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ABSTRACT: A unified extension of the classic Shilov−Dukhin theory of the
low frequency dielectric dispersion of colloidal dispersions is presented. Purely
analytical expressions for the AC dielectric and electrokinetic response over a
broad frequency range including different counterion and co-ion valences and
the presence of the stagnant layer conductivity are deduced. The obtained
results are generally in good to very good agreement with available numerical
data, showing that they should be useful for the interpretation of a broad range
of experimental results without having to rely on numerical calculations.

■ INTRODUCTION

The classical thin double layer concentration polarization theory
in colloidal suspensions was first developed by Dukhin and
Shilov1 in the late 1960s. This DC study was extended in the
following year to the AC regime, leading to the description of the
low frequency dielectric dispersion phenomenon.2,3 These works
were based on the standard electrokinetic model4 and assumed,
furthermore, that the counterion and co-ion valences have the
same value: z+ = z− (actually, the possible existence of a stagnant
layer conductivity was considered in refs 2 and 3 considering that
the zero fluid velocity surface might not coincide with the surface
of the particle).
In the following years, the main theoretical advances on this

subject were of a numerical nature: solution of the whole
electrokinetic equation set for arbitrary double layer thickness
with an arbitrary number of ionic species and ion valence values
in both DC5 and AC6

fields, broad frequency range including
inertial effects,7 and stagnant layer conductivity in both DC8

and AC9,10
fields. However, the analytical extensions of the

original works were much more limited and only approximate in
nature. They mainly dealt with different counterion and co-ion
valences,11 the extension of the model validity to the high
frequency range,12,13 and the inclusion of the anomalous surface
conductivity.13−15

In a recent series of works, we presented extensions of the original
models including different counterion and co-ion valences (z+ = 2z−

and z− = 2z+) both in DC 16 and low frequency AC,17 high
frequency AC,18 and stagnant layer conductivity in DC.19 In this
work, we deduce the one extension that was still missing: stagnant
layer conductivity in low and high frequency AC. We also extend

the previous stagnant layer conductivity DC treatment to include
different counterion and co-ion valences. The final result is a fully
analytical thin double layer formulation of the dielectric and elec-
trokinetic response of colloidal suspensions both in the DC and
broad frequency AC range, including different counterion and
co-ion valences and the stagnant layer conductivity. In order to
keep the presentation as short as possible, we only include the
new aspects of the theory and refer to previous work for the
remaining part. However, we do include all the equations needed
for the final results in order to be able to use them without having
to refer to previous works.

■ EQUATION SET
The classic Shilov−Dukhin low frequency dielectric dispersion
theory is based on the standard electrokinetic model,4 so that the
suspended particle is represented by an insulating sphere of
radius a, with a uniform fixed surface charge density σ0. The
surrounding electrolyte solution is characterized by its viscosity
ηe, absolute permittivity εe, the unsigned valences of its ions z±,
their diffusion coefficients D±, and their number concentrations
far from the particle:

∞ =± ∓C z N( )

In this work, we shall extend the standard model by considering,
just as in ref 19, that the particle is surrounded by a surface
layer of adsorbed ions that can move tangentially with diffusion
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coefficients Ds
±, while the fluid remains immobile. The

equilibrium (lower index 0) surface densities are determined
by the following adsorption isotherms:8

=
+ +

±
± ± ±

+ + − −C
N C a K

C a K C a K
( )/

1 ( )/ ( )/s0
s 0 s

0 s 0 s (1)

In this equation, Ns
± are the maximum values of the surface

concentrations of adsorbed ions and Ks
± are their dissociation

constants.
Outside the surface layer, the ion concentrations C±(r,⃗ t),

electric potentialΦ(r,⃗ t), fluid velocity V⃗(r,⃗ t), and pressure P(r,⃗ t)
are determined by the usual set of the Nernst−Planck,
continuity, Poisson, Navier−Stokes, and incompressibility
equations. The full formulation, based on the thin double layer
approximation

κ ≫a 1 (2)

where

κ
ε

= ++ − + −z z z z e N
kT

( ) 2

e (3)

is the reciprocal Debye length, is presented in detail in ref 17 and
outlined in ref 18.
Briefly, the equation set is first solved in equilibrium, which

leads to the equilibrium ion concentrations

=± ∓ ∓ Φ̃±
C z Ne z

0
0 (4)

to the Poisson−Boltzmann equation for the equilibrium
potential

ε
∇ Φ̃ = − −

+ −
− Φ̃ Φ̃+ −z z e N

kT
e e( )z z2

0

2

e

0 0

and to an expression relating the zeta potential to the electrolyte
concentration and the total surface charge density of the particle

σ σ σ ζ

ε

+ + = ̃ + − −

×

ζ ζ+ − − − ̃ + ̃ + −+ −
z e z e z z

kTN

sign( )

