) at
Vdis � 0.16�ω⊥.

For a better understanding of the role of the interactions
on the peak distortion and, more generally, on the localization
efficiency, we vary the scattering length as from 10 to 320aB

for fixed potential strength Vdis = 0.05�ω⊥. Let us remark that
this is just a conceptual experiment since the 87Rb scattering
length cannot be tuned by exploiting Feshbach resonances.
The results are shown in the top panel of Fig. 7, where we
have drawn the localization efficiency for different interaction
strengths as a function of v/c, c being the sound velocity for
the case as = 80aB in order to fix the same velocity scale for
all curves. The first observation is that the larger the value of
the interaction, the greater the shift of the position of the peak.
Indeed, in the presence of interactions, what really matters
is the available kinetic energy 1

2mv2 − 1
2mc2

as
[33], where cas
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FIG. 7. (Color online) Top panel: Localized BEC fraction as a
function of v/c (c being the sound velocity for the case as = 80aB )
for the case of a RD speckle with d = 1.2 cm and Vdis = 0.05�ω⊥.
The different symbols correspond to as = 10aB (aquamarine filled
circles), 40aB (green crosses), 80aB (black plus signs), 160aB (orange
empty squares), and 320aB (pink filled squares). The vertical arrows
indicate the position of the γ (E) peak. For each value of as we average
over 30 configurations. Bottom panel: The same as in the top panel,
but the localized BEC fraction is shown as a function of

√
v2 − c2

as
/c,

with cas
being the sound velocity for the corresponding as .

is the sound velocity corresponding at the scattering length
as . Actually, if we plot Nloc/N as a function of

√
v2 − c2

as
/c

(bottom panel of Fig. 7), all the peaks collapse at the same
point, very close to the position of the γ (E) peak. The second
observation is that, by increasing interactions, the localization
efficiency of the RD speckle decreases overall in the v space.
By increasing the interactions we increase the robustness of
the superfluidity, and the disorder potential becomes less and
less efficient to localize the atoms. Indeed, if we consider, for
example, the case as = 320aB , the position of the γ (E) peak
in units of v/c320, c320 being the corresponding sound velocity,
we find ∼0.8v/c320 and thus it is not the best value of v for
this scattering length. Therefore, to increase the efficiency of
our potential at large interaction strengths, we should increase
the value of d.

Finally, we would like to stress that the measure of Nloc/N

by means of the center-of-mass shift is really a good observable
to detect localization in a trapped system, both for the standard
speckle and for our proposed speckle. Indeed its statistical
distribution function displays the expected behavior in the
presence of localization. This is shown in Fig. 8, where
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FIG. 8. (Color online) Statistical distribution p(Nloc/N ) for the
RD speckle with Vdis = 0.16�ω⊥, d = 1.2 cm, and for two values
of v.

we compare the statistical distribution p(Nloc/N ) for a RD
speckle at two drift velocities. We observe that at the velocity
corresponding to the localization maxima (left panel) the
statistical distribution becomes rather symmetric as opposed
to the shape for the larger v. This is in analogy to the behavior
of the transmission in a noninteracting homogeneous system
[34], where one could expect a transition from a decreasing
exponential distribution at vanishingly low localization ratio
to a log-normal distribution when localization dominates. A
complete analysis on this matter requires a thorough study
entailing a systematic calculation of the statistical properties
of the potential for many realizations, drift velocities, distances
d, etc. and therefore is left for future investigations.

VI. CONCLUSIONS

We studied the dragging of a Bose-Einstein condensate of
87Rb atoms confined in cigar-shaped traps in the presence of
a correlated speckle potential. By constructing a speckle out
of randomly distributed dimerized holes, we are able to select
a nonvanishing energy value that maximizes the localization
efficiency and thus to localize higher-energy atoms. Our
approach can be implemented by spatial light modulator
devices available as standard experimental equipment. By
numerically solving the dynamics of the condensate subjected
to an underlying disorder potential moving at constant speed,
we have shown the efficacy and versatility of such a potential.
By analyzing the center-of-mass displacement, we find that
correlations enhance the localization by a factor of 2–3 with
respect to standard speckle. The magnitude of this effect is
very sensitive to the interaction strength and the amplitude
of the disorder. Indeed a strong disorder inhibits interference
thwarting the presence of correlations in the condensate
dynamics.
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