Photochemistry and Photobiology

Photochemistry and Photobiology The official journal of the American Society of Photobiology

Spectroscopy, Microscopy and Fluorescence Imaging of Origanum vulgare L. Basis for Non-destructive Quality Assessment

Journal:	Photochemistry and Photobiology
Manuscript ID:	PHP-2013-03-SIPRA-0066.R1
Wiley - Manuscript type:	Symposium-in-Print: Research Article
Date Submitted by the Author:	15-May-2013
Complete List of Authors:	Mendes Novo, Johanna; University of Buenos Aires, Química Inorgánica, Analítica y Química Física Iriel, Analia; University of Buenos Aires, Centro de Estudios Transdisciplinarios del agua Marchi, María; University of Buenos Aires, Química Inorgánica, Analítica y Química Física Lagorio, María; University of Buenos Aires, INQUIMAE/Química Inorgánica, Analítica y Química Física
Keywords:	Fluorescence, SEM, Origanum, ATR-IR

1	Spectroscopy, Microscopy and Fluorescence Imaging of Origanum
2	vulgare L. Basis for Non-destructive Quality Assessment.
3	Johanna Mendes Novo ¹ , Analia Iriel ² , M. Claudia Marchi ^{1,3} , M. Gabriela Lagorio ^{*1} .
4	¹ . INQUIMAE / Dpto. de Química Inorgánica, Analítica y Química Física. Facultad de
5	Ciencias Exactas y Naturales. Universidad de Buenos Aires. Ciudad Universitaria. Pabellón II,
6	1er piso, C1428EHA, Buenos Aires, Argentina, ² . Centro de Estudios Transdisciplinarios del
7	Agua, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280,
8	C1427CWO, Buenos Aires, Argentina, ³ . Centro de MicroscopíasAvanzadas. Facultad de
9	Ciencias Exactas y Naturales. Universidad de Buenos Aires. Ciudad Universitaria. Pabellón I,
10	1er piso, C1428EHA, Buenos Aires, Argentina

11	*Corresponding author e-mail: mgl@qi.fcen.uba.ar (María Gabriela Lagorio)
12	
13	
14	

15 ABSTRACT

16 The organs of Origanum vulgare L. plant were examined by optical microscopy, scanning 17 electron microscopy and autofluorescence imaging. The different organs were also studied 18 spectroscopically. Fluorescence emission spectra were recorded for intact inflorescences, 19 leaves and stems. Several fluorescence ratios (Blue/Red, Blue/Far-red, Green/Red and 20 Green/Far-red), which varied depending on the considered organ of the plant, were derived. 21 For leaves, a dependence of fluorescence spectra with water content was obtained as well. The 22 intact samples were also analysed by Attenuated Total Reflectance Fourier Transform Infrared 23 Spectroscopy. These spectra were transformed to the Remission function depending on the wavenumber and two absorption bands (811 cm⁻¹ and 1740 cm⁻¹), which displayed differences 24 25 according to the plant organ sampled, were detected. These results were consistent with higher 26 carvacrol content in inflorescences. The spectroscopic results were connected with the 27 microscopic observation and with the presence of relevant nutraceutics contained in the plant. 28 The optical indexes derived in this work may serve as potential indicators to be explored in the 29 development of non-destructive methods for oregano quality assessment.

30

31 INTRODUCTION

32 Origanum vulgare L. is an herb belonging to the Labiatae family with relevant properties in the 33 fields of medicine, food flavors, cosmetics and fragrance industry (1). Oregano has been used 34 in traditional medicine to treat diseases of the respiratory apparatus and the urinary tract as 35 well as in menstrual disorders (2-4). Its medicinal properties are usually attributed to the 36 content of different antioxidant compounds. In fact, the essential oil (rich in phenolic 37 monoterpenes as carvacrol) and the aqueous extract, containing polyphenols (mainly 38 rosmarinic acid) and flavonoids, have shown a protective effect against lipoproteins oxidation 39 (5). This plant has also been extensively studied regarding its antimicrobial (6), and antifungal 40 (7) properties. However, there is a vacancy in literature for spectroscopic studies of this 41 species, especially in intact samples.

42 There is currently much interest in applying non-destructive electromagnetic irradiation 43 on intact biological tissues and get information about the sample from the analysis of the 44 photons given off by the material as a product of this interaction. In the present work we 45 studied spectroscopically different organs of oregano plant with the aim of finding out optical 46 indicators that could differentiate the diverse organs of the plant and that could be related 47 furthermore to the presence of nutraceuticals. Additionally we have analyzed microscopically 48 the sites where these optical signals originated. As oregano is normally purchased as a dry herb 49 (mixture of leaves and inflorescences with a maximum 3% of stems) (8) special focus on the 50 spectroscopy of dry samples was done.

51

52 MATERIALS AND METHODS

53	Samples: Experiments were performed on dry leaves, inflorescences and stems of oregano plant.
54	Intact leaves with different water content were also studied. Oregano essential oil was obtained
55	from dry leaves and inflorescences by steam distillation. When mentioning dry samples, we refer
56	to samples with around 10% moisture (average commercial degree of humidity).
57	Drying: Oregano samples were dried in oven at 100-105°C during 24 hs and the moisture content
58	was determined by weight difference. Samples with different moisture content were prepared
59	varying the residence time in the drying oven.
60	Optical microscopy: Fresh and dry organs of Oregano plant were observed with a Bresser
61	Biolux AL optical microscope (objectives 4X/10X/40X) in both transmission and reflection modes
62	and the images were captured with a SONY Cybershot DSCW150/R 8.1MP Digital Camera.
63	Scanning electron microscopy: Images were captured on dehydrated samples using a Scanning
64	Electron Microscope (SEM) Zeiss Supra 40 equipped with a field emission gun. The images were
65	taken with in-lens detector and acceleration voltage of 3 kV, at 10 ⁻⁶ mbar vacuum chamber. False
66	colors were used for a better observation. The samples were placed on an aluminum holder,
67	supported on conductive carbon tape and coated by sputtering with 15 nm gold layer.
68	Fluorescence imaging microscopy: Autofluorescence images were captured with an inverted
69	microscope Olympus IX-71 equipped with a X-cite 120 PC fluorescence illumination system and a
70	cooled EMCCD camera Andor iXon3 885 K-VP. A Zeiss plan 10X 0.22 microscope objective was
71	used. For blue fluorescence imaging (blue channel): Excitation 400-450 nm; Omega Filters
72	XF1009 (425DF45), Dichroic Omega Filters 475DCLP; Emission 470-495 nm; Semrock FF02-
73	482/48-15. For the green fluorescence imaging (green channel): Excitation 330-385 nm; BP 330-
74	385, Dichroic DM400 LP, both from set Olympus U-MWU2; Emission 505-535 nm; Semrock

