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a b s t r a c t

The equilibrium properties of a charged spherical colloidal particle immersed in an aqueous electrolyte
solution are examined using an extension of the Standard Electrokinetic Model that takes into account
the finite ion size by modeling the aqueous electrolyte solution as a suspension of polarizable insulating
spheres in water. We find that this model greatly amplifies the steric effects predicted by the usual mod-
ified Poisson–Boltzmann equation, which only imposes a restriction on the ability of ions to approach one
another. This suggests that a solution of the presented model under nonequilibrium conditions could
have important consequences in the interpretation of dielectric and electrokinetic data in colloidal
suspensions.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

When solid objects (colloidal particles, interfaces, membranes,
proteins, etc.) are placed in contact with an aqueous electrolyte
solution, they usually acquire a surface charge and spatial distribu-
tions of charge and electric potential, known as the electrical dou-
ble layer, appear close to the interface. This structure plays a
crucial role in colloid and polymer science, biophysics, medicine,
and numerous separation technologies (e.g., water and wastewater
filtration, membrane filtration, protein and cell separation, immo-
bilization of enzymes, etc.) [1–3]. This is the reason for the great
importance and interest in theoretical models of the electrical dou-
ble layer structure. The theoretical model based on the Poisson–
Boltzmann (PB) equation is an acknowledged and widely used
description of the diffuse part of the equilibrium electric double
layer [4–10]. However, it is not difficult to point at a number of
imperfections in the Poisson–Boltzmann theory, such as the finite
size of the ions is neglected, particle–ion interactions are not taken
into account, the permittivity of the medium is assumed to be con-
stant, and incomplete dissociation of the electrolyte is ignored [11].

In the last two decades, various attempts have been made to
modify the classic PB equation so that the ionic interactions can
be accounted for [12–18]. All these works are based on the
assumption that the ion density cannot surpass anywhere a finite

value cmax
i (in mol/m3), where the lower index i corresponds to

the ion type. This led to the following main consequence: the ion
density close to a charged interface cannot attain unrealistically
high values, improving on the results predicted by PB equation.
Comparison with theories based on Monte Carlo simulations
shows that this modification of the Poisson–Boltzmann (MPB)
equation works very well for a wide range of situations [19]. How-
ever, it still presents one important shortcoming: the correction of
the MPB over the PB equation only appears at high surface charges
and for high bulk electrolyte concentrations [17,20]. In the last
years, the theoretical model based on the MPB equation has been
extended incorporating a distance of closest approach of ions to
the particle surface obtaining, as main consequence, that the
excluded volume effect is not negligible even for weakly charged
particles suspended in low concentration electrolyte solutions
[21–23]. However, in order to fit experimental data, it is necessary
to consider effective ionic radii much larger than the hydrated io-
nic radii, which is physically objectionable [24,25].

In any case, it is interesting to point out that the theories
presented in these studies do not imply that ions have a finite size:
there is only a restriction on their ability to approach one another
or the surface of the particle. On the contrary, a finite ion size
implies that ions have a finite volume that can no longer be occu-
pied by the suspending medium. In a recent letter [26], we pre-
sented an extension of the MPB equation considering that ions
can be modeled as insulating spheres with a permittivity different
from that of the surrounding medium. We showed that this led to
the following main consequences:
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(1) The presence of ions in the suspending medium should mod-
ify its permittivity. Moreover, since the ion concentration
near a charged interface strongly depends on the distance
to its surface, the electrolyte solution permittivity should
also depend on this distance.

(2) A variable permittivity of the electrolyte solution leads to
the appearance of a new force term acting on an ion since
charges tend to move into regions of higher permittivity
(a consequence of the so-called Born energy).

(3) The dielectric sphere representing an ion gets polarized by
the local electric field and acquires a dipole moment. There-
fore, an additional dielectrophoretic force acting on the
dipole will appear wherever the local field is nonuniform.

(4) The steric effects predicted by the usual MPB equation are
greatly amplified, even for reasonable effective ionic radii.

In the present work, we apply this formalism, originally written
for plane geometry, for the description of the equilibrium proper-
ties of colloidal suspensions. In doing so, we include the require-
ment that ions cannot come closer to the particle surface than a
minimum approach distance, an effect we omitted for simplicity
in the above-mentioned letter. We discuss in more detail the indi-
vidual contributions of the different effects and determine their
dependences on the ion size and effective ion permittivity.

