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Abstract

We introduce the notion of star cluster of a simplex in a simplicial complex. This concept provides a
general tool to study the topology of independence complexes of graphs. We use star clusters to answer a
question arisen from works of Engstrom and Jonsson on the homotopy type of independence complexes
of triangle-free graphs and to investigate a large number of examples which appear in the literature. We
present an alternative way to study the chromatic and clique numbers of a graph from a homotopical point
of view and obtain new results regarding the connectivity of independence complexes.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Since Lovasz’ proof of the Kneser conjecture in 1978, numerous applications of algebraic
topology to combinatorics, and in particular to graph theory, have been found. A recurrent
strategy in topological combinatorics consists of the study of homotopy invariants of certain
CW-complexes constructed from a discrete structure to obtain combinatorial information about
the original object. In Lovész’ prototypical example, connectivity properties of the neighborhood
complex N'(G) of a graph G are shown to be closely related to the chromatic number x (G) of
G. Lovasz conjecture states that there exists a similar relationship between the so called Hom
complexes Hom(H, G) and x (G) when H is a cycle with an odd number of vertices. The Hom
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complex Hom(H, G) is homotopy equivalent to A(G) when H is the complete graph on two
vertices K,. Babson and Kozlov [2] proved this conjecture in 2007. In their proof they used
that Hom(G, K,,) is linked to another polyhedron associated to G, which is called the indepen-
dence complex of G. Given a graph G, its independence complex /¢ is the simplicial complex
whose simplices are the independent sets of vertices of G. In this approach to the conjecture
it was then needed to understand the topology of independence complexes of cycles. Indepen-
dence complexes have also been used to study Tverberg graphs [21] and independent systems of
representatives [1].

For any finite simplicial complex K there exists a graph G such that /; is homeomorphic to K.
Specifically, given a complex K, we consider the graph G whose vertices are the simplices of K
and whose edges are the pairs (o, ) of simplices such that ¢ is not a face of 7 and t is not a face
of 0. Then I is isomorphic to the barycentric subdivision K’ of K. In particular, the homotopy
types of independence complexes of graphs coincide with homotopy types of compact polyhedra.

In the last years a lot of attention has been drawn to study the general problem of determining
all the possible homotopy types of the independence complexes of graphs in some particular
class. For instance, Kozlov [25] investigates the homotopy types of independence complexes of
cycles and paths, Ehrenborg and Hetyei [17] consider this question for forests, Engstrom [18] for
claw-free graphs, Bousquet-Mélou, Linusson and Nevo [10] for some square grids, Braun [11]
for Stable Kneser graphs and Jonsson [24] for bipartite graphs. Other results investigate how the
topology of the independence complex changes when the graph is modified in some particular
way. Engstrom [19] analyzes what happens when some special points of the graph are removed
and Csorba [15] studies how subdivisions of the edges of a graph affect the associated complex.

The purpose of this paper is two-fold: to introduce a notion that allows the development of
several techniques which are useful to study homotopy types of independence complexes, and to
establish new relationships between combinatorial properties of graphs and homotopy invariants
of their independence complexes. We have mentioned that independence complexes are closely
related to Hom complexes and therefore, they can be used to study chromatic properties of
graphs. In this paper we show that there is a direct connection between independence complexes,
colorability of graphs and other related graph invariants. We will obtain lower bounds for the
chromatic number of a graph in terms of a numerical homotopy invariant associated to its
independence complex. On the other hand we will introduce some ideas that are used to study
the connectivity of /¢ in terms of combinatorial properties of G.

One of the motivating questions of this work appears in Engstrom’s Thesis [20] and concerns
the existence of torsion in the homology groups of independence complexes of triangle-free
graphs (i.e. graphs which do not contain triangles). Recently, Jonsson [24] proved that for any
finitely generated abelian group I" and any integer n > 2, there exists a triangle-free graph
G such that the (integral) homology group H,(Ig) is isomorphic to I'. In fact, he shows that
the homotopy types of independence complexes of bipartite graphs are exactly the same as the
homotopy types of suspensions of compact polyhedra. This result had also been proved indepen-
dently by Nagel and Reiner [28, Proposition 6.2]. Two natural questions arise from Jonsson’s
work. Can Hj(I) have torsion for some triangle-free graph G? And furthermore, what are the
homotopy types of independence complexes of triangle-free graphs? In order to give a solution
to these problems we introduce the notion of star cluster of a simplex in a simplicial complex.
The star cluster SC (o) of a simplex o € K is just the union of the simplicial stars of the vertices
of 0. In general these subcomplexes can have non-trivial homotopy type but we will see that if
K is the independence complex of a graph, then the star cluster of every simplex is contractible
(Lemma 3.2). These fundamental blocks are used to answer both questions stated above. We
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prove that the homotopy types of complexes associated to triangle-free graphs also coincide with
those of suspensions. In fact we show the following stronger result.

Theorem 3.5. Let G be a graph such that there exists a vertex v € G which is contained in no
triangle. Then the independence complex of G has the homotopy type of a suspension. In particu-
lar, the independence complex of any triangle-free graph has the homotopy type of a suspension.

From this it is immediately deduced that H (/) is a free abelian group for every triangle-free
graph G.

We will see that fortunately, these results are just the first application of star clusters. The fact
of being contractible, makes these subcomplexes suitable for developing general tools to attack
problems regarding independence complexes. We use star clusters to give alternative and shorter
proofs of various known results. Many of the original proofs use Forman’s discrete Morse theory
or the Nerve Lemma [6, Theorem 10.6]. Star clusters provide a much more basic technique to
deal with these and other problems.