75 FF02-520/28-15.

76 Fluorescence emission spectroscopy: Fluorescence spectra of the different organs of oregano plant were obtained using a steady-state spectrofluorometer (OuantaMaster, PTI -Photon 77 78 Technology International- Brunswick, USA) in front face geometry. A 75 Watt Xenon lamp was 79 used as the excitation source and the incidence and detection angles were set to 30° and 60° 80 respectively. The excitation wavelength was set to 400 nm, as it led to the maximum intensity in 81 blue-green fluorescence. Emission spectra were recorded from 420 to 780 nm and they were 82 corrected for the detector response to different wavelengths. Fluorescence spectra were recorded 83 for layers of the dry material (inflorescences, leaves and stems). Emission from fresh leaves as a 84 function of their water content was also studied. For comparison purposes, the fluorescence 85 emission spectrum for a dilute ethanolic solution¹ of the oregano essential oil was also obtained 86 exciting at 275 nm, recording emission spectrum from 290 to 500 nm. In this case, a 10 mmpathlength cuvette was used and the emission was detected at 90° from the excitation beam. Intact 87 88 oregano samples were also excited in front face at 275 nm and their emissions were recorded from 89 295 to 500 nm.

90 Attenuated total reflectance Fourier transform infrared spectroscopy: Mid-IR

91 Spectra were recorded on a Nicolet 8700 Fourier transform infrared (FTIR) (Thermo Scientic)

92 spectrometer equipped with Diamond crystal, deuterated triglyceride sulfate (DTGS) detector

93 spectrometer from 350 to 4000 cm⁻¹. All spectra were collected for 64 scans at a resolution of 4

94 cm^{-1} in a range of 4000-400 cm⁻¹ with a 100 cm aperture. Spectra were referenced to a

- 95 background spectrum previously recorded on the crystal without plant material. The working
- 96 temperature was 24°C. Obtained data were processed with the Software OMNIC versión 7.3

97 Thermo Electron Corporation. Either one drop of essential oil (about 10 μ L) or some 98 miligrams (2-10 mg) of the solid oregano were placed on the surface of the diamond-ZnSe-99 ATR crystal used in the determinations. A pressure applicator on the sample allowed an 100 intimate contact between it and the sensing device. Under these conditions the recorded spectra 101 gave information on the surface layer up to 2-5 µm deep. The reflectance data at each 102 wavelength (R_{λ}) was transformed to the remission function (F(R)) according to equation (1): 103 $F(R) = \frac{\left(1 - R_{\lambda}^{2}\right)}{2R_{\lambda}}$ 104 (1) 105

106 The remission function represents the sample absorption, being proportional to the 107 chromophore concentration in the solid phase (9). PO. O

108

RESULTS AND DISCUSSION 109

110 **Optical microscopy**

111 To get microscopic information about fresh samples, optical microscopy by reflected and/or 112 transmitted light was used. In Figure 1, a typical reflection image for an oregano fresh leaf is

113 shown. Glandular trichomes are seen as reddish-yellow drops on the green leaf surface while

- 114 non-glandular trichomes appear as colorless hairs (Figure 1). Non glandular trichomes have
- 115 been observed in detail by transmission and an interesting difference was found between fresh

¹ Absorbance lower than 0.05 at 275 nm

116	(Figure 2a) and dried leaves (Figure 2b). In fact, the aspect of fresh hairs was homogeneous
117	while dried hairs appeared collapsed displaying nodes and higher light scattering.
118	<figure 1=""></figure>
119	<figure 2=""></figure>
120	Scanning electron microscopy (SEM)
121	SEM images were obtained for dried samples of inflorescences, flowers, leaves and stems. The
122	images are presented in false colors in Figures 3 to 6. Details on the glandular (Figure 3c) and
123	non glandular trichomes (Figure 6c) are specially emphasised.
124	<figure 3=""></figure>
125	<figure 4=""></figure>
126	<figure 5=""></figure>
127	<figure 6=""></figure>
128	Peltate glandular trichomes (10) are observed in the aerial organs of oregano plant
129	(Figures 3-6). Their sizes are about 80-90 μ m (Figure 3c). Similar sizes were published for
130	glandular trichomes in mints that were reported to be about 100 μ m in diameter (11). These
131	glandular trichomes are the place where biosynthesis and storage of essential oils, rich in
132	monoterpenoid phenols as carvacrol, occur (12, 13). The essential oil content is one of the
133	parameters to evaluate the oregano quality and so the density in glandular trichomes may be
134	related to its grade. In fact, it has been reported that the number of glandular trichomes is