2

z z
0 s0 s0

e (5)

where

σ = ±± ± ±z eCs0 s0

In these expressions, the tilde “∼” denotes a dimensionless
magnitude: Φ̃ = Φe/(kT).
When a macroscopic AC electric field Eeiωt is applied to the

system, the equations are simplified using the principle of local
equilibrium: each volume element of the system is in a state of
equilibrium, even when different volume elements are not in
equilibrium with one another. This condition is expressed in
terms of a virtual system, that is,

(a) electroneutral in its entire volume

* = *± ∓c z n (6)

(b) in equilibrium everywhere with the real system

μ φ*̃ =
*

± Φ̃* = * ± *̃±
±

∓
± ±C

z N
z

n
N

zln ln
(7)

where c*± and φ* are the ion concentrations and the electric
potential in the virtual system, μ*± are the electrochemical
potentials, the asterisk denotes a complex magnitude, and

μ̃*± = μ*±/(kT). Using eqs 6 and 7, the ion concentrations can
be expressed in terms of the virtual system parameters:

* = * φ± ∓ ∓ Φ̃*− *̃±
C z n e z ( ) (8)

The resulting equation set is then linearized, writing each field-
dependent magnitude as an expansion in successive powers of
the applied field strength, for example:

δ* = + * +± ± ±C C C ...0

where a magnitude preceded by the δ character is linear in the
applied field. Combining these expansions with the original
equations, dropping all the higher than first order in the applied
field terms, and using the equilibrium expressions leads to the
final equation set. It is solved outside the equilibrium double
layer using the hypothesis of approximate electroneutrality: the
electrolyte solution that is electroneutral in equilibrium remains
electroneutral when an AC field is applied. The obtained
solution, valid outside the equilibrium double layer, is

δ
ξ κ
ξ κ

θ*̃ = * + *
+ *

ξ κ* − ⎜ ⎟⎛
⎝

⎞
⎠n K e

a
r

r
a

eEa
kT

1

1
cosa r

c
( )

2

(9)

δ δφ θ δΦ̃* = ̃* =
*

− + *̃Δ
⎛
⎝⎜

⎞
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K a
r

r
a

eEa
kT

ncosd
2

2
(10)

where

δ δ*̃ = *n n N/

ξ ω
κ

* = i
D2

ef

Δ = −
+

− +

+ + − −
D D

z D z D

= +
+

+ − + −

+ + − −D
z z D D
z D z D

( )
ef

while Kc* and Kd* are the concentration and dipolar integration
coefficients.

■ BOUNDARY CONDITIONS
The coefficients Kc* and Kd* are determined integrating the
continuity equations written for the differences between the
actual ion flows δj*⃗± and the long-range (lower index l) flows
δjl⃗*

± that are calculated using expressions that are only valid
outside the dif fuse double layer:

∫

∫

δ δ

θ θ
θ δ δ

δ δ

∂
∂

* − *

+ ∂
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* − *

= − ∂
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* − *̃
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∞
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{
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1
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[sin ( )] d

( ) d

a r lr

l

a

2
2

(11)

where

δ δμ δ*⃗ = − ∇ *̃ + ⃗*± ± ± ± ±j C D C V0 0 (12)

δ δμ δ*⃗ = − ∇ *̃ + ⃗*± ∓ ± ± ∓j z ND z N Vl (13)

δμ δ δφ*̃ = *̃ ± ̃*± ±n z (14)
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The integrals can be analytically evaluated assuming that the
tangential gradient of the electrochemical potential does not change
across the thin double layer. Proceeding exactly as in ref 19
transforms eq 11 into

∫
∫

∫

δ δμ
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The first integral in eq 15 represents the nonspecific
adsorption coefficients G0

± (excess equilibrium surface densities
of counterions or co-ions). Their values, calculated in ref 16, are

(11) For z+ = z− = z
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ze

e
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/2

(16)
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(12) For 2z+ = z− = 2z
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The second integral represents the convective flow of ions
along the particle surface, where the fluid velocity δV⃗ is a super-
position of electroosmotic and capillary osmotic contributions:

∫ δ

ε
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The expressions for the coefficients Ieo
± and Ico

± are also given in
ref 16 but written in a slightly different form:
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The first addend in eq 15 can be expressed in terms of the
stagnant layer parameters using the continuity equation:

δ δ ωδ∇ · * + * = − *θ
± ± ±j j a i C( )s r s (19)

where

δ
δ δ

θ
θ* =
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±
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(20)

are the surface flows of ions in the stagnant layer and

δ δ̃ * = *± ± ±C C C/s s s0

are the relative field-induced changes of the adsorbed ion
concentrations. Note that eq 20 corrects a mistake in the cos θ
dependence of the corresponding equation in ref 19. Combining
eqs 19 and 20 leads to

δ δ ωτ δ* = − ̃* + ± Φ̃*±
± ±

± ± ±j a
D C

a
C i z a( )