The matching complex M, of K, and the chessboard complex M,, ,,, appear in many different
contexts in mathematics. The chessboard complex was first considered by Garst [23] in connec-
tion with Tits coset complexes, and M,, was studied by Bouc in [8] where he worked with Quillen
complexes. The homotopy type of these complexes is not completely determined although sharp
bounds for the connectivity are known [7,29]. M, and M, ,, are some examples of the larger
class of matching complexes. This class is in turn contained in the class of independence com-
plexes of claw-free graphs. In [18] Engstrom gives a bound for the connectivity of independence
complexes of claw-free graphs in terms of the number of vertices and the maximum degree.
In Section 5 of this article we use star clusters to prove a sharp bound for the connectivity of
matching complexes and independence complexes of claw-free graphs which depends only on
the dimension of the complexes.

Theorem 5.5. Let G be a claw-free graph. Then I is [W]-connected

From this result one can deduce that the homology of those complexes is non-trivial only for
degrees contained in an interval of the form {[5], ..., n}. These techniques are also used to give
results of connectivity for general graphs.

The neighborhood complex N'(G) mentioned at the beginning is a simplicial complex that
one can associate to a given graph G. The simplices of N/ (G) are the sets of vertices that have
a common neighbor. One of the key points of Lovdsz’ celebrated proof of the Kneser conjec-
ture [26] is the following result which relates the chromatic number x (G) with the connectivity
v(N(G)) = sup{n | N(G) is n-connected} of the neighborhood complex.

Theorem 1.1 (Lovdsz). Let G be a graph. Then x(G) > v(N(G)) + 3.

In Section 6 we study the relationship between the chromatic number of a graph and the
topology of its independence complex. The strong Lusternik—Schnirelmann category Cat(X) of
a space X is one less that the minimum number of contractible subcomplexes which are needed to
cover some CW-complex homotopy equivalent to X. This homotopy invariant is not easy to deter-
mine in concrete examples. We prove the following result as another application of star clusters:

Theorem 6.2. Let G be a graph. Then x(G) > Cat(Ig) + 1.

In particular we obtain non-trivial bounds for the chromatic number of graphs whose inde-
pendence complexes are homotopy equivalent to a projective space or a torus. With a little more
work we will see that in fact there is a bound which is stronger than the one given by Theorem 6.2
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and involves a more subtle combinatorial invariant depending on local properties of the graph.
From this we will deduce that Cat(Ig) + 1 is a lower bound for the clique number w (G).

In the last section of the paper we introduce a construction which generalizes Csorba’s edge
subdivision. This is used to give an alternative proof of a recent result by Skwarski [30] regarding
planar graphs and to obtain new results about homotopy types of independence complexes of
graphs with bounded maximum degree.

2. Preliminaries

In this section we recall some basic results and introduce the notation that will be needed in
the rest of the article. All the graphs considered will be simple (undirected, loopless and with-
out parallel edges) and finite. All the simplicial complexes we work with are finite. Many times
we will use just the word “complex” to refer to these objects. We will not distinguish between a
simplicial complex and its geometric realization. If two complexes K and L are homotopy equiv-
alent, we will write K ~ L. The (non-reduced) suspension of a topological space X is denoted
as usual by Y'(X). The (simplicial) star stx (o) of a simplex o in a complex K is the subcom-
plex of simplices 7 such that T U o € K. The star of a simplex is always a cone and therefore
contractible. When there is no risk of confusion we will omit the subscripts in the notation.

Definition 2.1. We say that a complex K is clique if for each non-empty set of vertices o such
that {v, w} € K for every v, w € o, we have thato € K.

The clique complex of a graph G is a simplicial complex whose simplices are the cliques of
G, that is, the subsets of pairwise adjacent vertices of G. Then, a complex K is clique if and only
if it is the clique complex of some graph. In fact, if K is clique, it is the clique complex of its
1-skeleton K 1.

The independence complex I of a graph G is the simplicial complex whose simplices are the
independent subsets of vertices of G. In other words, it is the clique complex of the complemen-
tary graph G. Therefore a complex K is the independence complex of some graph if and only if
it is clique.

If o is an independent set in a graph G and v is a vertex of G such that o U {v} is also inde-
pendent, we will say that o can be extended to v. This is equivalent to saying that o € stj; (v)
when o is non-empty.

Remark 2.2. If a graph G is the disjoint union of two graphs H; and H», then its independence
complex I is the (simplicial) join Iy, * I y,. In particular if Hj is just a point, I is the simplicial
cone with base Iy, and if H; is an edge, I = X (In,).

Recall that if X, X, and Y are three topological spaces and the first two have the same ho-

motopy type, then X1 %Y >~ X, Y.
A basic result in topology, sometimes called gluing theorem, says that if

A—>Y
b
x -1~z
is a push-out of topological spaces, f is a homotopy equivalence and i is a closed cofibration

(A is a closed subspace of X and (X, A) has the homotopy extension property), then f is also
a homotopy equivalence. For a proof of this result the reader can see [12, 7.5.7 (Corollary 2)].
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Fig. 1. A 2-dimensional clique complex at the left and the star cluster of a simplex o at the right.

If K is a simplicial complex and L € K is a subcomplex, the inclusion L < K is a closed
cofibration. This is in fact the unique type of cofibrations that we will work with here. We can
use this result to prove that the quotient K /L of a complex K by a contractible subcomplex L
is homotopy equivalent to K or that the union of two contractible complexes is contractible if
the intersection is contractible. These applications will appear in some proofs below (Lemma 3.2
and Theorem 4.11). We will also use the gluing theorem in the proof of Lemma 3.4.

3. Star clusters and triangle-free graphs

Definition 3.1. Let o be a simplex of a simplicial complex K. We define the star cluster of o in
K as the subcomplex

SCk (o) = stk (v).

veo

Fig. 1 shows an example of a complex and the star cluster of a 2-simplex o.