135	linearly correlated to the amount of essential oil delivered from the plant (14). From the SEM
136	images, it can be seen that glandular-trichomes density is higher for the inflorescence (floral
137	bracts and flowers), followed by leaves and stems. The distribution of glandular trichomes in
138	leaves is more homogeneous than in stems where the trichomes density is somewhat variable.
139	Non glandular multicellular trichomes are also present displaying lengths about 200-
140	$300 \ \mu m$ (Figure 6c). These trichomes present ridges and internodes in the dried samples and
141	their appearance is similar to that reported for Salvia chrysophylla (15).
142	Fluorescence imaging microscopy
143	Observation of the dry samples under excitation around 400 nm, showed blue and green
144	emission from the plant tissue except from glandular trichomes that looked dark under these
145	conditions (Figure 7). For fresh leaves, blue-green emission was strongly reduced and the
146	corresponding fluorescence image was weak (image not shown).
147	<figure 7=""></figure>
148	corresponding fluorescence image was weak (image not shown).
149	Fluorescence spectra from the different organs of oregano excited at 400 nm have essentially
150	shown two types of emission: one in the blue-green region (about 480 nm and 530 nm) and the
151	other in the red-far red portion of spectra (680 and 735 nm) (Figure 8).
152	<figure 8=""></figure>
153	Chlorophyll-a is responsible for the observed red (680 nm) and far-red (735 nm)
154	emission (16-19). On the other hand, many components, with beneficial health properties and
155	which are reported to be present in oregano, are known to emit blue or green fluorescence:

Photochemistry and Photobiology

156	phenolic acids as rosmarinic (20), ferulic, p-coumaric (21), chlorogenic and caffeic acids (22),
157	and flavonoids as quercetin (23) and kaempferol (1).
158	As reported in literature, rosmarinic acid in methanol-water mixture at pH 7 presents an
159	emission maximum at 440-450 nm (24), ferulic acid emits in the region from 400 to 480 nm
160	depending on the solvent media (25), p-coumaric acid fluoresces from 415 to 445 nm (26),
161	chlorogenic acids in methanol emits around 440 nm (27) and caffeic acid emits at 432 nm (28).
162	Regarding flavonoids, quercetin in cellular milieu was reported to emit fluorescence in the
163	region 500-540 nm (29) and Kaempferol around 520 nm (30). Based on the foregoing, it is
164	expected then that the blue-green fluorescence is connected with the presence of phenolic acids
165	and flavonoids in oregano plant.
166	Fluorescence ratios of intensities at maxima for shorter to longer wavelengths
167	(Blue/Red, Blue/Far-red, Green/Red and Green/Far-red) are shown in Figure 9 for the different
168	organs of the plant. Bars heights represent average values obtained for seven samples of each
169	organ and the error bars indicate the standard deviation.
170	<figure 9=""></figure>
170	
171	It may be observed that fluorescence ratios Blue/Red, Blue/Far-red, Green/Red and
172	Green/Far-red were higher for dry leaves than for fresh leaves (Figure 9). Varying water
173	concentration in a controlled manner, it could be seen that Green/ Far-red and Blue/ Far-red
174	ratios strongly depended on the water content of leaves showing a linear relation (Figures 10
175	and 11 respectively).
176	Eimera 10
176	<figure 10=""></figure>

1	7	7
1	1	1

<Figure 11>

178	Additionally, the calculated fluorescence ratios for dry samples were different for the
179	different organs of oregano (Figure 9). So, from Figures 9 to 11, it arises that the fluorescence
180	ratio for shorter to longer wavelengths depended, on one hand, upon the humidity degree of the
181	sample, and on the other hand, at constant humidity it varied according to the considered organ
182	of the plant. The fluorescence ratios for dry stems were similar (Blue/ Red) to that for dry
183	inflorescences or intermediate (Blue/Far-red, Green/Red and Green/Far-red) between those for
184	dry inflorescences and dry leaves. Significative differences (Student test at a level of
185	significance p= 0.05) were found for the different fluorescence ratios among the diverse organs
186	with exception of the ratios Blue/Red and Green/ Red between dry inflorescences and dry
187	stems and for Green/Far-red between dry leaves and dry stems. The Blue/Far-red ratio was the
188	indicator displaying significant differences among all the studied samples. However, the
189	Green/Far-red ratio was the indicator displaying higher variation when comparing dry
190	inflorescences with dry leaves (the two major fractions in commercial oregano). Ratios
191	Blue/Green and Red/Far-red did not present differences among the diverse organs of the plant.
192	(results not shown).
193	A similar increase in the fluorescence ratio Blue-Green/Red in leaves upon drying has
194	been previously reported in literature for some cryptogamic plant species (31). In these plants,
195	the change was attributed to variations in the optical properties of the material during drying
196	and not to the formation of new fluorescing products because this behavior was reversed (i.e.

197 the fluorescence ratio Blue-Green/Red decreased) during rehydration.

198Absolute intensities for the blue fluorescence excited at 400 nm showed the following199decreasing order: dry inflorescences $(8.1 \times 10^5 \text{ a.u.}) >$ dry leaves $(7.5 \times 10^5 \text{ a.u.}) >$ dry stems

Photochemistry and Photobiology

200	$(3.5 \times 10^5 \text{ a.u.}) > \text{ fresh leaves } (2.4 \times 10^5 \text{ a.u.}).$ Similar results were obtained for the green
201	emission: dry inflorescences $(7.8 \times 10^5 \text{ a.u.}) > \text{dry leaves } (6.5 \times 10^5 \text{ a.u.}) > \text{dry stems } (2.8 \times 10^5 \text{ a.u.}) > 10^5 \text{ a.u.}$
202	a.u.) > fresh leaves $(2.5 \times 10^5 \text{ a.u.})$.
203	The decrease in red and far-red fluorescence observed for the dry samples compared to
204	fresh leaves (Figure 8) can probably be due to destruction of chlorophyll during drying at 100-
205	105 °C.
206	To analyse if the fluorescence from intact samples could also be connected with the
207	essential oil content, we obtained the fluorescence spectrum for the distilled oil in ethanol
208	solution. In this case, we found an excitation maximum around 275 nm and an emission
209	maximum in the UV at 323 nm (Figure 12). We explored then the non-destructive detection of
210	the essential oil emission around 320 nm in intact oregano excited at 275nm. Under these
211	conditions we have found UV fluorescence with maxima around 310 nm. The band intensities
212	followed the order: inflorescences $(7.6 \times 10^5 \text{ a.u.}) > \text{dry leaves} (4.1 \times 10^5 \text{ a.u.}) > \text{dry stems}$
213	$(1.8 \times 10^5 \text{ a.u.}) > \text{ fresh leaves } (7.5 \times 10^4)$. These last results are consistent with a higher density of
214	glandular trichomes in inflorescences. Moreover, this analysis showed that the UV
215	fluorescence, which specifically emerged from the essential oil in intact samples, could also
216	serve as a tool for non-destructive monitoring.
217	<figure 12=""></figure>
218	Attenuated total reflectance Fourier transform infrared spectroscopy

ATR-FTIR spectra for the oregano essential oil is shown in Figure 13 together with the spectrafor intact dry leaves and inflorescences.