2
[ (1 ) ( )]r

s s0
2 s s

where

τ =± ±a D/(2 )s
2

s

are relaxation times associated with the stagnant layer. Using
these results together with eq 14 transforms eq 15 into
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∫
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Except for the presence of the asterisks, the different ion valences,
and the terms proportional to iω, this equation has exactly the
same form as in the DC case, eq 33 in ref 19.
In order to proceed, it is necessary to determine the expres-

sion for the field-induced changes of the stagnant layer ion
concentrations δCs

±. We shall assume as in ref 10 that, in
the considered frequency range, the characteristic times of
the adsorption−desorption processes of cations and anions are
much smaller than the period of the applied electric f ield. Under this
assumption, the equilibrium adsorption isotherms are also valid
out of equilibrium, just as in the DC case:8,19
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while the field-induced ion concentration changes at the inner
boundary of the diffuse double layer δC*±(a) are deduced from
the local equilibrium condition, eq 8:
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Next, an expression for the field-induced potential change at
the inner boundary of the diffuse double layer δΦ̃*(a) is needed.
Note that inside the diffuse double layer δΦ̃* depends on the
distance to the particle, unlike δφ̃* and δn ̃* that are classically
considered to remain constant across the thin double layer in
view of the local equilibrium condition and eq 2. The potential
change δΦ̃*(a) can be expressed as the sum of δφ̃*(a) plus a
contribution dependent on the concentration change. This
contribution can be determined combining eqs 4, 5, and 22,
which leads to
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coincides, except for the double sign in S±, with the
corresponding stationary expression.19 Combining eqs 24−26
shows that
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so that the frequency dependence of δCs*
± is solely determined

by δn ̃*(a).
Using these results, eq 21 finally transforms into
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■ LOW FREQUENCY SOLUTION

The last addend in eq 29 is classically neglected because it is
proportional to the frequency, so that it should be small in
the range of the low frequency dielectric dispersion.18 The
same argument should also apply to the frequency dependent
part of M*±, eq 26, which so reduces to M±, eq 27. Using eqs
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9, 10, and 14 and factoring with respect to the coefficients
leads to the final equation system:
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are the same as when there is no stagnant layer.17Note that eq 30 has
exactly the same form as eq 35 in ref 17 with r± and u± replacing R±

and U±, respectively. This similarity makes it possible to write down
the solution in the same form as eqs 32 and 33 in ref 17:
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Note that the coefficients Kd∞, H, and A have been written in a
simpler form than in ref 17 by using the expressions for Δ and
Def , and noting that D+U+ = D−U−.18

In the stationary limit, ω = 0, eqs 34 and 35 reduce to
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As expected,17 Kc(0) coincides with the stationary expression,
eq 38 in ref 19:

=K K(0)c c

while Kd(0) does not coincide with the stationary result, eq 37 in
ref 19, but rather satisfies

= − ΔK K K(0) (0)d d c

The form of eq 36 makes it possible to relate the coefficients r±

to the total (diffuse plus stagnant layer) surface conductivity λ:17
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+

=
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where Ke is the bulk conductivity of the electrolyte solution
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These results, together with eqs 31−33, lead to the final
expression
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where the first addend coincides with the Bikerman result for the
surface conductivity of the diffuse double layer,20 while the second
one corresponds to the stagnant layer surface conductivity.
Figure 1 represents the total surface conductivity as a function

of the ζ ̃ potential and its dependence on the counterion and co-
ion valences and on the stagnant layer parameters. This and all
the following figures use the system parameters given in Table 1,
which were taken from ref 10 in order to be able to visually
compare the obtained results with numerical data from that
reference.
For z+ = z− = 1, they roughly correspond to a suspension of

100 nm particles in an aqueous 10 mM/L KCl solution. The
actual electrolyte concentration was calculated in all cases from
the reciprocal Debye length, eq 3, and the condition κa = 30.
Note that a constant Debye length also implies a constant
bulk conductivity when the counterion and co-ion diffusion
coefficients have the same value, eq 40. The maximum adsorbed
ion concentrations Ns

± correspond to a maximum surface
charge density of ±0.8 C m−2 for z+ = z− = 1. The last two
columns in Table 1 determine the dissociation constant
values written as Ks

± = 1000NA10
−pK±

m−3 so that for co-ions
Ks
+ = 6.022 × 1025 m−3, while for counterions 6.022 × 1024 m−3 ≤

Ks
− ≤ 6.022 × 1028 m−3.
Figure 1a shows the rapid increase of the diffuse double layer

conductivity with the surface potential, which is mainly due to the
increase of the counterion population in this layer. The very
strong dependence with the counterion valence is due to the
increase of the factor multiplying the ζ ̃ potential in the
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exponential function of eqs 16−18 (for high ζ ̃, G0
11− and G0