Lemma 3.2. Let K be a clique complex. Let o be a simplex of K and let 0y, 01, ...,0r be a
collection of faces of o (r > 0). Then

O [ stx (v)

i=0veo;
is a contractible subcomplex of K. In particular, the star cluster of a simplex in a clique complex
is contractible.
Proof. By the clique property

() stk () = stk (00),

VEOo)

which is contractible. Then the statement is true for r = 0. Now assume that r is positive. In
order to prove that the union of the complexes

r—1

Ki={J sk, K= [)stk)

i=0 vEo; VEOT,

is contractible, it suffices to show that each of them and the intersection are. But

r—1
KiNkK, = U ﬂ stx (v),
i=0 veo;Uo,

so by induction all three complexes K1, K> and K1 N K7 are contractible, and then so is K1 U K>.



38 J.A. Barmak / Advances in Mathematics 241 (2013) 33-57

To deduce that the star cluster of a simplex ¢ in a clique complex is contractible, it suffices to
take the collection {o;} as the set of O-dimensional faces of . [

Remark 3.3. In fact it can be proved that star clusters in clique complexes are collapsible. More-
over, they are non-evasive: If K isclique, o € K andw € SCk (o) withw ¢ o, then Ikscy (o) (w)
= SCixg (w)(T) Where 7 is the face of o of vertices which belong to lkg (w). On the other hand
SCk (o) ~ w = SCk (o). The assertion follows by induction.

The following result is easy to prove. We give a proof for completeness.

Lemma 3.4. Let K be a complex and K1, Ky two contractible subcomplexes such that K =
KiUK,. Then K ~ Y(K| N K»).

Proof. Since K is contractible, the inclusion K1 N K» < Kj extends to a map f : v(K; N
K»>) — K from the cone v(K| N K7) where v is a vertex not in K. Analogously, there is a map
g : w(Kj N K7) - K, which extends the inclusion K1 N K> < K». Consider the following
diagram of push-outs

KN ch—i> v(K1 N K>») N_—>K1

R

w(K| N KL 2(K; N Ky) —— K; Uw(K; N Ky)

) ' |

K> KUK, =K.

Since v(Kj N K3) is a subcomplex of X' (K1 N K7) and f is a homotopy equivalence, by the
gluing theorem f : X(K; N K2) — K; U w(K; N K3) is a homotopy equivalence. The map
7j tw(K1 N Ky) — Ky Uw(K| N K>) is also an inclusion of a subcomplex into a complex
and since g is a homotopy equivalence, so is g. Then the composition g f gives a homotopy
equivalence from Y'(K; N Kp) to K. [J

Theorem 3.5. Let G be a graph such that there exists a vertex v € G which is contained in no
triangle. Then the independence complex of G has the homotopy type of a suspension. In particu-
lar, the independence complex of any triangle-free graph has the homotopy type of a suspension.

This theorem will follow directly from a more refined version that we state now.

Theorem 3.6. Let G be a graph and let v be a non-isolated vertex of G which is contained in
no triangle. Then Ng(v) is a simplex of I and

Ig ~= X (st(v) N SC(Ng (v))).

Proof. Since v is contained in no triangle, its neighbor set Ng(v) is independent. Moreover,
it is non-empty by hypothesis and then it is a simplex of /. By Lemma 3.2, SCj,; (Ng(v)) is
contractible.

If an independent set o of G cannot be extended to v, then one of its vertices w is adjacent
to v in G. Then o € st(w) € SC(Ng(v)). Therefore, st(v) U SC(Ng(v)) = I and the result
follows from Lemma 3.4. [
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Since the reduced homology group ﬁ,,(E (K)) is isomorphic to ﬁn_ 1(K), we deduce the
following

Corollary 3.7. If K is the independence complex of a triangle-free graph, H|(K) is a free
abelian group.

As a consequence of Theorem 3.5 we obtain that independence complexes of bipartite graphs
are suspensions, up to homotopy. That corollary was originally proved by Nagel and Reiner
[28, Proposition 6.2] and by Jonsson [24]. They also proved the converse of that result using the
Nerve Lemma in [28] and discrete Morse theory in [24]. Here we exhibit a short proof using star
clusters.

Theorem 3.8 (Nagel-Reiner, Jonsson). For any complex K there exists a bipartite graph G
whose independence complex I is homotopy equivalent to X (K).

Proof. Let V be the set of vertices of K and let W be the set of maximal simplices of K. Take
as in [24] the bipartite graph G with parts V and W and whose edges are the pairs (v, o) with v
a vertex of K and o a maximal simplex such that v ¢ o. Since V and W are independent, they
are simplices of I, and SC (W) is contractible by Lemma 3.2. Clearly V N SC(W) = K and by
Lemma34,Ic =VUSC(W) =~ X(VNSCW)) =X(K). O

Corollary 3.9. The following homotopy classes of finite complexes coincide:
(1) Independence complexes of bipartite graphs.
(2) Independence complexes of triangle-free graphs.
(3) Independence complexes of graphs that have a vertex contained in no triangle.
(4) Suspensions of finite complexes.

Given a finitely generated abelian group I" and an integer n > 1, there exists a finite simplicial
complex K such that H,(K) is isomorphic to I'. Then for any n > 2 and any finitely generated
abelian group I, there exist a bipartite graph G such that H,(Ig) is isomorphic to I'. In
particular, the homology groups of independence complexes of triangle-free graphs can have
torsion with exception of degrees 0 and 1.

In Section 6 we will prove a stronger version of Theorem 3.5 (see Corollary 6.10).