2. Theory

Let us consider a spherical colloidal particle of radius a and sur-
face charge density rS immersed in an infinite solution made of m
ionic species represented by insulating spheres with effective ra-
dius Ri, permittivity ei, signed valence zi, and bulk concentration
(in mol/m3) c1i (with i e {1, 2, . . ., m}) suspended in a continuous
medium with permittivity ew.

2.1. Permittivity of the solution

The permittivity ee of the solution can be determined using the
Maxwell mixture formula [27], which is quite accurate over the
whole concentration range when the dispersions have a lower per-
mittivity than the suspending medium:

ee � ew

ee þ 2ew
¼
Xm

i¼1

/i
ei � ew

ei þ 2ew
ð1Þ

In this expression, /i is the local value of the volume fraction occu-
pied by ions of species i:

/i ¼ NAci
4p
3

R3
i ð2Þ

where NA is the Avogadro number and ci is the local concentration
(in mol/m3) of ionic species i.

The effective ionic radius is related to the maximum value of
the ion density by means of:

cmax
i ¼ p

4p
3 R3

i NA

ð3Þ

where p is the packing coefficient (p = 1 for perfect packing,
p ¼ p=3

ffiffiffi
2
p
� 0:74 for close packing, p � 0.64 for random close

packing, p = p/6 � 0.52 for simple cubic packing).
Therefore, Eq. (1) can be finally written as:

ee ¼ ew

1þ 2p
Pm

i¼1
ci

cmax
i

ei�ew
eiþ2ew

1� p
Pm

i¼1
ci

cmax
i

ei�ew
eiþ2ew

ð4Þ

This expression is more general than the linear dependence of the
electrolyte solution permittivity on the ion concentrations used in

previous works. For example, the expression used in a recent
contribution, Ref. [28], is simply the first order linear expansion of
Eq. (4), so that it should only be valid for low ion concentrations
and should greatly overestimate the permittivity decrement in
regions of extremely high ion concentration close to the charged
interface.

2.2. Poisson equation

To determine the electric potential distribution, the Poisson
equation, relating the electric potential, W, to the volume charge
density, q, written taking into account the spatial dependence of
the electrolyte solution permittivity, will be used.

r � ðee
~EÞ ¼ eer �~Eþ~E � ree ¼ �eer2W�rW � ree ¼ q

¼ eNA

Xm

i¼1

zici ð5Þ

where e is the elementary charge and ~E is the electric field.
Taking into account the radial symmetry of the problem, Eq. (5)

can be rewritten as:

1
r2

d
dr

r2 dW
dr

� �
¼ � eNA

ee

Xm

i¼1

zici �
d ln ee

dr
dW
dr

ð6Þ

2.3. Ionic concentrations

Due to their finite size, ions of species i cannot come closer to
the particle surface than to an effective distance of minimum
approach that, for simplicity, will be considered equal to the
corresponding effective ionic radius, Ri. The simplest way to in-
clude this effect in the theoretical model is to consider that for
the region a < r < a + Ri the concentration of the ionic species i
vanishes.

On the other hand, the distribution of ionic concentration
inside the solution will be given by the competition among the
following macroscopic average forces (per mol) acting upon the
ions:

(i) The electric force:

~FE
i ¼ zie~E ¼ �zierW ð7Þ

(ii) The thermal force due to the random ion movement:

~FT
i ¼ �kTr lnðciÞ ð8Þ

where k is the Boltzmann constant and T is the absolute tem-
perature of the system.

(iii) The viscous drag force that appears wherever the ion veloc-
ity is different from the local fluid velocity:

~FV
i ¼ �

~v i �~v
ki

ð9Þ

where~v i is the velocity of ions of species i, ki is their mobility,
and ~v is the fluid velocity.

(iv) The steric force limiting the ability of ions to approach one
another that appears when ion size effects are taken into
account:

~FS
i ¼ �kTr ln ci ð10Þ

where ci is the activity coefficient of the ionic species i. As in
our previous works, we use for simplicity a Bikerman [30]
type expression for the activity coefficients:

c ¼ ci ¼
1

1�
Pm

i¼1
ci

cmax
i

ð11Þ
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(v) The Born force that appears when the permittivity of the
solution is allowed to change [29]. The electrostatic energy
of an ion can be obtained integrating the energy density cor-
responding to its electric field, E:

W ¼ ee

2

Z 1

Ri

E2dV ¼ ee

2

Z 1

Ri

zie
4peer2

� �2

4pr2dr

¼ z2
i e2

8peeRi
ð12Þ

This energy depends on the permittivity of the surrounding
medium so that, wherever this permittivity changes, ions will
tend to move to regions of higher permittivity in order to
lower their energy. The corresponding force acting on both
counterions and co-ions is:

~FB
i ¼ �rW ¼ �r z2

i e2

8peeRi
¼ � z2

i e2

8pRi
r 1

ee

� �
ð13Þ

(vi) The dielectrophoretic force that appears when ions are
assumed to behave as dielectric spheres. Under the action of
an external field, hydrated ions should then become polarized
by an external field acquiring an induced dipole moment:

~mi ¼ 4peeR3
i

ei � ee

ei þ 2ee

~E ð14Þ

Note that this expression differs from that used in [28], which
is similar to Eq. (14) except that the permittivity of water ew

is substituted for the electrolyte solution permittivity ee. This
implies that the direct influence of the electrolyte solution
permittivity variation on the dielectrophoretic force is ne-
glected in [28].

If the local field is nonuniform, the dielectrophoretic force
given by

~FD
i ¼ ð~mi � rÞ~E ¼ 2peeR3

i
ei � ee

ei þ 2ee
rðE2Þ ð15Þ

will attract ions toward regions of stronger (weaker) field if their
equivalent permittivity is higher (lower) than that of the surround-
ing medium. Generally, the ion permittivity is lower than that of the
electrolyte solution, so that the dielectrophoretic force tends to
diminish the concentration of both counterions and co-ions close
to the particle surface.

If inertial effects related to ions are neglected, the total force
acting on them must be equal to zero,
~FE

i þ~FT
i þ~FV

i þ~FS
i þ~FB

i þ~FD
i ¼ 0 ð16Þ

so that the ionic flows (in mol/(s m2)) can be written as:

ci~v i¼�Dici r lnðcciÞþ
z2

i e2

8pkTRi

1
ee
þzie

kT
W

� �
�2pR3

i

kT
ee

ei�ee

eiþ2ee
rð~E2Þ

( )

þci~v
ð17Þ

where the Einstein expression relating the mobility with the diffusion
coefficient has been used. Note that Eq. (17) reduces to the Nernst–
Planck equation if the ionic permittivity is assumed to be equal to that
of the medium and ionic size effects are neglected, that is, c = 1.

In equilibrium, the fluid and ion velocities vanish so that Eq.
(17) simplifies to:

d
dr

lnðcciÞ þ
z2

i e2

8pkTRi

1
ee
þ zie

kT
W� 2pR3

i

kT

Z
ee

ei � ee

ei þ 2ee

d~E2

dr
dr

" #
¼ 0 ð18Þ

where the spherical symmetry in the problem has been taken into
account.

The solution of Eq. (18) is:

ci ¼
Ki

c
efi exp � zieW

kT

� �
ð19Þ

where

fi ¼
z2

i e2

8pkTRi

1
e1e
� 1

ee

� �
� 4peR3

i

kT

Z 1

r

eeðei � eeÞ
ei þ 2ee

dW
dr

d2W

dr2 dr ð20Þ

and Ki is an integration constant.

2.4. Boundary conditions

To complete the theoretical model, it is necessary to specify
appropriate boundary conditions:

dWðrÞ
dr

����
a

¼ � rs

eeðaÞ
ð21Þ

Wðaþ RiÞ� ¼ Wðaþ RiÞþ ð22Þ

eeðaþ RiÞ�
dWðrÞ

dr

����
ðaþRiÞ�

¼ eeðaþ RiÞþ
dWðrÞ

dr

����
ðaþRiÞþ

ð23Þ

Wðr !1Þ ! 0 ð24Þ

ciðr !1Þ ! c1i ð25Þ

Condition (21) is the Gauss law relating the surface charge density
of the particle rS to the normal component of the electric field at its
surface; Eqs. (22) and (23) express the continuity of the electric
potential and of the normal component of the electric displacement
at the distance of closest approach of ions to the particle surface;
Eq. (24) expresses the choice of the potential origin at r ?1; and
Eq. (25) requires that the ionic concentration attains the bulk
concentration as r ?1.

Using boundary conditions (24) and (25), the integration
constants Ki can be determined

Ki ¼
1

1�
Pm

i¼1
c1

i
cmax

i

c1i ¼ c1c1i ð26Þ

2.5. Numerical solution

For computational reasons, it is convenient to use the spatial
variable

q ¼ a
r

exp½jða� rÞ� ð27Þ

where

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2NA

Pm
i¼1zic1i

kTe1e

s
ð28Þ

is the Debye screening length. This transforms the above presented
theoretical model into:

d2y

dq2þ
ðjaÞ2

q a
rþja
� 	2

dy
dq
¼
� e2NA

c1
c

Pm

i¼1
zic
1
i

efi expð�ziyÞ

q2 a
rþjað Þ2kTee

� d lnee
dq

dy
dq 06 q6 a

aþR expð�jRÞ

0 a
aþR expð�jRÞ<q61

8><
>:

ð29Þ

where

y ¼ eW
kT

ð30Þ

fi ¼
z2

i e2

8pkTRi

1
e1e
� 1

ee

� �
� 4pkTR3

i

e

Z 0

q

eeðei � eeÞ
ei þ 2ee

� dy
dq

q2 1þ jr
r

� �2 d2y

dq2 þ q
ðjrÞ2 þ 2jr þ 2

r2

dy
dq

" #
dq ð31Þ
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ee ¼ ew

1þ 2p
Pm

i¼1/i
ei�ew
eiþ2ew

1� p
Pm

i¼1/i
ei�ew
eiþ2ew

ð32Þ

/i ¼
c1i

cmax
i

c1

c
efi expð�ziyÞ ð33Þ

and it has been considered that all the ionic species have the same
effective radius R.

The theoretical model was solved using a finite difference
scheme, that is, discretizing the space, for which a change of the
spatial variable was made, Eq. (27), in order to obtain a finite re-
gion of study. Then, the following algorithm was used:

1. The starting point is the solution of Eq. (29) for an uncharged
particle: WðqÞ ¼ 0; fiðqÞ ¼ 0; ciðqÞ ¼ c1i and eeðqÞ ¼ e1e , where
e1e is calculated using Eq. (4).

2. The particle surface charge is slightly increased:

2.1. Eq. (29) is linearized and solved using the previous val-
ues for fi(q), ci(q), and ee(q).

2.2. Eq. (33) is used to calculate /i.
2.3. These values are used to calculate new values of ee(q)

using Eq. (32).
2.4. These values are used to calculate new values of fi(q)

using Eq. (31).
2.5. Points 2.1–2.4 are repeated until convergence is attained.

3. Point 2 is repeated until the desired particle surface charge is
attained.

It must be noted that because the variable y changes rapidly
near the surface of the particle (q = 1), an appropriate simulation
space grid must be modeled. In this work, the q-space grid is auto-
matically adapted to the evolution of the potential profiles. If dur-
ing the simulation strong changes of y with q are detected in any
region of the q coordinate, more grid points are added into this re-
gion to ensure good accuracy and moderate CPU times.

3. Results

The calculations were performed considering a spherical
colloidal particle bearing a positive surface charge density rS and
suspended in a binary aqueous electrolyte solution. We use a hy-
drated ion relative permittivity value of 20 since, according to [31],
typical values for univalent and divalent ions are 25 and 8,
respectively. The choice of the solvated ionic radius value of
0.3 nm was based on the usual 0.3–0.4 nm range obtained from
mobility measurements [24]. The remaining system parameters
are given in Table 1.

Fig. 1 shows the counterion density profiles for different model
approximations. The black line, included for comparison,
represents the classical Poisson–Boltzmann solution determined
solely by the electric and thermal forces. The red line represents
the modified Poisson–Boltzmann solution that additionally in-
cludes the steric forces among ions. The counterion concentration
no longer grows to unreasonably high values but rather attains a
maximum allowed value cmax

1 that is related to the finite ion size,

Eq. (3). Moreover, this finite size determines a minimum approach
distance of ions to the particle surface leading to a vanishing ion
concentration at smaller distances. The green line further includes
the effect of the variable electrolyte solution permittivity. The high
ion concentration close to the particle lowers the permittivity,
which increases the radial electric field of the particle. This attracts
more counterions to the saturation layer increasing its thickness.
However, since the particle surface charge is kept constant, the to-
tal surface density of counterions and co-ions must also remain
constant, which determines the more abrupt drop of the green line
as compared to red one. Finally, the orange line includes all the
considered effects: steric, variable permittivity, Born, and dielec-
trophoresis. The last two terms tend to lower the counterion
concentration: the Born force pulls ions to regions of higher per-
mittivity, while the dielectrophoretic force pulls ions to regions
of lower electric field gradient because the induced dipole moment
of the dielectric sphere representing the ion is negative. As can be
seen, the effect of these two forces is stronger than the effect of the
variable permittivity in the considered example, so that the satura-
tion layer is thinner for the orange line than for the red one.