21−

become proportional to ezζ ̃/2 whileG0
12− andG0

22− increase as ezζ ̃).
The weak dependence of the surface conductivity with the
co-ion valence is mainly due to the dependence of the bulk
counterion concentration on the co-ion valence at constant
Debye length: for univalent counterions, an increase of the co-ion
valence from 1 to 2 decreases the counterion concentration by a
factor of 2/3, while, for divalent counterions, the corresponding
factor is 3/4, eq 3.
Figure 1b shows that, for low ζ ̃ potentials, the total surface

conductivity strongly increases with the pK− value, which
determines the counterion population in the stagnant layer.
Note that, in general, the surface conductivity does not reduce to
zero for ζ ̃ = 0 and that its minimum is not necessarily attained for
ζ ̃ = 0. This occurs because for the magenta, blue, and red lines
pK+ > pK−, so that the population of co-ions in the stagnant layer
surpasses that of counterions for ζ ̃ = 0. For the green line, these
populations coincide (the corresponding minimum is located at
ζ ̃ = 0), while, for the brown line, the population of counterions
surpasses that of co-ions so that the corresponding minimum
occurs for a negative value of the ζ ̃ potential (outside the
figure). Finally, for high values of the ζ ̃ potential, the counterion
population in the stagnant layer saturates so that the increase of
the total surface conductivity with the ζ ̃ potential is only due to

the diffuse double layer contribution, first addend in the right-
hand side of eq 41 (black line).
Figures 2 and 3 represent the real part of the concentration and

dipole coefficient spectra, eqs 34 and35, and their dependences on the
counterion and co-ion valences and on the stagnant layer parameters.
Figures 2a and 3a show the expected strong increase of the

concentration and dipole coefficients with the counterion
valence. However, they also show a strong dependence on
the co-ion valence, even though there are almost no co-ions in
the diffuse double layer. Moreover, the dependences of the
dipole and the concentration coefficients on the co-ion valences
are qualitatively different: extreme Re(Kd*) values correspond to
different counterion and co-ion valences, while extreme Re(Kc*)
values are attained when counterion and co-ion valences are the
same. The reason for this difference is that the dipolar coefficient
is determined by the ratio of the double layer surface conductivity
and the bulk conductivity of the electrolyte solution. On the
contrary, the concentration coefficient depends on the ratio of
the counterion transfer numbers in the double layer and in the
electrolyte solution. Since at constant κ the electrolyte solution
conductivity is also constant, eq 40 with D+ = D−, the qualitative
dependence of Re(Kd*) with the counterion and co-ion valences,
Figure 2a, coincides with that of the surface conductivity, Figure 1a.
As for the concentration coefficient, consider that the counterion

valence is one while the co-ion valence changes to two. The
modulus of Re(Kc*) should increase because the bulk conductivity
part due to counterions, last addend in the second equality in
eq 40, decreases (by a factor 2/3). Likewise, starting with divalent
ions and lowering the co-ion valence to one, the bulk conduc-
tivity part due to counterions increases (by a factor of 4/3) so
that the modulus of Re(Kc*) should decrease, in agreement with
Figure 2a.

Figure 1. Total surface conductivity as a function of the ζ ̃ potential and its dependence on (a) the counterion and co-ion valences and (b) the stagnant
layer parameters. (a) No stagnant layer; z+ = z− = 1 (black), z+ = 2z− = 2 (brown), 2z+ = z− = 2 (orange), and z+ = z− = 2 (magenta) lines. (b) z+ = z− = 1;
no stagnant layer (black), stagnant layer with pK+ = 1 and pK− = −2 (magenta), = −1 (blue), = 0 (red), = 1 (green), and = 2 (brown) lines. Remaining
system parameters are given in Table 1.

Table 1. System Parameters Used in All the Figures except
When Stated Otherwise

T = 298.16 K a = 10−7 m pK+ = 1 pK− = −2
εe = 78.54ε0 ζ̃ = 4 pK+ = 1 pK− = −1
ηe = 8.904 × 10−4 N s m−2 κa = 30 pK+ = 1 pK− = 0
D± = Ds

± = 2 × 10−9 m2 s−1 Ke = 0.1501 S m−1 pK+ = 1 pK− = 1
z+ = z− = 1 Ns

± = 4.994 × 1018 m−2 pK+ = 1 pK− = 2
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Figures 2b and 3b show the expected monotonous increase of
the concentration and dipole coefficients with the counterion
population in the stagnant layer.19 None of the above-mentioned

complications appear in this case because the considered stagnant
layer conductivity changes occur without modifying any of the
bulk electrolyte solution properties.

Figure 2.Real part of the concentration coefficient spectra, eq 34, and their dependences on (a) the counterion and co-ion valences and (b) the stagnant
layer parameters. (a) No stagnant layer; z+ = z− = 1 (black), z+ = 2z− = 2 (brown), 2z+ = z− = 2 (orange), and z+ = z− = 2 (magenta) lines. (b) z+ = z− = 1;
no stagnant layer (black), stagnant layer with pK+ = 1 and pK− = −2 (magenta), = −1 (blue), = 0 (red), = 1 (green), and = 2 (brown) lines. Remaining
system parameters are given in Table 1.