4. Further applications

Although the notion of star cluster was introduced to be used in the proof of Theorem 3.5,
we will see that it is useful to attack many problems related to independence complexes. In this
section we will show some new results and we will also give alternative and shorter proofs to
known results.

4.1. A criterion for contractibility

Example 4.1. Let n > 3 be an odd integer. Let G be the graph with vertex set Z,, x {a, b, ¢} and
with edge set {((i,a), (i,D)) | i € Z,} U{((i,b),(,c)) |i € Z,}U{(G,a), i+ 1,a))]|ie
ZpyyU{((, ), (i +1,¢) | i € Z,} (see Fig. 2).

The set 0 = {(i,b) | i € Z,} is independent and its star cluster coincides with the whole
independence complex. Suppose that a simplex T of I is not in SC(o). Then it contains a
neighbor of (i, b) for every i € Z,. However, (i, b) and (j, ) do not have common neighbors if
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Fig. 2. The graph described above for n = 5.

i # j and therefore 7 has at least n vertices contained in the two n-gons {((i,a), (i +1,a)) | i €
Zpyy U{(G,c), @ +1,¢)) | i €Z,}. Butthen one of the two n-gons has % vertices of 7, and
thus, two of them are adjacent in G. This contradicts the independence of t.

The idea of the example above can be generalized in the following

Remark 4.2. Let vg, vy, ..., v, be a set of vertices in a graph G such that the distance between
any two of them is at least 3. Suppose that for every collection of vertices {wg, w1, ..., w,} with
w; € N¢(v;) for every i, we have that there are two of them w;, w;, which are adjacent. Then
I is contractible.

4.2. Cycles
In [25], Kozlov proved the following result

Theorem 4.3 (Kozlov). Let C,, be the cycle graph on n > 3 elements with vertex set Z,, and
edges {(i,i +1) : i € Zpy}. Then the independence complex of C, is homotopy equivalent to
Sk=Vifn =3k £ 1 and to S*1 v S*=1 if n = 3k.

Proof. Assume n > 6. Since the vertex v = n — 2 is contained in no triangle, by Theorem 3.6,
Ic, = Y (st(v) N SC(N(v))).

The simplices of st(v) N SC(N(v)) are the independent sets o of C,, which can be extended to
n — 2 and simultaneously can be extended to n — 1 or to n — 3. Therefore, st(v) N SC(N(v))
is isomorphic to I¢, ,. Thus, Ic, is homotopy equivalent to the suspension of I¢, ,. The result
then follows by an inductive argument analyzing the cases n = 3,4 and 5, which are easy to
check. O

In the proof we have used that suspensions of homotopy equivalent spaces have the same ho-
motopy type. This is easy to verify. We also used that for (pointed) complexes K and L, 2'(K VL)
~ Y(K) Vv XY (L). The corresponding result for reduced suspensions is trivial, and that reduced
and non-reduced suspensions are homotopy equivalent follows from our first application of the
gluing theorem.

The inductive step in this proof is a particular case of Proposition 4.9 below.

4.3. Forests

A forest is a graph which contains no cycles. In [17, Corollary 6.1], Ehrenborg and Hetyei
prove that the independence complex of a forest is contractible or homotopy equivalent to a
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Fig. 3. The graph W.

sphere. This follows from a more technical result with a long proof. In a later work [19, Proposi-
tion 3.3], it is proved in a very elegant way something stronger, that such complexes are collapsi-
ble or that they collapse to the boundary of a cross-polytope. This proof relies in the following
key observation [19, Lemma 3.2]:

Lemma 4.4 (Engstrom). Let v, w be two different vertices of a graph G. If Ng(v) € Ng(w),
then I collapses to Ig . w, the subcomplex of simplices not containing w.

In fact the collapse of the statement is a strong collapse in the sense of [5]. Thus, independence
complexes of forests are strong collapsible or have the strong homotopy type of the boundary of
a cross-polytope (see [5] for definitions). The reader interested in generalizations of Lemma 4.4
is suggested to look into [9,13]. In these papers it is proved that the simple homotopy type of
the clique complex of a graph is preserved under the deletion of some vertices or edges. These
results can be easily translated to independence complexes.

Here we present a different approach to Ehrenborg and Hetyei’s result using star clusters.

Theorem 4.5 (Ehrenborg—Hetyei). The independence complex of a forest is contractible or
homotopy equivalent to a sphere.

Proof. Let G be a forest. If G is discrete, then its independence complex is a simplex or the
empty set, which are contractible and a sphere, respectively. Assume then that G is not discrete.
Let v be a leaf of G and let w be its unique neighbor. By Theorem 3.6, Ig ~ X (st(v) N st(w)).
The simplices of the complex st(v) Nst(w) are exactly those independent sets of G which can be
extended to both v and w. Therefore st(v) Nst(w) is the independence complex of the subgraph H
of G induced by the vertices different from w and any of its neighbors. By an inductive argument,
Iy has the homotopy type of a point or a sphere, and then, so does Ig. [

At this point it may seem that the complex st(v) N SC (Ng (v)) in the statement of Theorem 3.6
is always the independence complex of some graph. However this is not the case.

Consider the graph W of seven vertices of Fig. 3. The vertex v is contained in no triangle. The
subcomplex st(v) N SC(Ng (v)) is isomorphic to the boundary of a 2-simplex and in particular
it is not clique.