Fig. 2 shows the corresponding electrolyte solution relative per-
mittivity profiles. The horizontal black line (hidden behind the hor-
izontal red1 line) corresponds to the classical Poisson–Boltzmann

Table 1
Parameter values used in the simulation except when indicated otherwise.

e = 1.602 � 10�19 C NA = 6.022 � 1023 mol�1 k = 1.381 � 10�23 J/K

T = 298 K a = 100 nm rS = 0.3 C/m2

ew = 80e0 ei = 20e0 p = 0.74
z1 = �1 c11 ¼ 100 mol=m3 R1 = 0.3 nm

z2 = 1 c12 ¼ 100 mol=m3 R2 = 0.3 nm
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Fig. 1. Counterion density profiles around the suspended particle for the indicated
model approximations. Used parameter values given in Table 1.
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Fig. 2. Electrolyte solution permittivity profiles around the suspended particle for
the indicated model approximations. Used parameter values given in Table 1.

1 For interpretation of color in Figs. 1–9, the reader is referred to the web version of
this article.
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solution: the permittivity has a constant value equal to that of
water. Note that this last value is not obvious since the presence
of ions generally lowers the electrolyte solution permittivity due
to other reasons besides their finite size [32,33]. The red line corre-
sponds to the modified Poisson–Boltzmann solution that only
includes steric effects: ions are not allowed to come into close
contact with one another or with the particle surface, but their ex-
cluded volume effect on the electrolyte solution permittivity is not
taken into account. The green line corresponds to the solution that
further includes the variable permittivity of the suspending med-
ium. Close to the particle, the permittivity drops to a value that
is close to the permittivity of the ions (Eq. (4) with c1 ¼ cmax

1 ).
The permittivity value at even closer distances is not obvious, since
ionic spheres certainly occupy part of the volume of this first exclu-
sion layer surrounding the particle. Instead of trying to model this
small distance behavior, we considered two simple limiting cases
between which it certainly lies: the permittivity value for
r = a + R1 (lowest horizontal segment) and for r ?1 (highest
horizontal segment). Finally, the orange line corresponds to the
solution obtained including all the considered effects (as the green
line but additionally Born and dielectrophoretic forces). Since in
the considered example the presence of these forces lowers the
thickness of the saturation layer but does not prevent its forma-
tion, the two values of the permittivity assigned to the exclusion
layer surrounding the particle remain unaltered.

Fig. 3 shows the dimensionless electric potential profiles for
the different model approximations. The black line corresponds to
the classical Poisson–Boltzmann solution. The corresponding
surface potential value is roughly 6 (150 mV), showing that the con-
sidered particle surface charge is not unreasonably high. The red
line corresponds to the modified Poisson–Boltzmann solution
incorporating just the steric effects. The potential strongly increases
due to the increased thickness of the double layer that arises be-
cause of two causes: (a) the presence of a first ion exclusion layer
surrounding the particle and (b) the lowering of the maximum
charge density and the corresponding increase in the double layer
thickness required to neutralize the fixed surface charge. Note that
in the exclusion layer the charge density vanishes, so that the poten-
tial reduces to a solution of the Laplace equation. Because of this, the
potential profiles in this region appear to be linear. The green line
corresponds to the solution that additionally includes the effect of
a variable permittivity. Close to the particle, the electric potential
further increases due to the decrease in the local permittivity. The
two limiting cases considered for the permittivity value in the
exclusion layer are clearly visible: low permittivity value close to
the ion permittivity for the upper line and high permittivity value
close to the water permittivity for the lower line. On the contrary,
far from the particle, the potential slightly decreases as compared
to the red line. This happens because the permittivity tends to a
common value in these two cases while the counterion concentra-
tion is lower for the green than for the red lines, Fig. 1, because more
counterions are present in the saturation zone. Finally, the orange
line corresponds to the solution obtained including all the consid-
ered effects. The electric potential slightly increases due to the ac-
tion of the Born and the dielectrophoretic forces that lower the
thickness of the saturation zone increasing the total double layer
thickness.

Fig. 4 represents the profiles of the different forces acting on the
counterions. The black lines correspond to the classical Poisson–
Boltzmann solution: the solid squares represent the attractive elec-
tric force, while the empty diamonds the repulsive thermal force.
These two forces exactly compensate each other at all distances.
The red lines correspond to the modified Poisson–Boltzmann
solution that only includes steric effects. Again, solid squares
represent the attractive electric force and empty diamonds the
repulsive thermal force, while solid circles represent the repulsive

steric force. Note that the thermal force (red empty diamonds)
dramatically changes as compared to the classical solution (black
empty diamonds) because in the saturation layer the counterion
concentration becomes constant so that the thermal force van-
ishes. Inside this layer, the steric force (red solid circles) becomes
the dominant repulsive force that compensates the attractive
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0
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1
) PB equation