221	<figure 13=""></figure>
222	The band placed at 811 cm ⁻¹ in the essential oil spectrum corresponds to out of plane
223	C-H wagging vibrations and it is characteristic of carvacrol component (32). This band was
224	also observed in the spectrum of dry inflorescences. On the other hand, the absorption band at
225	1740 cm ⁻¹ (absent in the essential oil spectrum but present in inflorescences, is due to acidic
226	C=O and it was attributed in bibliography to the presence of rosmarinic acid (33). We paid
227	special attention to both these absorption bands at 811 cm ⁻¹ and at 1740 cm ⁻¹ in the intact
228	samples of oregano. In Figure 14 we show F(R) values for these wavenumbers.
229	<figure 14=""></figure>
230	Both the 811 cm ⁻¹ and the 1740 cm ⁻¹ absorption bands were higher for dry
231	inflorescences than for dry leaves. The result is consistent with a higher content of essential oil
232	in inflorescences compared to leaves as it will be seen from the density of glandular trichomes
233	(which biosynthesize the essential oil) captured by SEM analysis. So, our results indicates that
234	the ATR band at 811 cm ⁻¹ may be a potential indicator of the essential oil content while the
235	ATR band at 1740 cm ⁻¹ may be potentially connected with the presence of rosmarinic acid and
236	to the content of hydroxycinnamic acids (28) in general. No relevant information could be
237	extracted from ATR spectra of stems.
238	CONCLUSIONS

Both glandular and non-glandular trichomes have been found in all the studied organs of the
plant. The blue-green fluorescence originated in the epidermis and in non–glandular hairs and
it strongly increased upon drying. For leaves, Blue/ Far-red and Green/ Far-red fluorescence

242	ratios could be linearly connected to the water content. At constant sample humidity,
243	fluorescence ratios became useful tools to distinguish the different organs of the plant,
244	especially for discriminating between leaves and inflorescences (the two major fractions in the
245	commercial product). Glandular trichomes, containing the essential oil, emitted fluorescence in
246	the UV region (around 310 nm). Additionally, inflorescences have shown higher density of
247	glandular trichomes than other organs of the plant, as it could be clearly seen from SEM
248	images and consequently higher essential oil content. This result agreed with their larger
249	emission at 310 nm in the fluorescence spectra and the higher absorption at 811cm ⁻¹ at the
250	FTIR-ATR spectra. As a consequence, the FTIR-ATR absorption bands and the fluorescent
251	emission could be explored as non-destructive techniques to assess nutraceutical content.
252	The spectroscopic information and the optical indicators derived in this manuscript
253	could be used in future works for the development of rapid and non-destructive methods of
253 254	could be used in future works for the development of rapid and non-destructive methods of oregano quality assessment.
254	oregano quality assessment.
254 255	oregano quality assessment. ACKNOWLEDGMENTS: The authors are grateful to the University of Buenos Aires
254 255 256	oregano quality assessment. ACKNOWLEDGMENTS: The authors are grateful to the University of Buenos Aires (Projects UBACyT X114 and UBACyT 20020100100814) and to the Agencia Nacional de
254 255 256 257	oregano quality assessment. ACKNOWLEDGMENTS: The authors are grateful to the University of Buenos Aires (Projects UBACyT X114 and UBACyT 20020100100814) and to the Agencia Nacional de Promoción Científica y Tecnológica (BID 1201/OC-AR PICT 938) for the financial support.
254 255 256 257 258	oregano quality assessment. ACKNOWLEDGMENTS : The authors are grateful to the University of Buenos Aires (Projects UBACyT X114 and UBACyT 20020100100814) and to the Agencia Nacional de Promoción Científica y Tecnológica (BID 1201/OC-AR PICT 938) for the financial support. JMN is supported by a fellowship from the University of Buenos Aires. AI is Assistant
254 255 256 257 258 259	oregano quality assessment. ACKNOWLEDGMENTS : The authors are grateful to the University of Buenos Aires (Projects UBACyT X114 and UBACyT 20020100100814) and to the Agencia Nacional de Promoción Científica y Tecnológica (BID 1201/OC-AR PICT 938) for the financial support. JMN is supported by a fellowship from the University of Buenos Aires. AI is Assistant research scientist from The Consejo Nacional de Investigaciones Científicas y Técnicas
254 255 256 257 258 259 260	oregano quality assessment. ACKNOWLEDGMENTS : The authors are grateful to the University of Buenos Aires (Projects UBACyT X114 and UBACyT 20020100100814) and to the Agencia Nacional de Promoción Científica y Tecnológica (BID 1201/OC-AR PICT 938) for the financial support. JMN is supported by a fellowship from the University of Buenos Aires. AI is Assistant research scientist from The Consejo Nacional de Investigaciones Científicas y Técnicas CONICET. The authors greatly appreciate the valuable assistance of Dr. Guillermo Menéndez

264 **REFERENCES**

- 265 1. Kaurinovic, B., M. Popovic, S. Vlaisavljevic and S. Trivic (2011) Antioxidant Capacity of
- 266 Ocimum basilicum L. and Origanum vulgare L. Extracts. Molecules, 16, 7401-7414.
- 267 2. Bruneton, J. (1999) Pharmacognosy, Phytochemistry. Medicinal Plants. 2nd ed. London-

