
Abstract— This paper presents a statistical signal processing

method for the characterization of EEG of patients suffering

from epilepsy. A statistical model is proposed for the signals and

the Kullback-Leibler divergence is used to study the differences

between Seizure/Non-Seizure in patients suffering from epilepsy.

Precisely, EEG signals are transformed into multivariate coef-

ficients through multilevel 1D wavelet decomposition of differ-

ent brain frequencies. The generalized Gaussian distribution

(GGD) is shown to model precisely these coefficients. Patients

are compared based on the analytical development of Kullback-

Leibler divergence (KLD) of their corresponding GGD distribu-

tions. The method has been applied to a dataset of 18 epileptic

signals of 9 patients. Results show a clear discrepancy between

Seizure/Non-Seizure in epileptic signals, which helps in deter-

mining the onset of the seizure.
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Seizure/Non-Seizure, Multivariate wavelet decomposition,

Generalized Gaussian distribution.

I INTRODUCTION
The International League Against Epilepsy (ILAE) [1] de-

fines an epileptic seizure as a transient occurrence of signs
and/or symptoms due to abnormal excessive or synchronous
neuronal activity in the brain. The different types of seizures
depend on the location in the brain where it originated and
on how far and fast it spreads. The correct identification of
this onset location is key to a proper treatment. Electroen-
cephalography (EEG) is a non-invasive and widely avail-
able biomedical modality that is used to diagnose epilepsy
and plan treatment; neurologists trained in EEG are able to
identify visually the onset and subsequent seizure through
analysis of characteristic waveforms associated with seizures.
This problem has been addressed in various research works
such as [2–8], but remains an open issue. In this work,
we adopt a statistical approach to distinguish Seizure/Non-
Seizure in epileptic signals. The data is represented using
the generalized Gaussian distribution in the wavelet domain.

The analytical development of Kullback-Leibler Divergence
(KLD) or relative entropy, is used to measure the discrep-
ancy between probability density functions (PDF), specifi-
cally among the PDFs of the generalized Gaussian distribu-
tions for Seizure/Non-Seizure signals. See [9–11] for some
works on this topic in epilepsy and [12–14] for some appli-
cations in EEG signals. The remainder of this paper is struc-
tured as follows. Section 2 presents the proposed methodol-
ogy and details the generalized Gaussian model and the ana-
lytical development of Kullback-Leibler divergence. Section
3 describes the experimentation on real EEG signals and the
presents results obtained. Section 4 discusses the findings and
provides perspectives for future work.

II METHODOLOGY
The methodology used to analyze the EEG signals has

three stages. The first stage is to represent the signals using
a time-frequency Dauchebies wavelet decomposition [15,16]
with 6 scales, this gives the bands delta (0.5-4Hz), theta (4-
8Hz), alpha (8-13Hz), beta (13-30Hz) and gamma (>30Hz).
The aim of this stage is to assess the distribution of the en-
ergy throughout the frequency spectrum. The second stage
consists in summarizing the information contained in each
group (band and scale) of wavelet coefficients. The approach
adopted consists in fitting the generalized Gaussian distribu-
tion statistical model to each group. The parameters α and β
are estimated for each PDF using (3) giving a parameter vec-
tor that represents each group [17]. The third stage consists
in measuring the difference between Seizure/Non-Seizure in
epileptic signals by calculating the Kullback-Leibler Diver-
gence (7) between generalized Gaussian distribution PDFs
obtained for each patient.
We now introduce the generalized Gaussian distribution and
Kullback-Leibler Divergence.

A Generalized Gaussian distribution
The univariate generalized Gaussian distribution (GGD)

is a flexible statistical model for one-dimensional signals that
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has found numerous applications in science and engineering.
Its application to epilepsy signal has been studied in [18–20].
Since the wavelet detail coefficients arise from high-pass fil-
tering a zero-mean EEG signal matrix, it can be safely as-
sumed that they also have mean value of zero [21]. Conse-
quently, the wavelet coefficients can be modeled through the
parameters of the GGD [22] whose probability density func-
tion (PDF) is given by

f (x; μ,σ ,β ) =
β

2α(σ)Γ( 1
β )

exp

(
−|(x−μ)|β

2σ2

)
(1)

α(σ) = σ

√√√√Γ( 1
β )

Γ( 3
β )

, Γ(z) =
∫ +∞

0
tz−1e−tdt,z > 0 (2)

where μ ∈ R is a location parameter, α ∈ R
+ is a scale pa-

rameter and β ∈ R
+ is a shape parameter that controls the

shape of the density tail. In the case of a zero-mean GGD, (1)
can be written as

fGGD(x;α,β ) =
β

2αΓ(β−1)
exp

(
−
∣∣∣ x
α

∣∣∣β) (3)

where α replaces the scale parameter σ .
It should be noted that the GGD parametric distribution

family includes many popular distributions that are com-
monly used in biomedical signal processing. For example,
setting β = 1 leads to a Laplacian or double-exponential dis-
tribution, β = 2 leads to Gaussian or normal distribution, and
β → ∞ leads to a uniform distribution.

The GGD was fitted using a window shift of two seconds
with overlapping of one second in 18 epileptic signals, for
each signal obtained 205 fits on average for each epoch and
calculated the parameters related to the scale (α) and shape
(β ) for each rhythm band. We refer the reader to [23] for a
comprehensive treatment of the mathematical properties of
the GGD model and [17,22] for a detailed explanation on the
estimation of the GGD parameters.

B Kullback-Leibler Divergence
Let p and q two PDFs, then a Kullback-Leibler Divergence

(KLD) [24] is given by

DKL(p||q) =
∫ ∞

−∞
log

(
px(x)
qx(x)

)
px(x)dx (4)

DKL(p||q) =−
∫ ∞

−∞
log(qx(x))px(x)dx +∫ ∞

−∞
log(px(x))px(x)dx = Hc(p,q)−H(x)

(5)

Notice that in general DKL(p||q) �= DKL(q||p), and that
DKL(p,q) = 0 if and only if p = q [25].
Rewriting the equation (3), the probability density function

of GGD is given by

p(x,α,β ) =
e−| x

α |β

2αΓ[1+β−1]
(6)

Here we consider the divergence between two generalized
Gaussian models with parameters (α1,β1,μ1) and (α2,β2,μ2)
subject to the constraint μ1 = μ2 = 0 because our signals have
zero mean. This divergence is given by

KLDpd f (p||q) =
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We compare the PDFs obtained 18 epileptic signals, using
the scales and the shapes of the GGD using (6), in two stages
in steps of one second without overlapping for each rhythms
brain bands

1. Between sliding window and the seizure onset

KLDpd f (p(i)||qonset) =W
(i)KLDpd f (p||q)

2. Between continuous PDFs coupled with a 7-order
one-dimensional median filter [26]

KLDpd f (p(i)||q(i+1)) =W
(i)
F
(i)KLDpd f (p||q)

with

W
(i) =

[
0L×iL, IL×L,0L×N−iL−L

]
F
(i) = medianFilter(KLDpd f (p(i)||q(i)))

where 0N×M ∈ R
N×M is the null matrix, IN×N ∈ R

N×N is the
identity matrix and L is the number of measurement obtained
in one second. We refer the reader to [25, 27–29] for a com-
prehensive treatment of the mathematical properties of the
KLD statistical theory.

III RESULTS AND DISCUSSION
The performance of the proposed statistical method was

evaluated using the Children’s Hospital Boston database
[30, 31], which consists of 36 EEG recordings from pedi-

14 A. Quintero-Rincón et al.

  IFMBE Proceedings Vol. 60  
  