Remark 4.6. In fact, if w is a non-isolated vertex of a graph G which is contained in no triangle
and st(w) N SC(Ng(w)) is not clique, there exists an induced subgraph H of G which is isomor-
phic to W via an isomorphism H — W that maps w into v (if ¢ is a minimal non-face of st(w)
N SC(Ng(w)), for each w’ € o there is some w” € Ng(w) which is adjacent to w’ and not
adjacent to the other vertices of o). Moreover st(w) N SC(Ng(w)) is the independence complex
of the subgraph of G induced by the vertices u ¢ Ng(w) such that Ng(w) € Ng (u) if there is
no induced path of G of length 4 whose middle vertex is w.

This remark can be used for instance to prove the following result. The idea of the proof is
more interesting than the result itself.
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Proposition 4.7. If G is a triangle-free graph with no induced paths of length 4, then Ig is
homotopy equivalent to a sphere or it is contractible.

4.4. Edge subdivision and Alexander dual

Recall that the Alexander dual K* of a simplicial complex K (K not a simplex) with vertex
set V is a simplicial complex whose simplices are the proper subsets o of V such that V~o ¢ K.

Let G be a graph. We denote by G’ the subdivision of G obtained when we subdivide each
edge of G inserting a new vertex on it.

The relationship between the independence complex of a graph and the one of its subdivision
is given by the following theorem of Csorba [15, Theorem 6].

Theorem 4.8 (Csorba). Let G be a non-discrete graph. Then Ig is homotopy equivalent to
2((g)").

Csorba’s proof relies on the Nerve Lemma [6, Theorem 10.6], but we exhibit here an alterna-
tive simpler proof using the tools developed so far.

Proof. Let V be the set of vertices of G. Subdividing G adds a new set of vertices W, with one
element v, for each edge (a, b) of G. Thus, the graph G’ is bipartite with parts V and W. By
Lemma 3.4,

I = V USC(W) =~ 5(V N SC(W)).

The simplices of V N SC(W) are the subsets o of V which can be extended to some vertex of
W. However, o C V can be extended to v,, € W if and only if a,b & o. Hence, 0 C V is
in V.N SC(W) if and only if there exists an edge (a, b) of G such that a,b € V \ o, which is
equivalent to saying that V ~\ o is not independent or, in other words, 0 C Vand V N\ o ¢ Ig.
Thus V N SC(W) = (Ig)* and the theorem follows. [

Another result dealing with subdivisions of edges is the following [15, Theorem 11]

Proposition 4.9 (Csorba). Let G be a graph and e an edge of G. Let H be the graph obtained
from G by subdividing the edge e in four parts. Then Iy >~ Y (Ig).

Proof. The idea is the same as in Theorem 4.3. When the edge e is replaced by a path of length
4, three new vertices appear. The vertex v in the middle of this path is contained in no triangle
and st(v) N SC(Ng(v)) is isomorphic to Ig. [

From this result it is easy to compute inductively the homotopy types of independence com-
plexes of paths (cf. [25, Proposition 4.6]). If G is a path, I is contractible or homotopy equiva-
lent to a sphere.

4.5. Homology groups of relations

One result that is impossible not to mention when working with complexes associated to
bipartite graphs, is Dowker’s Theorem [16]. Given finite sets X, Y and a relation R € X x Y,
two complexes are considered. The simplices of the complex Ky are the non-empty subsets
of X which are related to a same element of Y. Symmetrically, the complex Ky is defined. A
theorem of C.H. Dowker [16, Theorem 1], states that Kx and Ky have isomorphic homology
and cohomology groups. In fact they are homotopy equivalent, and moreover, simple homotopy
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equivalent (see [4]). We deduce Dowker’s Theorem from our ideas of star clusters applied to
bipartite graphs.

Theorem 4.10 (Dowker). Let R be a relation between two finite sets X and Y. Then H, (K x) is
isomorphic to H,(Ky) and H" (K ) is isomorphic to H"(Ky) for everyn > 0.

Proof. We may assume that X and Y are non-empty. Let G be the bipartite graph with parts X
and Y and where x € X isadjacentto y € Y if x isnotrelated to y. By Lemma 3.4, X' (XNSC(Y))
~ g >~ Y(SC(X)NY).On the other hand it is clear that X N SC(Y) = Kx and SC(X)NY =
Ky. Therefore X'(Kx) and X' (Ky) are homotopy equivalent and in particular have isomorphic
homology and cohomology groups. Then, the latter is true also for Ky and Ky. [

4.6. Kneser graph

Letn > 1 and k > 0 be two integer numbers. The vertices of the Kneser graph K G,  are
the n-subsets of the integer interval {1, ..., 2n + k} and the edges are given by pairs of disjoint
subsets. The famous Kneser conjecture formulated in 1955 by Martin Kneser states that the chro-
matic number of the graph K G, « is k 4 2. For twenty three years this problem remained open,
until Laszlé6 Lovasz managed to give finally a proof. His argument is based on a topological
result known as the Lusternik—Schnirelmann Theorem. This result which involves coverings of
the sphere is equivalent to the Borsuk—Ulam Theorem. As mentioned in the introduction, Lovész
used the neighborhood complex to turn the combinatorial data of the graph into the topological
setting. A key step in his proof is Theorem 1.1 in Section 1, which establishes a relationship
between connectivity properties of the neighborhood complex and chromatic properties of the
graph. We will now study not neighborhood complexes but the topology of independence com-
plexes of some Kneser graphs. We will explicitly compute the homotopy type of these complexes
in the particular case n = 2. In this section we will not derive any results in connection with
chromatic numbers of graphs. However, the relationship between colorability and independence
complexes will be analyzed in Section 6 of the paper, where the names of L. Lusternik and L.
Schnirelmann will reappear in connection to the LS-category, which is also related to coverings
of spaces.