268 New York.

- 269 3. Wang, H., G. J. Provan and K. Helliwell (2004) Determination of rosmarinic acid and 270 caffeic acid in aromatic herbs by HPLC. *Food Chem.*, **87**, 307-311.
- 4. PDR for Herbal Medicines (2000) (Edited by J. Gruenwald, T. Brendler and C. Jaenicke),
- pp. 559-560. Thomson Healthcare Inc., Montvale, NJ.
- 5. Kulisić, T., A. Krisko, V. Dragović-Uzelac, M. Milos and G. Pifat (2007) The effects of
- essential oils and aqueous tea infusions of oregano (Origanum vulgare L. spp. hirtum), thyme
- 275 (*Thymus vulgaris* L.) and wild thyme (*Thymus serpyllum* L.) on the copper-induced oxidation
- of human low-density lipoproteins. *Int. J. Food Sci. Nutr.*, **58**, 87-93.
- 6. Aligiannis, N., E. Kalpoutzakis, S. Mitaku and I. B. Chinou (2001) Composition and
 antimicrobial activity of the essential oils of two Origanum species. *J. Agric. Food Chem.*, 49,
 4168-4170.
- 280 7. Salgueiro, L. R., L. R. C. Cavaleiro, E. Pinto, C. Pina-Vaz, A. G. Rodrigues, A. Palmeira, C.
- 281 Tavares, S. Costa-de-Oliveira, M. J. Goncalves and J. Martinez de Oliveira (2003) Chemical
- 282 Composition and Antifungal Activity of the Essential Oil of Origanum virens on Candida
- 283 Species. Planta Med., 69, 871-874.
- 284 8. Código Alimentario Argentino, Chapter XVI, Condimentos vegetales, Art.1226.

- 9. Wendlandt, W. and H. G. Hecht (1966) Reflectance Spectroscopy. Interscience, New York.
- 286 10. Osman, A. K. (2012) Trichome micromorphology of egyptian ballota (lamiaceae) with
- emphasis on its systematic implication. *Pak. J. Bot.*, 44, 33-46.
- 288 11. Wittstock, U. and J. Gershenzon (2002) Constitutive plant toxins and their role in defense
- against herbivores and pathogens. *Curr. Opin. Plant Biol.*, **5**, 300-307.
- 290 12. Gersbach, P. V., S. G. Wyllie and V. Sarafis (2001) A New Histochemical Method for
- 291 Localization of the Site of Monoterpene Phenol Accumulation in Plant Secretory Structures.
- 292 Ann. Bot., 88, 521-525.
- 13. Bosabalidis, A., C. Gabrieli, and I. Niopas (1998) Flavone aglycones in glandular hairs of
- 294 Origanum X intercedens. *Phytochemistry*, **49**, 1549-1553.
- 295 14. Kofidis G., A. M. Bosabalidis and M. Moustakas (2003) Contemporary seasonal and
- altitudinal variations of leaf structural features in Oregano (Origanum vulgare L.). Ann. Bot.,
- **92**, 635-645.
- 298 15. Kahraman, A., F. Celep and M. Dogan (2010) Anatomy, trichome morphology and
- 299 palynology of Salvia chrysophylla Stapf (Lamiaceae). S. Afr. J. Bot., 76, 187–195.
- 16. Lagorio, M. G. (2011) Chlorophyll fluorescence emission spectra in photosynthetic
 organisms. In Chlorophyll: Structure, Production and Medicinal Uses, Nova Science
 Publishers, New York, USA.
- 303 17. Baker, N. R. (2008) Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual
- 304 *Review of Plant Biology*, **59**, 89-113.

- 305 18. Papageorgiou, G. and Govindjee (2004) Chlorophyll a fluorescence-a signature of
 306 photosynthesis, Springer, Dordrecht..
- 307 19. Maxwell,K. and Johnson, G. N. Chlorophyll fluorescence a practical guide (2000), *J. Exp.*308 *Bot.*, **51**, 659-668..
- 309 20. McCue, P. and K. Shetty (2004) Inhibitory effects of rosmarinic acid extracts on porcine
 310 pancreatic amylase *in vitro*. *Asia Pacific J. Clin. Nutr.*, **13**, 101-106.
- 311 21. Benavides, V., G. D'Arrigo and J. Pino (2010) Effects of aqueous extract of Origanum
- 312 *vulgare* L. (Lamiaceae) on the preimplantational mouse embryos. *Rev. peru. biol.*, **17**, 381-384.
- 313 22. Wojdyło, A., J. Oszmian'ski and R. Czemerys (2007) Antioxidant activity and phenolic
- 314 compounds in 32 selected herbs. *Food Chem.*, **105**, 940–949.
- 315 23. Koukoulitsa, C., A. Karioti, M. C. Bergonzi, G. Pescitelli, L. Di Bari and H. Skaltsa (2006)
- 316 Polar Constituents from the Aerial Parts of *Origanum vulgare* L. Ssp. *hirtum* Growing Wild in
- 317 Greece. J. Agric. Food Chem., 54, 5388–5392.
- 318 24. Celik, S. E., M. Özyürek, A. N. Tufan, K. Güçlü and R. Apak (2011) Spectroscopic study

and antioxidant properties of the inclusion complexes of rosmarinic acid with natural and

- derivative cyclodextrins. *Spectrochim. Acta A Mol Biomol. Spectrosc.*, **78**, 1615–1624.
- 321 25. Meyer, S., A. Cartelat, I. Moya and Z. G. Cerovic, UV-induced blue-green and far-red
- 322 fluorescence along wheat leaves: a potential signature of leaf ageing. J. Exp. Bot., 54, 757-
- 323 769.