Steric effects only

Steric effects and

variable permittivity

All effects

y

r-a (nm)

8e
(r      )

ε

ε

Fig. 3. Dimensionless electric potential profiles around the suspended particle for
the indicated model approximations. Used parameter values given in Table 1.
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Fig. 4. Profiles of the indicated forces acting on the counterions considering the
Poisson–Boltzmann solution (black lines); Poisson–Boltzmann and steric effects
(red lines); Poisson–Boltzmann, steric effects, and variable permittivity (green
lines); and all the considered effects (orange lines). Used parameter values given in
Table 1.
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electric force (red solid squares). The green lines correspond to the
solution that includes both steric effects and a variable permittiv-
ity. The corresponding forces are similar to the preceding case
(red lines) except for two features: (a) the electric (green solid
squares) and the steric (green solid circles) forces are stronger,
the first because of the electric potential increase, Fig. 3, and the
second because of the increased saturation layer thickness, Fig. 1,
and (b) the thermal force is stronger than in the preceding case
because of the steeper concentration change outside the saturation
layer, Fig. 1 (however, the green line with empty diamonds extends
less toward the particle surface than the red line with empty dia-
monds because of the thicker saturation layer).

The lower part of Fig. 4 represents the profiles of all the forces
acting on the counterions corresponding to the full solution that in-
cludes the Born and the dielectrophoretic effects. Lines with solid
squares, empty diamonds, and solid circles that represent the
attractive electric, the repulsive, and the repulsive steric forces are
qualitatively similar to the corresponding red and green lines in
the upper part of Fig. 4. The main difference is in the line represent-
ing the thermal force (empty diamonds) that is much lowered and
extends further toward the particle due to the action of the repul-
sive Born and dielectrophoretic forces that diminish the thickness
of the saturation layer, Fig. 1. The orange line with empty squares
shows that the Born force is only relevant over a rather narrow
distance range where the permittivity strongly changes, Fig. 2. Its
magnitude strongly increases with decreasing ion size, Eq. (13), so
that its relatively minor role in the considered example could be-
come much more relevant to smaller ions. The orange line with
empty circles shows that the dielectrophoretic force can be very
important just outside the saturation layer, dominating all the
repulsive forces. Contrary to the Born force, its magnitude increases
with the ion size, Eq. (15), so that it could become negligible for
smaller ions. The peculiar shape of its profile can be understood

starting with the expression of the dielectrophoretic force, Eq.
(15), written as:

FD
i ¼ 4peeR3

i
ei � ee

ei þ 2ee
�dW

dr

� �
ð�r2WÞ

Combining this expression with Eq. (5) gives

FD
i � �4pR3

i
ei � ee

ei þ 2ee

dW
dr

z1ec1 þ
dW
dr

dee

dr

� �
ð34Þ

where the influence of co-ions was neglected. In the considered
example, the fixed particle surface charge is positive so that both
dW/dr and z1ec1 are negative while dee/dr is positive. Inside the sat-
uration layer, both the counterion concentration and the electrolyte
solution permittivity are constant, Figs. 1 and 2, so that the force
diminishes because the derivative of the electric potential dimin-
ishes (in modulus), Fig. 3. This leads to the initial decrement of
the orange line with empty circles in Fig. 4. At greater distances,
close to the outer boundary of the saturation layer, the counterion
concentration starts to decrease, Fig. 1, while the permittivity starts
to increase, Fig. 2. This competing behavior of the two addends in-
side the parenthesis in Eq. (34) produces an increase in this term
over a limited distance range which leads to a maximum of the
dielectrophoretic force.

Fig. 5 shows the influence on the obtained results of the permit-
tivity value assigned to the dielectric spheres representing the ions.
This value has obviously no bearing on the Poisson–Boltzmann
(black lines) and Poisson–Boltzmann with steric effects (red lines)
solutions. When the variable permittivity effect is taken into
account, a high ei = 40e0 value leads to small changes of the electro-
lyte solution permittivity so that the green and orange lines remain
close to the red line in Fig. 5b. However, lowering the ion permit-
tivity value to ei = 10e0 strongly lowers the electrolyte solution per-
mittivity, which increases the radial electric field of the particle
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Fig. 5. Dependence of the counterion concentration and the different force profiles on the permittivity value assigned to the ionic sphere. Used parameter values given in
Table 1 except for ei = 10e0 (a and c) and ei = 40e0 (b and d).
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that attracts more counterions to the saturation layer. When only
the variable permittivity effect is considered, this increases the sat-
uration layer thickness, green line in Fig 5a. On the contrary, when
all the effects are taken into account, orange line in Fig. 5a, the Born
and the dielectrophoretic repulsive forces are stronger than the in-
crease in the electric force causing a decrease in the saturation
layer thickness. Actually, in the considered example, the effect of
these forces becomes so strong that the saturation layer vanishes
altogether: the counterion concentration no longer attains the
cmax