Figure 3. Real part of the dipole coefficient spectra, eq 35, and their dependences on (a) the counterion and co-ion valences and (b) the stagnant layer
parameters. (a) No stagnant layer; z+ = z− = 1 (black), z+ = 2z− = 2 (brown), 2z+ = z− = 2 (orange), and z+ = z− = 2 (magenta) lines. (b) z+ = z− = 1; no
stagnant layer (black), stagnant layer with pK+ = 1 and pK− = −2 (magenta), = −1 (blue), = 0 (red), = 1 (green), and = 2 (brown) lines. Remaining
system parameters are given in Table 1.
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As for the frequency dependence, the concentration coefficient,
Figure 2, has the expected behavior: a broad relaxation tending to
zero at high frequencies. The dipole coefficient behavior, Figure 3,
also shows the low frequency relaxation but lacks the expected
high frequency Maxwell−Wagner−O’Konski relaxation, which
was suppressed from the model when the terms proportional to
the frequency in eq 29 were set to zero.

■ HIGH FREQUENCY EXTENSION

As shown in ref 18, the validity of the obtained expression
for the dipole coefficient can be extended to higher fre-
quencies (including the Maxwell−Wagner−O’Konski dis-
persion) by taking into account in eq 29 the presence of the
terms that are proportional to the frequency. Equation 29 is
first written as

∫ω
θ

δ δ

* + * − * ± * +

= ± −

− * − *̃

± ± ± ± ± ±
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This result is similar to the low frequency eq 35 except for
the frequency dependence of H* and for the presence of
the last addend, in which the integral represents the field-
induced surface charge density δρ* located outside the
stagnant layer. This charge density can be calculated con-
sidering the discontinuity of the radial component of the field-
induced displacement:18
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In this expression, Φi* is the field-induced potential inside the
particle, the second integral represents the surface charge
density located outside the diffuse double layer, δρ̃* = eδρ*/
(κ2εekT), and the last addend corresponds to the field-induced
surface charge density of the stagnant layer. The presence of
this last addend, which was written using eq 28, is the only
difference between eq 42 and eq 32 in ref 18. Following

precisely the same procedure as in that reference leads to the
following expression for the dipole coefficient:
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while eq 34 for the concentration coefficient remains unaltered.
In the high frequency limit, the concentration coefficient tends

to zero so that the dipolar coefficient reduces to the first two
addends in the right-hand side of eq 43, which can be written
using eqs 36, 37, and 39 as
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This expression coincides with the classical Maxwell−Wagner−
O’Konski relaxation21−23 written in terms of the total surface
conductivity.
Figures 4 and 5 represent the real part of the dipole coefficient

spectra, eq 43, and their dependences on the counterion and co-
ion valences and on the stagnant layer parameters. Both clearly
show the high frequency relaxation, absent in Figure 3, the
increase of the relaxation frequency with the total surface
conductivity, and the convergence of all the plotted lines to a
single high frequency limiting value that only depends on the
particle and electrolyte solution permittivities, eq 44.
The dotted lines in Figure 4 represent numerical results

obtained with the Hill−Saville−Russel program,24 using pre-
cisely the same system parameters. As can be seen, the agreement
is extremely good for univalent counterions and acceptable
for the two divalent cases. Moreover, the agreement at high
frequencies is excellent for all the considered cases. The devia-
tions observed at low frequencies for divalent counterions have
their origin in a well-known feature of the original theory: its
agreement with numerical results worsens with increasing ζ ̃
potential values25 (it improves however with increasing κa).
While this behavior is still not well understood, it is most likely
related to the value of the surface conductivity that rapidly
increases with the ζ ̃ potential, Figure 1a. This figure also shows
that, for ζ ̃ = 4, which is the value used in Figure 4, the surface
conductivity for divalent counterions is almost an order of
magnitude greater than for univalent ones.
As for the excellent agreement observed at high frequencies, it

occurs because under these conditions the analytical treatment
only differs from the numerical one by the use of the thin double
layer approximation and the neglect of all inertial effects.
The empty diamonds in Figure 5 represent numerical results

copied from the upper part of Figure 10 in ref 10, while the solid
diamonds on the vertical axis correspond to numerical results
obtained with the Mangelsdorf−White DC program.8 As can be
seen, there is no agreement between the AC and DC numerical
results, except for the black and brown diamonds, which seems to
indicate that lines B, C, and D in Figure 10 in ref 10 (magenta,
blue, and red empty diamonds) do not correspond to the
parameter values appearing in the captions of that figure. A
comparison of our results with the DC numerical data and the
qualitative frequency dependence of the AC numerical values
suggests a good agreement for low and moderate stagnant
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layer conductivities, which worsens for the highest conductivity
values. The reason for this behavior is most certainly the same
as that discussed after Figure 4. In order to provide a more

precise comparison with numerical data, we tried to use the
Mangelsdorf−White AC program,10 but unfortunately it fails to
execute on current hardware.