324	26. Goulas, Y., I. Moya and G. Schmuck (1990) Time-resolved spectroscopy of the blue
325	fluorescence of spinach leaves. Photosynth. Res, 25, 299-307.
326	27. Morales, F., A. Cartelat, A. Alvarez-Fernández, I. Moya and Z. G. Cerovic (2005) Time-
327	Resolved Spectral Studies of Blue-Green Fluorescence of Artichoke (Cynara cardunculus L.
328	Var. Scolymus) Leaves: Identification of Chlorogenic Acid as One of the Major Fluorophores
329	and Age-Mediated Changes. J. Agric. Food Chem., 53, 9668-9678.
330	28. Trnková, L., I. Boušová, V. Kubíček and J. Dršata (2010) Binding of naturally occurring
331	hydroxycinnamic acids to bovine serum albumin. Nat. Sci., 2, 563-570.
332	29. Nifli A. P., P. A. Theodoropoulos, S. Munier, C. Castagnino, E. Roussakis, H. E.
333	Katerinopoulos, J. Vercauteren and E. Castanas (2007) Quercetin Exhibits a Specific
334	Fluorescence in Cellular Milieu: A Valuable Tool for the Study of Its Intracellular Distribution,
335	J Agric Food Chem., 55 , 2873-2878.
336	30. Peer, W. A., D. E. Brown, B. W. Tague, G. K. Muday, L. Taiz and A. S. Murphy (2001)
337	Flavonoid Accumulation Patterns of Transparent Testa Mutants of Arabidopsis. Plant Physiol.,
338	126 , 536–554.
339	31. Talcics Z., H. K. Lichtenthaler and Z. Tubal (2000) Fluorescence Emission Spectra of

- 340 Desiccation-tolerant Cryptogamic Plants During a Rehydration desiccation Cycle. J. Plant
 341 Physiol., 156, 375-379.
- 342 32. Schulz, H., G. Özkan, M. Baranska, H. Krüger and M. Özcan (2005) Characterisation of
- 343 essential oil plants from Turkey by IR and Raman spectroscopy. *Vib. Spectrosc.*, **39**, 249–256.

- 344 33. Mehrabania, M., M. Shams-Ardakanib, A. Ghannadic, N. G. Dehkordic and S. E. Sajjadi
- Jazic (2005) Production of Rosmarinic Acid in Echium amoenum Fisch. and C.A. Mey. Cell
- 346 Cultures. Iran. J. Pharm. Res., 2, 111-115.

347 FIGURE CAPTIONS

- **Figure 1.** Oregano fresh leaf observed by optical reflection microscopy.
- 349 **Figure 2.** Oregano non-glandular trichomes observed by optical transmission microscopy, a)
- 350 fresh leaf, b) dried leaf.
- **Figure 3.** SEM image in false colors for the dry floral bracts of oregano. a) 100×, b) 500×, c)
- 352 2.00K×, detail of a peltate glandular trichome seat on a flat epidermis.
- **Figure 4.** SEM image in false colors for oregano dry-flowers. a) 100×, b) 500×.
- **Figure 5.** SEM image in false colors for oregano dry-leaves. a) 100×, b) 500×, c) 2.00K×,
- detail of peltate glandular trichome seat on a local depression.
- **Figure 6.** SEM image in false colors for oregano dry-stem. a) 100×, b) 500×, c) 1.00K×, detail
- 357 of non-glandular trichomes.
- **Figure 7.** Blue-excited blue and UV-excited green fluorescence images captured for dried
- inflorescences, dry leaves and dry stems of oregano.

- **Figure 8**. Fluorescence spectra corrected for the detector response for the different organs of
- 361 oregano. Excitation wavelength: 400 nm. Dry inflorescences (thick grey line), dry stems (thick
- 362 black line), dry leaves (fine black line), fresh leaves (dashed line).
- Figure 9. Fluorescence ratios for the different organs of oregano. The error bars represent thestandard deviation.
- Figure 10. Green/ Far-red ratio as a function of water content (mass percentage) in oregano
 leaves.
- Figure 11. Blue/ Far-red ratio as a function of water content (mass percentage) in oregano
 leaves.
- Figure 12. Fluorescence spectra corrected for the detector response for the essential oil of
 oregano in ethanol solution. Excitation wavelength: 275 nm.
- 371 Figure 13. ATR-FTIR spectra for a) the essential oil of oregano distilled from leaves and
- inflorescences, b) dry leaves, c) dry inflorescences.
- 373 **Figure 14.** Absorption bands at 811 cm⁻¹ and 1740 cm⁻¹ from ATR-FTIR of dry
- 374 inflorescences and dry leaves of oregano. The error bars represent the standard deviation

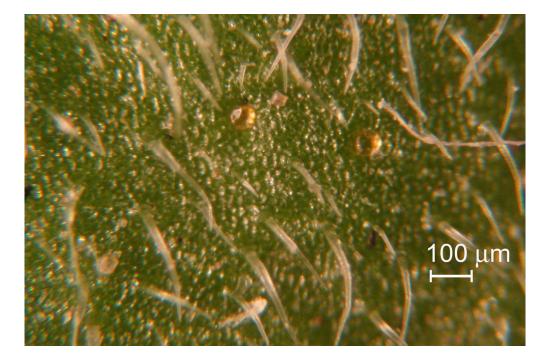


Figure 1. Oregano fresh leaf observed by optical reflection microscopy. 54x36mm (600 x 600 DPI)

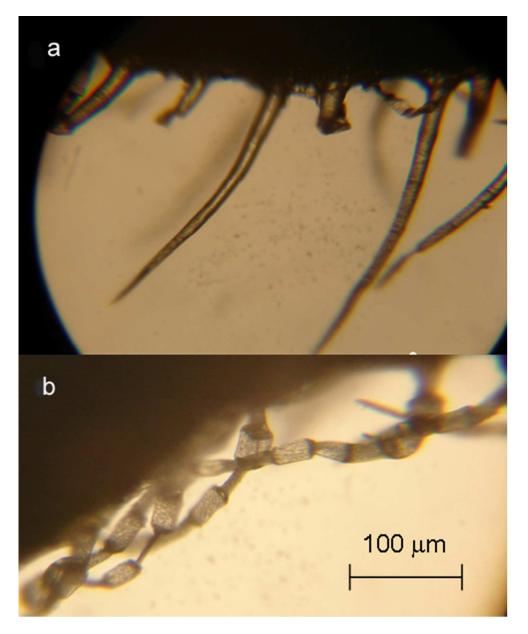


Figure 2. Oregano non-glandular trichomes observed by optical transmission microscopy, a) fresh leaf, b) dried leaf. 82x101mm (150 x 150 DPI)