1 value.
Both for ei = 10e0 and for ei = 40e0, the Born force is very small

(orange lines with empty squares in Fig. 5c and d) mainly due to
the relatively large ion size. The main repulsive forces are the
dielectrophoretic and then steric for ei = 10e0 (empty diamonds
and solid circles in Fig. 5c). This order reverses for ei = 40e0 when
the steric becomes the strongest repulsive force followed by the
dielectrophoretic force (solid circles and empty diamonds in
Fig. 5d). The reason for this change is in the absence of the saturation
layer in the first case and its presence in the second one. For
ei = 10e0, the dielectrophoretic force becomes strong because of
the strong variation of the electrolyte solution permittivity, Eq.
(34), while the steric force is low because the counterion concentra-
tion is far from its cmax

1 value, Eqs. (10) and (11). The opposite situa-
tion arises for ei = 40e0: strong steric force in the close vicinity of the
saturation layer and weak dielectrophoretic force inside this layer
where the electrolyte solution permittivity has a constant value.

Fig. 6 shows the dependence of the obtained results on the ion
size. For Ri = 0.1 nm, there is no saturation layer because of the very
high cmax

1 value corresponding to this small ion radius, Eq. (3). Note
that in Fig. 6a, the maximum ion concentration value obtained con-
sidering steric effects is practically the same as according to the
Poisson–Boltzmann equation. The opposite situation is observed
in Fig. 6b for the large Ri = 0.5 nm ion radius: a thick saturation

layer with a cmax
1 value that is roughly 40 times smaller than the

maximum Poisson–Boltzmann concentration.
The corresponding forces acting on the counterions have also

quite different behaviors. For Ri = 0.1 nm, Fig. 6c, the thermal force
is the dominant repulsive force (just as in the classical description)
followed by the Born force that increases because of the small ion
size, Eq. (13). On the contrary, the dielectrophoretic and the steric
forces are almost negligible, the first because of the small ion size,
Eq. (15), and the second because of the low ion concentration as
compared to cmax

1 , Eqs. (10) and (11). The opposite situation can
be seen in Fig. 6d corresponding to Ri = 0.5 nm: the dominant
repulsive force is steric followed by the dielectrophoretic force that
increases because of the large ion radius. On the contrary, the ther-
mal and the Born forces are almost negligible, mainly because of
the constant ion concentration and electrolyte solution permittiv-
ity across the saturation layer.

Fig. 7 shows the surface potential as a function of the surface
charge. The black line represents the Poisson–Boltzmann solution,
the red line represents the solution obtained taking into account
steric effects, the green lines incorporate furthermore the effects
due to a variable permittivity of the electrolyte solution, while
the orange lines additionally consider the Born and the dielec-
trophoretic forces. In these last two cases, two solutions are pre-
sented corresponding to the value assigned to the permittivity in
the ion exclusion layer: equal to the permittivity value far from
the particle, solid circles, or to the value calculated at r = a + R1,
open circles. As can be seen, all the considered effects increase
the surface potential as compared to the Poisson–Boltzmann solu-
tion. Moreover, the consideration that ions behave as dielectric
spheres further increases the surface potential as compared to
the assumption that steric effects only limit the ability of ions to
come close to one another and to the particle surface. For low
surface charges, the dominant cause for the increase in the surface
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potential is the finite minimum approach distance of ions to the
particle surface. For high surface charges, this increase is a complex
function of all the considered effects: the maximum allowed ion
concentration that causes the formation of the saturation layer,
the local variation of the electrolyte solution permittivity and the
corresponding increase in the attractive electric force acting on
the counterions, and the appearance of the repulsive Born and
dielectrophoretic forces. Finally, the effective value of the electro-
lyte solution permittivity inside the ion exclusion layer has also a
strong bearing on the surface permittivity at high surface charges
(this difference disappears at low surface charges because the elec-
trolyte solution permittivity at r = a + R1, Fig. 2, tends then to the
corresponding permittivity far from the particle for low ion
concentrations).

Fig. 8 shows the surface potential as a function of the surface
charge and its dependence on the ion permittivity value. In order
to better appreciate the magnitude of the observed effects, linear
rather than logarithmic scales are used for both axes. Note that
the surface charges considered are quite realistic since they lead
to Poisson–Boltzmann surface potential values in the 0–200 mV
range. As expected, the surface potential strongly increases when
the ion permittivity value decreases since all the discussed effects
are related to the electrolyte solution permittivity variation.