Figure 5. Real part of the dipole coefficient spectra, eq 43, and their dependences on the stagnant layer parameters, considering that z+ = z− = 1. No
stagnant layer (black), stagnant layer with pK+ = 1 and pK− = −2 (magenta), = −1 (blue), = 0 (red), = 1 (green), and = 2 (brown) lines. Empty
diamonds: numerical results copied from the upper part of Figure 10 in ref 10; see text. Solid diamonds on vertical axis: numerical results obtained with
the Mangelsdorf−White DC program.8 Remaining system parameters are given in Table 1.

Figure 4. Real part of the dipole coefficient spectra, eq 43, and their dependences on the counterion and co-ion valences, considering that there is no
stagnant layer. z+ = z− = 1 (black), z+ = 2z− = 2 (brown), 2z+ = z− = 2 (orange), and z+ = z− = 2 (magenta) lines. Dotted lines: numerical results obtained
with the Hill−Saville−Russel program.24 Remaining system parameters are given in Table 1.
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■ COMPLEX CONDUCTIVITY INCREMENT
The complex conductivity increment of a dilute suspension has
the general form

ϕ
* − *

= * *K K
K K3e

e d

where ϕ is the volume fraction of particles in the suspension and

ω ωε ω* = +K K i( ) ( )

ωε* = +K K ie e e

are the complex conductivities of the suspension and of the
electrolyte solution, respectively.
Separating the real and imaginary parts leads to the following

expressions for the conductivity and permittivity increments:
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where

τ ε= K/e e e

is the electrolyte solution relaxation time.
Figure 6 represents the DC conductivity increment as a

function of the ζ ̃ potential and its dependence on the counterion
and co-ion valences and on the stagnant layer parameters. The
dotted lines represent numerical results obtained with the
Mangelsdorf−White DC program,8 using precisely the same
system parameters. As can be seen, the agreement is quite good,

at least for low and moderate ζ ̃ potentials. As already noted, the
deviations observed for high ζ ̃ potentials appear to originate in
the classical (no stagnant layer) formulation of the theory, as can
be seen comparing the full and dotted black lines. Moreover,
these deviations become stronger for divalent counterions and
for increasing pK− values that lead to higher surface conductivity
values at any given ζ ̃ potential, Figure 1.
Figure 6a shows that the stationary dipolar coefficient (1/3 of

the DC conductivity increment, eq 45) for symmetric univalent
and divalent electrolytes converges to a single value of ∼1/4 for
high ζ ̃ potentials, while it tends to ∼0 for univalent counterions
and divalent co-ions, and to ∼1/2 for divalent counterions and
univalent co-ions.16 Note also that the prediction made in that
reference that the dipolar coefficient should attain values lower
than −1/2 for univalent counterions and divalent co-ions is well
confirmed by the numerical data.
Figures 7−10 represent the conductivity and permittivity

increment spectra, and their dependences on the counterion
and co-ion valences and on the stagnant layer parameters. In
Figures 9 and 10, the whole spectra are plotted over the left
vertical axis and just their high frequency part over the right ordinate.
The dotted lines in Figures 7 and 9 represent numerical results

obtained with the Hill−Saville−Russel program,24 using
precisely the same system parameters. As can be seen, the agree-
ment at low frequencies is very good for univalent counterions
and acceptable for divalent ones. At high frequencies, however,
the agreement is excellent for all the considered cases.
Figures 9 and 10 show the extreme sensitivity of the high

frequency permittivity behavior on the surface conductivity, in
agreement with eq 44: both the dispersion amplitude and
characteristic frequency increase with the total surface
conductivity. This has a considerable practical importance,
since it shows that the high frequency dielectric dispersion

Figure 6.DC conductivity increment, eqs 38 and 45, as a function of the ζ ̃ potential and its dependence on (a) the counterion and co-ion valences and
(b) the stagnant layer parameters. (a) No stagnant layer; z+ = z− = 1 (black), z+ = 2z− = 2 (brown), 2z+ = z− = 2 (orange), and z+ = z− = 2 (magenta) lines.
(b) z+ = z− = 1; no stagnant layer (black), stagnant layer with pK+ = 1 and pK− = −2 (magenta), = −1 (blue), = 0 (red), = 1 (green), and = 2 (brown)
lines. Dotted lines: numerical results obtained with the Mangelsdorf−White DC program.8 Remaining system parameters are given in Table 1.
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data constitutes the most direct source of information for the
determination of the total surface conductivity.
Conductivity and permittivity increment spectra were not

calculated in ref 10 so that a visual comparison of the obtained

results with numerical data from that reference is impossible.
However, Figure 8 includes numerical values obtained with the
Mangelsdorf−White DC program,8 using precisely the same
system parameters (solid diamonds on the vertical axis).