The so called stable Kneser graph SG i is the subgraph of K G, induced by the stable
subsets, i.e. subsets containing no consecutive elements (nor 1 and 2n + k). In [11], Braun
studies the homotopy type of the independence complex of the stable Kneser graph for n = 2 and
proves that for k > 4, Isi,, is homotopy equivalent to a wedge of 2-dimensional spheres (see
[11, Theorem 1.4]). His proof uses discrete Morse theory. Here we show a similar result for the
non-stable case.

Theorem 4.11. Let k > 0. Then the independence complex of K Gk is homotopy equivalent to
a wedge of (k;ﬁ) spheres of dimension two.

Proof. The simplices of the independence complex 7 are given by sets of pairwise intersecting
2-subsets of [k +4]. Thus, the maximal simplices of I are of the form o, = {{a, b}}p-, for some
1 <a < k+4orof the form 7, 5 » = {{a, b}, {a, c}, {b, c}} for some distinct a, b, ¢ € [k + 4].
The star cluster SC(o7) contains all the simplices o, because o, € st({l,a}) € SC(oy) for
every a # 1. Moreover 1145 € SC(o1) for any a, b. However if a, b, ¢ are different from
1, the simplex 74,5, is not in SC(o1), although its boundary is. Therefore, I is obtained from
SC (o1) attaching 2-cells, one for each triple {a, b, c} of elements different from 1. The quotient
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1/SC(oy) is a wedge of (kf) spheres of dimension two, and since SC (o) is contractible, it is
homotopy equivalentto /. [

4.7. Square grids

Let n, m be two non-negative integers. The graph G (n, m) is defined as follows. The vertices
are the points (x, y) of the plane with integer coordinates such that —x < y < x and x — m
< y < —x + n. Two vertices are adjacent if their distance is 1. Similarly, the vertices of the
graph H (n, m) are the points of Z2 such that —x — 1 < y<xandx -—-m<y<-x+4+n-—1,
and again adjacent vertices correspond to points at distance 1. It is proved in [10, Theorem 6]
that the homotopy type of the complexes IG(,m) and Iy, m) is the one of a sphere or a point.
The original proof uses discrete Morse theory although there is a very simple argument based
on Lemma 4.4. This nice idea by Cuki¢ and Engstrom is explained in the final remark of [10].
Just as another example we give an alternative proof of this result which is an application of star
clusters. ~

Given non-negative integers n, m and k, consider the subgraph G (n, m, k) of G (n, m) induced
by the points which satisfy y > —x +k or y < x —3.1Itis easy to see that G(n m,0) = G(n,m)
and that G(n, m + 3, k) is isomorphic to H(n,m) if k > n. Analogously, H(n m, k) is the
subgraph of H (n, m) induced by the points satisfying y > —x +k — 1 or y < x — 3. Therefore
H(n,m,0) = H(n,m) and H(n, m + 3, k) is isomorphic to G (n, m) if k > n.

Lemma 4.12. If k < n and m # 0, then

1Gnmi = 2UG 0 mit3)

and

Tgmmp = 2U G mis3)-

Proof. The condition k < n and m # 0 ensures that the vertex v = ([’%1], [%]) is in 5(11,
m, k) and it is not isolated (see Fig. 4). Since it is contained in no triangle, I@(n,m,k) ~
X (st(v) N SC(Ng(n’m’k)(v))).

The vertex v is not the middle vertex of an induced path of length 4, therefore by Remark 4.6,
st(v) N SC(N, Gm. k)(v)) is the independence complex of the subgraph induced by the vertices
w which are not adjacent to v and such that there is some neighbor of v which is not adjacent
to w. This graph is exactly G(n,m,k + 3). The assertion for H follows from a similar
argument. [

Proposition 4.13. Let n,m, k > 0. Then I, ,, 1, is contractible or homotopy equivalent to a
sphere. The same is true for I, , i)

Proof. We prove both statements simultaneously by induction, first in m and then in n — k. If
m = 0, G(n, m, k) is discrete. If it is non-empty, its independence complex is a simplex and
otherwise it is a —1 dimensional sphere. Assume then that m > 0. [fn —k <0, then G(n, m, k)
is empty when m = 1, 2 and it is isomorphic to H(n,m — 3) = H(n,m — 3,0) when m > 3.
Thus the case n — k < 0 follows by induction. Suppose then that k < n.

If k = n, the vertex v = (["“] [ ]) € G(n m, k) is isolated, and then the independence
complex is contractible. We can assume that m, n and k satisfy the hypothesis of Lemma 4.12.
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(4.3)
o—9

(6,0)

°
(3-3)

Fig. 4. The graph 5(7, 6, 3). The complex st(v) N SC(N(v)) is the independence complex of the subgraph 5(7, 6, 6)
induced by the round vertices.

Fig. 5. A poset with a chain that intersects all the maximal chains.

Therefore I, 1) = 2/ (IG 4y m x+3)) @nd by induction, it has the homotopy type of a sphere or
a point.
Similarly the same is true for / Hnm.) |

In particular when k = 0 we obtain the result of [10].

Corollary 4.14 (Bousquet-Mélou—Linusson—Nevo). The independence complexes of the graphs
G (n, m) and H (n, m) are contractible or homotopy equivalent to a sphere.

4.8. Order complexes

The order complex of a finite poset P is the simplicial complex whose simplices are the non-
empty chains of P. Order complexes are clique and therefore it is possible to use our results to
study them.

Example 4.15. The order complex of the poset whose Hasse diagram is in Fig. 5 is contractible.
The points of the diagonal constitute a chain ¢ which intersects any maximal chain of the poset.
In other words, the order complex of P is the star cluster of o.

The following result summarizes the idea of the example.