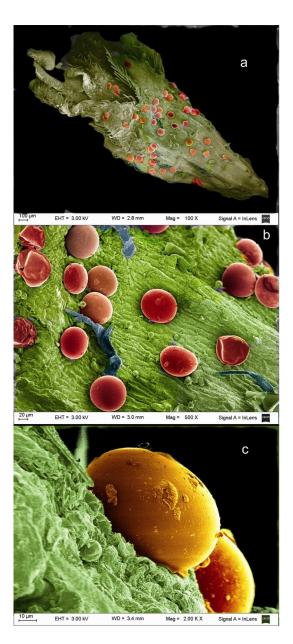


Figure 3. SEM image in false colors for the dry floral bracts of oregano. a) $100 \times$, b) $500 \times$, c) $2.00K \times$, detail of a peltate glandular trichome seat on a flat epidermis. 187x422mm (300 x 300 DPI)

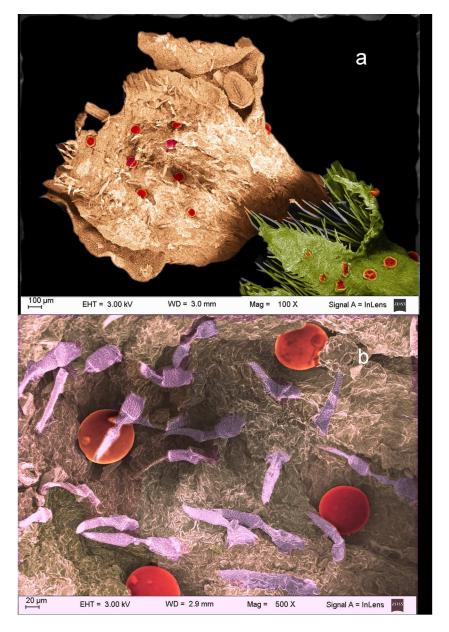


Figure 4. SEM image in false colors for oregano dry-flowers. a) 100×, b) 500×. 120x173mm (600 x 600 DPI)

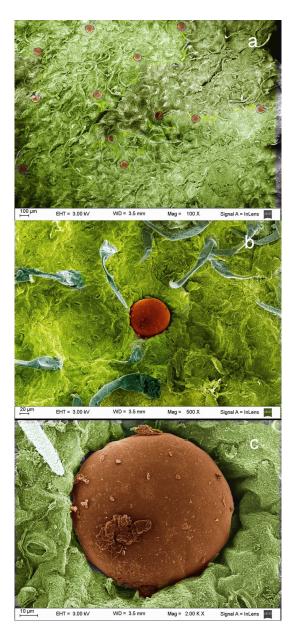


Figure 5. SEM image in false colors for oregano dry-leaves. a) $100 \times$, b) $500 \times$, c) $2.00K \times$, detail of peltate glandular trichome seat on a local depression. 187x421mm (300 x 300 DPI)

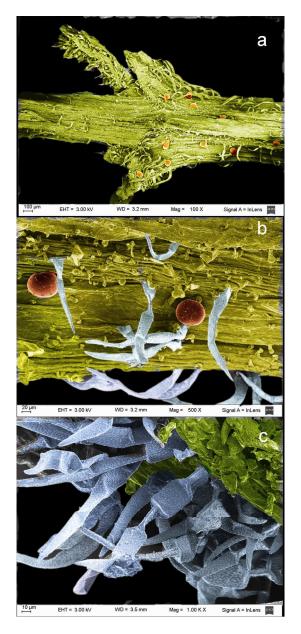


Figure 6. SEM image in false colors for oregano dry-stem. a) $100 \times$, b) $500 \times$, c) $1.00K \times$, detail of nonglandular trichomes. 186x418mm (300 x 300 DPI)

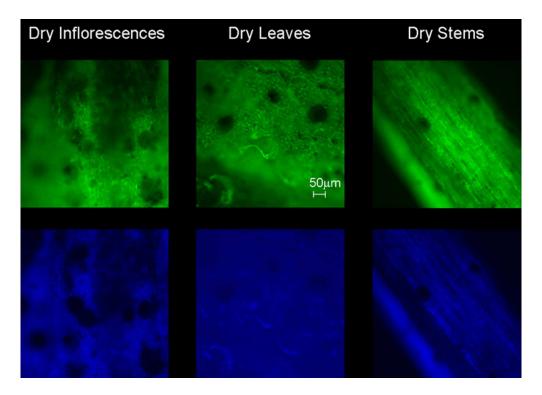


Figure 7. Blue-excited blue and UV-excited green fluorescence images captured for dried inflorescences, dry leaves and dry stems of oregano. 59x42mm (300 x 300 DPI)