Figure 7. Conductivity increment spectra, eq 45, and their dependences on the counterion and co-ion valences, considering that there is no stagnant
layer. z+ = z− = 1 (black), z+ = 2z− = 2 (brown), 2z+ = z− = 2 (orange), and z+ = z− = 2 (magenta) lines. Dotted lines: numerical results obtained with the
Hill−Saville−Russel program.24 Remaining system parameters given in Table 1.

Figure 8.Conductivity increment spectra, eq 45, and their dependences on the stagnant layer parameters, considering that z+ = z− = 1. No stagnant layer
(black), stagnant layer with pK+ = 1 and pK− =−2 (magenta), =−1 (blue), = 0 (red), = 1 (green), and = 2 (brown) lines. Solid diamonds on vertical axis:
numerical results obtained with the Mangelsdorf−White DC program.8 Remaining system parameters given in Table 1.
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A notable feature of Figures 7 and 9 is their qualitatively
different dependence on the co-ion valence at low frequencies:

extreme conductivity values correspond to different counterion
and co-ion valences, while extreme permittivity values are

Figure 9. Permittivity increment spectra, eq 46, and their dependences on the counterion and co-ion valences, considering that there is no stagnant
layer. The right ordinate corresponds to the high frequency part of the spectra. z+ = z− = 1 (black), z+ = 2z− = 2 (brown), 2z+ = z− = 2 (orange), and
z+ = z− = 2 (magenta) lines. Dotted lines: numerical results obtained with theHill−Saville−Russel program.24 Remaining system parameters are given in
Table 1.

Figure 10. Permittivity increment spectra, eq 46, and their dependences on the stagnant layer parameters, considering that z+ = z− = 1. The right
ordinate corresponds to the high frequency part of the spectra. No stagnant layer (black), stagnant layer with pK+ = 1 and pK− = −2 (magenta), = −1
(blue), = 0 (red), = 1 (green), and = 2 (brown) lines. Remaining system parameters are given in Table 1.
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attained when counterion and co-ion valences are the same, just
as in Figures 2a and 3a. The reason for this difference is that,
at low frequencies, the conductivity increment is mainly
determined by the real part of the dipole coefficient, eq 45,
while the imaginary part of Kd* determines the permittivity
increment, eq 46. Also, Im(Kd*) has the same qualitative
dependence on the co-ion valence at low frequencies as Re(Kc*),
Figure 2a. Note, finally, that the permittivity increment
dependence on the co-ion valence changes to that of the
conductivity increment at high frequencies, because then the
concentration polarization vanishes, eq 34.

■ DYNAMIC ELECTROPHORETIC MOBILITY
In the frequency range of the low frequency dielectric dispersion,
the electrophoretic mobility can be calculated as in the DC case
from the sum of the electroosmotic and of the capillary osmotic
velocities on the particle equator just outside the diffuse double
layer.26 However, for frequencies above this dispersion, the
dynamic electrophoretic mobility can be written as27,28
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where ρe and ρi are the mass densities of the electrolyte solution
and particle, respectively.
This leads to the following expressions valid over a broad

frequency range:17
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where Kd* is given in eq 43.

Figure 11 represents the DC electrophoretic mobility as a
function of the ζ ̃ potential and its dependence on the counterion
and co-ion valences and on the stagnant layer parameters. The
dotted lines correspond to numerical results obtained with the
Mangelsdorf−White DC program 8 using precisely the same
system parameters. As can be seen, the agreement is quite good
over the whole ζ ̃ potential range.
Figure 11a shows that, unlike the conductivity increment, the

electrophoretic mobility is essentially independent of the ion
valences at low ζ ̃ potentials. On the contrary, for high ζ ̃ values,
the electrophoretic mobility strongly decreases when the
counterion valence increases.16

Figure 11b shows that the electrophoretic mobility only depends
on the stagnant layer parameters over a limited ζ ̃ potential range.
At ζ ̃ ≈ 8, the colored lines converge, which occurs when the
counterion population in the stagnant layer saturates, Figure 1.
Finally, for ζ ̃ ≈ 10, the counterion population in the diffuse layer
surpasses the corresponding population in the stagnant layer so
that the colored lines converge to the black line. For divalent
counterions (not shown in the figure), the counterion saturation is
obviously attained at lower ζ ̃ potentials so that for ζ ̃ > 7 the
electrophoretic mobility becomes independent of the presence of
the stagnant layer.
Figure 12 represents the electrophoretic mobility modulus

spectra and their dependence on the counterion and co-ion
valences. The dotted lines represent numerical results obtained
with the Hill−Saville−Russel program,24 using precisely the
same system parameters. It shows the same qualitative
dependence on the ion valences as in Figure 6a, which occurs
because the dynamic electrophoretic mobility mainly depends on
the dipolar coefficient. This happens because in the considered
case, Δ ≈ 0, the dependence of eqs 47−49 on the concentration
coefficient reduces to the last term, which is small due to the
logarithmic function.
Figure 13 represents the electrophoretic mobility modulus