Proposition 4.16. Let P be a finite poset. Suppose that there exists a chain of P which intersects
any maximal chain. Then the order complex of P is contractible.
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In fact it can be proved that in the hypothesis of the proposition, the poset P is dismantlable, or
equivalently that the order complex is strong collapsible, which is something stronger (see [5]).
If a minimal point xo € P is not in the chain ¢ of the statement and it is covered by at least
two points of P, then one of them, x1, is not in c. Recursively, if we have constructed a chain
Xo < X1 < --- < x; not intersecting ¢ and x; is covered by at least two elements, one of them,
Xi+1,1s not in c. By hypothesis x; 4| cannot be maximal, so at some step we obtain a point x,, & ¢
covered by a unique element of P. By induction P \ {x,} is dismantlable and then so is P.

Order complexes appear in problems of different areas of mathematics, like algebraic topol-
ogy, combinatorics, group theory and discrete geometry. They allow to establish the relationship
between the homotopy theory of simplicial complexes and of finite topological spaces [3].

5. Matching complexes and claw-free graphs

The paper [17], that we have already discussed, concludes with a question about the homotopy
type of a polyhedron called Stirling complex.

Definition 5.1. Let n > 2. The vertices of the Stirling complex Stir, are the pairs (i, j) with
1 <i < j < n. The simplices are given by sets of vertices which pairwise differ in the first and
in the second coordinate.

The number of k-dimensional simplices of Stir, is the Stirling number of second kind S(n,
n —k — 1) (see [31, Proposition 2.4.2]). In our attempt to attack this problem, we will prove a
general result on the connectivity of a certain class of well-known complexes.

Given a graph G, its matching complex M (G) is defined as the simplicial complex whose
simplices are the non-trivial matchings of G, that is, the non-empty collections of edges which
are pairwise non-adjacent. It is easy to see that matching complexes are independence complexes
of graphs. Precisely, M(G) = Ig(G), where €(G) denotes the edge graph (or line graph) of G.
The vertices of €(G) are the edges of G and its edges are given by adjacent edges of G. In the last
twenty years, two (classes of) matching complexes were particularly studied. One is the matching
complex M, of the complete graph K. The other, known as the chessboard complex M,, ,,, is the
matching complex of the complete bipartite graph K, . The vertices of the chessboard complex
M, ,» can be considered as the squares of an n x m chessboard and its simplices as the sets of
squares which can be occupied by rooks in such a way that no rook attacks another. Note that
the Stirling complex Stir, also is a matching complex and it is closely related to M, ,,,. The
difference is that in Stir, the rooks are only allowed to be above the diagonal.

Some of the most important results obtained in relation to the homotopy of the spaces M,
and M, ,, are about connectivity and existence of torsion in homology groups. Bounds for the
connectivity were proved by Bjorner, Loviasz, Vreéica, Zivaljevi¢ [7] and Bouc [8].

Theorem 5.2 (Bjérner—Lovdsz—Vrecica—Zivaljevié, Bouc). Let n, m be positive integers. Then
M, is ["T*S]—connected and My, , is min{n — 2, m — 2, [%]}-connected.

It was conjectured in [7] that the bounds given by this result are in fact optimal. Some cases
were first established by Bouc [8] but the complete result was obtained by Shareshian and
Wachs [29].

Recall that a graph is called claw-free if it has no induced subgraph isomorphic to the complete
bipartite graph K 3. Note that the edge graph €(G) is always claw-free since among three edges
of G adjacent to a fourth edge there must be two which are also adjacent. Therefore, any matching
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Fig. 6. A claw-free graph whose independence complex is not a matching complex.

complex M (G) is the independence complex of a claw-free graph. The converse does not hold
as the next example shows.

Example 5.3. The graph G of Fig. 6 is claw-free but it is not isomorphic to €(H) for any graph
H. Therefore I is the independence complex of a claw-free graph which is not isomorphic to
any matching complex, for if I were isomorphic to M (H) = I¢u), then the complementary
graphs of their 1-skeletons, G and €(H) should be isomorphic graphs.

In this section we will prove a general bound for the connectivity of a matching complex. In
fact we will show a stronger result, regarding independence complexes of claw-free graphs. In
particular we will apply our results to study the Stirling complex. We will also use these ideas to
prove two results on the connectivity of independence complexes of general graphs.

The following result is due to Engstrom [18, Theorem 3.2].

Theorem 5.4 (Engstrom). Let G be a claw-free graph with n vertices and maximum degree m.

Then I is [32”:;12 — 1]-connected.

The maximum degree of a graph is the maximum degree of a vertex of the graph. This im-
proves a similar result for general graphs which says that I is [% — 1]-connected (see [19]).
More results about connectivity and homotopy of independence complexes of graphs with
bounded maximum degree will be given in Section 7. The main result of this section is the fol-
lowing bound for the connectivity of independence complexes of claw-free graphs which does
not depend on the maximum degree m.

dim(/g)=2
2

Theorem 5.5. Let G be a claw-free graph. Then Ig is [ -connected.

Proof. Let o be an independent set of G of maximum cardinality d + 1 = dim(/g) + 1. Suppose
that T € I and r = dim(7) < [%]. Since G is claw-free and o is independent, every vertex of
T is adjacent to at most two vertices of o. Since 2(r+1) < d < d+1, there is a vertex of o which
is not adjacent to any vertex of t. Therefore the independent set T can be extended to some vertex
of o, which means that t € SC (o). Since SC (o) contains the [%]—skeleton of Ig, the relative
homotopy groups i (I, SC (o)) are trivial for k < [%]. The result now follows from the con-
tractibility of SC (o) and the long exact sequence of homotopy groups of the pair (I, SC(0)),

o= m(SC(0)) > mp(lg) = mp(Ilg, SC(o)) —> ---. O

This bound and Theorem 5.4 give different information. In same cases the number [ n—1 1]

- 3m+2
is smaller than [%] and in others it is bigger.