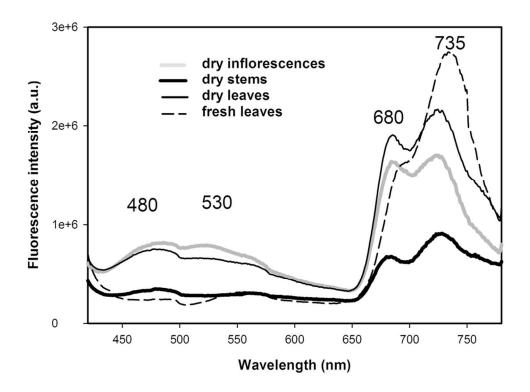
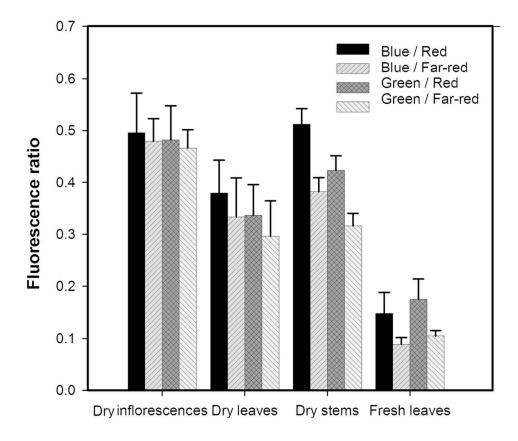
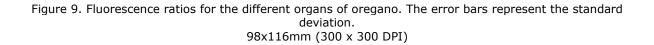




Figure 8. Fluorescence spectra corrected for the detector response for the different organs of oregano. Excitation wavelength: 400 nm. Dry inflorescences (thick grey line), dry stems (thick black line), dry leaves (fine black line), fresh leaves (dashed line). 90x71mm (300 x 300 DPI)

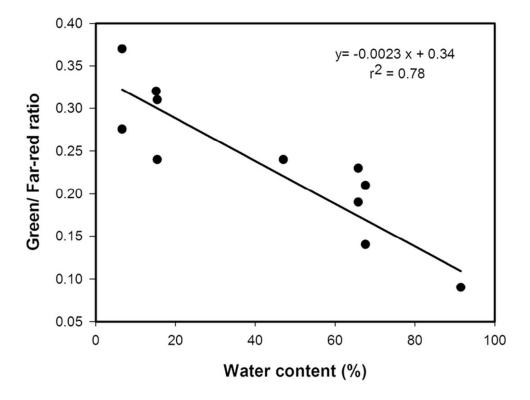


Figure 10. Green/ Far-red ratio as a function of water content (mass percentage) in oregano leaves. 64x49mm (300 x 300 DPI)

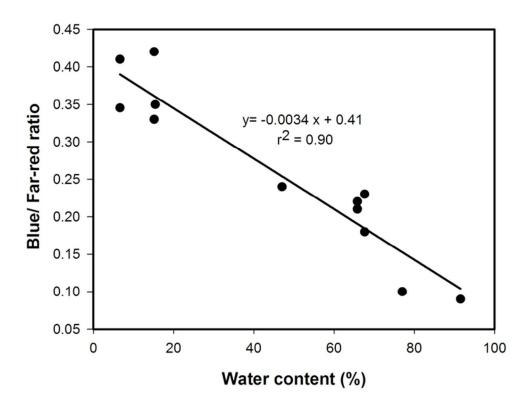


Figure 11. Blue/ Far-red ratio as a function of water content (mass percentage) in oregano leaves. 64x50mm (300 x 300 DPI)

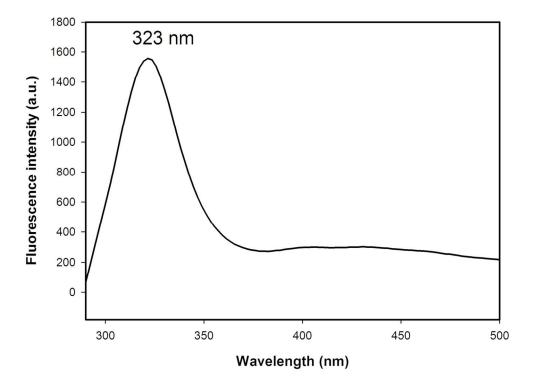


Figure 12. Fluorescence spectra corrected for the detector response for the essential oil of oregano in ethanol solution. Excitation wavelength: 275 nm 65x51mm (600 x 600 DPI)

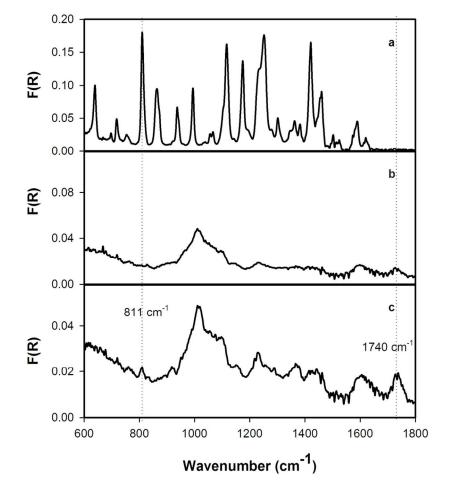


Figure 13. ATR-FTIR spectra for a) the essential oil of oregano distilled from leaves and inflorescences, b) dry leaves, c) dry inflorescences. 111x149mm (300 x 300 DPI)

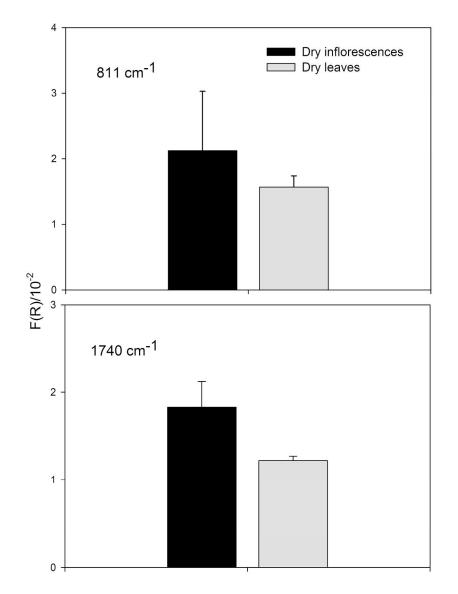


Figure 14. Absorption bands at 811 cm-1 and 1740 cm-1 from ATR-FTIR of dry inflorescences and dry leaves of oregano. The error bars represent the standard deviation 205x263mm (300 x 300 DPI)