Because of this, the surface potential values converge to the results
obtained considering only steric effects when the ion permittivity
approaches the water permittivity value. It should be noted, how-
ever, that even for the relatively high ei = 40e0 value, the contribu-
tion due to all the effects related to the electrolyte solution
permittivity variation is far from negligible.

Fig. 9 shows the surface potential as a function of the surface
charge and its dependence on the ion size. As can be seen, the sur-
face potential roughly doubles even for the small R1 = 0.1 nm ion
size, while for R1 = 0.5 nm, it increases by nearly an order of mag-
nitude. This increment strongly depends on the presence of the
steric effects, on the local variation of the electrolyte solution per-
mittivity, and on the permittivity value of the ion exclusion layer.
However, it is almost independent of the inclusion of the Born and
the dielectrophoretic forces: the green and orange lines nearly
coincide just as in Fig. 3.

4. Conclusion

We present a detailed account of the equilibrium properties for
a charged spherical colloidal particle immersed in an aqueous elec-
trolyte solution. We use an extension of the Standard Electroki-
netic Model that removes the classical assumption that ions
behave as mathematical points. The finite ion size has been taken
into account in many earlier works by restricting their ability to
approach one another [12–18] and the surface of the particle
[21–23]. We further consider that a finite size implies that ions
should behave as dielectric spheres, which leads to the following
consequences:

(a) The excluded volume occupied by the ions modifies the local
value of the electrolyte solution permittivity.

(b) The resulting permittivity gradients lead to the appearance
of a Born force that tends to move ions toward regions of
higher permittivity.

(c) Ions get polarized by the local electric field and are acted
upon by a dielectrophoretic force that is proportional to
the field gradient.

All these features are incorporated into the model that is
numerically solved. The obtained results make it possible to analyze
the individual forces acting over the ions. The attractive electric
force is always important and increases with decreasing electrolyte
solution permittivity. The repulsive thermal force, which in the

e
= (r  ) for a<r< a+R

1

e
= (a+R

1
) for a<r<a+R

1

PB equation
Steric effects only
Steric effects and
variable permittivity
All effects

8

0,1 1

10

y
(a

)

s
(C/m2)σ

ε

ε

ε

ε

Fig. 7. Dimensionless surface potential as a function of the surface charge for the
indicated model approximations. Remaining parameters given in Table 1.

ε

ε ε

ε

0,0 0,2 0,4 0,6 0,8 1,0
0

10

20

30

40

50

PB equation
Steric effects only
Steric effects and
variable permittivity
All effects

i
=40·

0

i
=10· 0

y
(a

)

s
(C/m2)σ

Fig. 8. Dimensionless surface potential as a function of the surface charge and its
dependence on the permittivity value assigned to the ionic sphere. Solution
permittivity values used for a < r < a + R1: ee = ee(r ?1), solid circles, ee = ee(a + R1),
empty circles. Remaining parameters given in Table 1.

0,0 0,2 0,4 0,6 0,8 1,0
0

10

20

30

40

50
PB equation

Steric effects only

Steric effects and

variable permittivity

All effects

R
1
=0.1 nm

R
1
=0.5 nm

y
(a

)

s (C/m2)σ

Fig. 9. Dimensionless surface potential as a function of the surface charge and its
dependence on the ionic radius. Solution permittivity values used for a < r < a + R1:
ee = ee(r ?1), solid circles, ee = ee(a + R1), empty circles. Remaining parameters
given in Table 1.

220 J.J. López-García et al. / Journal of Colloid and Interface Science 380 (2012) 213–221



Author's personal copy

classical formulation exactly opposes the electric force, is usually
strongly diminished and actually vanishes wherever the ion
concentration attains its maximum value. The steric repulsive force
becomes dominant precisely in these regions of high ion concentra-
tion. The repulsive Born force is usually small but becomes impor-
tant for small ions. And the dielectrophoretic repulsive force can
surpass all the other repulsive forces for large ions.

The considered effects have an important bearing on the surface
potential value: at any given surface charge, this potential always
increases with respect to the classical Poisson–Boltzmann solution
when steric effects are taken into account. We show that the
modeling of ions as dielectric spheres leads to an additional increase
in comparable magnitude. This suggests that a solution of the
presented model under nonequilibrium conditions could have
important consequences in the interpretation of dielectric and elec-
trokinetic data in colloidal suspensions.
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