spectra and their dependence on the stagnant layer parameters.
The empty diamonds represent numerical results copied from
the upper part of Figure 9 in ref 10, while the solid diamonds
on the vertical axis correspond to numerical results obtained
with the Mangelsdorf−White DC program.8 Just as in the case
of Figure 5, there is no agreement between the AC and DC
numerical results, except for the black and brown diamonds,
so that lines B, C, and D in Figure 9 in ref 10 (magenta, blue,
and red empty diamonds) do not seem to correspond to the
parameter values appearing in the captions of that figure. A
comparison of our results with the DC numerical data and the
qualitative frequency dependence of the AC numerical values
shows a good agreement for all the considered stagnant layer
conductivities.
Finally, an interesting feature of the preceding figures is worth

noting. Figures 4 and 5 show that the dipolar coefficient cor-
responding to divalent ions and no stagnant layer (magenta line
in Figure 4) almost exactly coincides with the dipolar coefficient
corresponding to univalent ions and a stagnant layer with pK+ = 1
and pK− = 0 (red line in Figure 5). This occurs because the total
double layer surface conductivity happens to have practically the
same value in these two cases (within 5%, see Figure 1). Because
of this, the corresponding conductivity increment lines in
Figures 7 and 8 almost coincide, as is also the case for the high
frequency permittivity increment (Figures 9 and 10) and high
frequency mobility modulus (Figures 12 and 13) spectra.
However, the low frequency permittivity increment and low
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frequency mobility modulus spectra do not coincide because the
former also depend on the concentration coefficient and the

latter on the electroosmotic and capillary osmotic velocities that
are certainly different in these two cases.

Figure 12. Electrophoretic mobility modulus spectra, eqs 47−49, and their dependence on the counterion and co-ion valences, considering that there is
no stagnant layer. z+ = z− = 1 (black), z+ = 2z− = 2 (brown), 2z+ = z− = 2 (orange), and z+ = z− = 2 (magenta) lines. Dotted lines: numerical results
obtained with the Hill−Saville−Russel program.24 Remaining system parameters are given in Table 1.

Figure 11. Electrophoretic mobility as a function of the ζ ̃ potential and its dependence on (a) the counterion and co-ion valences and (b) the stagnant
layer parameters. (a) No stagnant layer; z+ = z− = 1 (black), z+ = 2z− = 2 (brown), 2z+ = z− = 2 (orange), and z+ = z− = 2 (magenta) lines. (b) z+ = z− = 1;
no stagnant layer (black), stagnant layer with pK+ = 1 and pK− =−2 (magenta), =−1 (blue), = 0 (red), = 1 (green), and = 2 (brown) lines. Dotted lines:
numerical results obtained with the Mangelsdorf−White DC program.8 Remaining system parameters are given in Table 1.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp3075404 | J. Phys. Chem. B 2012, 116, 13538−1355313551



■ CONCLUSION

The original formulation of the Shilov−Dukhin theory presented in
refs 1−3 provides analytical expressions suitable for the inter-
pretation ofDC andAC dielectric and electrokinetic data. However,
besides the basic requirement for its validity that the radius of the
particles must bemuch greater than theDebye screening length, the
original results present a series of additional limitations:

(a) The valences of counterions and co-ions must have the
same value.

(b) The frequency of the applied AC electric field must be
relatively low (usually less than 1 MHz).

(c) The surface conductivity must only be due to the diffuse
double layer so that the possibility of a stagnant layer
conductivity is excluded.

These limitations made this theory unsuitable for the inter-
pretation of a wide range of experimental data that therefore
required the use of numerical calculations.
In a series of previous works, we individually addressed most of

these limitations,16−19 widening substantially the range of data
that could be analytically interpreted. However, the stagnant
layer conductivity was only included in DC fields and for equal
counterion and co-ion valences. In this work, we extend this
treatment to low and high frequency AC as well as for different
counterion and co-ion valences. The end result is a unified and
self-contained analytical theory of the dielectric and electro-
kinetic properties of colloidal suspensions that could be used over
a broad frequency range, with particles allowed to have a stagnant
layer conductivity, and suspended in electrolyte solutions with
counterion and co-ion valences that can differ from one another.
The obtained expressions obviously reduce for the appropriate

limits to the original formulation of the theory1−3 and to the

existing extensions.16−19 They are also in good agreement with
numerical data obtained by means of the Mangelsdorf−White
program 8 (DC, different valences, stagnant layer) and the Hill−
Saville−Russel program 24 (AC, different valences, no stagnant
layer). A comparison with published Mangelsdorf−White
numerical data 10 (AC, equal valences, stagnant layer) is
inconclusive because of what appears to be a mistake in the
captions of Figures 9 and 10 in that reference.
We hope that the presented analytical results might be useful

for the interpretation of a broad range of experimental data,
without having to rely on numerical calculations, and also as a
starting point for further extensions of the theory.
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