Since the homology of a complex is trivial for degrees greater than its dimension and since
the homology groups of degree less than or equal to k are trivial for k-connected complexes by
the Hurewicz Theorem, from Theorem 5.5 we deduce the following
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Fig. 7. A claw-free graph G such that ﬁk(l(;) # Oonly fork =1andk = 2.

Corollary 5.6. Let G be a claw-free graph. Then there exists an integer n such that the support
of the reduced homology of I lies in the interval {[%], ..., n}

Example 5.7. The independence complex of the claw-free graph in Fig. 7 is homotopy equiva-
lent to S' v §2. Therefore, the support of its reduced homology is exactly the interval {[%], Lo 2)

Corollary 5.8. If K is a matching complex, then it is [dim(#

is an integer n such that the support of ﬁ(K) liesin {[5],...,n}.

1-connected. In particular there

Since the dimension of Stir, is n — 2, we deduce the following

Corollary 5.9. The Stirling complex Stir, is [%]-connected.

Analogous results could be deduced for the complexes M,, and chessboard complexes. Corol-
lary 5.8 says that M}, is

%} _ [% ([2]-1- 2)] _ B [ = 6]} - [ . 6} connected,

and that M,, ,, is

[dim(M,, ) —2 n—73
> = 5 -connected

if n < m. Therefore the bounds given by Theorem 5.5 and Corollary 5.8 are not optimal in these
particular examples in contrast with the bounds of Theorem 5.2. However, in the general case,
Theorem 5.5 and Corollary 5.8 give the best possible bound in terms of the dimension of the
complex:

Proposition 5.10. For every non-negative integer n there exists a matching complex K (and
therefore an independence complex of a claw-free graph) such that K is n-dimensional and it is
not [ 5]-connected.

Proof. Given k > 1 consider the graph A; which is a disjoint union of k squares and the graph
By, which is the disjoint union of two adjacent edges and k — 1 squares (see Fig. 8).

The complex M (Ay) is the independence complex of E(A;) = Ag, which is the join of the
independence complexes of the connected components of Ag. Since the independence complex
of a square is homotopy equivalent to SO M(Ap) ~ (89* = $¥=1 is not (k — 1)-connected.
On the other hand dim(M (Ax)) = 2k — 1. Therefore we have constructed a matching complex
which is (2k — 1)-dimensional but not [Lz_l] = (k — 1)-connected.

Similarly, M (By) is the independence complex of &(By), which is the disjoint union of an
edge and k — 1 squares. Therefore M (By) ~ X ((§°)**=D) = §¥=1 Thus M(By) is 2k — 2)-
dimensional but not [%] = (k — 1)-connected.

Clearly the numbers 2k — 1 and 2k — 2 take all the non-negative integer values fork > 1. 0O
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Ak

Fig. 8. Graphs Ay and By.

A difficult problem seems to be the classification of all the homotopy types of matchings
complexes and of independence complexes of claw-free graphs or, at least to see whether these
two sets differ.

Theorem 5.5 can be deduced from the following result.

Proposition 5.11. If o is an independent set of a graph G such that every independent set T of
G with at most r vertices can be extended to some vertex of o, then Ig is (r — 1)-connected.

The proof can be made as for Theorem 5.5 using the long exact sequence of homotopy groups
of the pair (Ig, SC(0)) (or collapsing SC (o) and using cellular approximation). This result
appears mentioned in [1] where the notion of bi-independent domination number of a graph is
introduced. In [1] other general bounds for the connectivity of independence complexes are stated
in connection with different notions of domination numbers. The proof of this particular result is
really simple using star clusters. A useful application of Proposition 5.11 to general graphs is the
next

Corollary 5.12. Let G be a graph. Let S be a subset of vertices of G which satisfies that the
distance between any two elements of S is at least 3. Then Ig is (#S — 2)-connected.

The last result of this section relates the connectivity of the independence complex of a general
graph G with the diameter of G.

Corollary 5.13. Let G be a connected graph of diameter n. Then I is [5 — 1]-connected.

Proof. Let v, w € G such that d(v, w) = n and let v = vg, vy, ..., v, = w be apathin G. Then
the set S = {vp, v3, ..., v3[%]} satisfies the hypothesis of Corollary 5.12. [

6. Chromatic number, clique number and strong Lusternik—Schnirelmann category

In this section we present a new approach to study the relationship between the chromatic
number of a graph, its clique number, and the topology of the associated complex. Recall that the
clique number w(G) of a graph G is the maximum number of vertices in a complete subgraph
(clique) of G. The category of a topological space is a numerical homotopy invariant that was
introduced by L. Lusternik and L. Schnirelmann in the thirties. This deeply studied notion is
closely related to other well known concepts such as the cup length (the maximum number of
positive degree elements in the cohomology ring whose product is non-trivial); the minimum
number of critical points of a real valued map, when the space is a manifold; the homotopical
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Fig. 9. The graph G in Example 6.4.

dimension of the space. The category of a space in general is not easy to determine. The reader
is referred to [14] for results on this invariant.

Definition 6.1. Let X be a topological space. The strong (Lusternik—Schnirelmann) category
Cat(X) of X is the minimum integer number n such that there exists a CW-complex ¥ homotopy
equivalent to X which can be covered by n + 1 contractible subcomplexes. If there is not such an
integer, we say that Cat(X) is infinite.

For instance, a space has strong category O if and only if it is contractible. Lemma 3.4 is
still true if we consider not necessarily finite CW-complexes and therefore a space has strong
category less than or equal to 1 if and only if it has the homotopy type of a suspension. The
2-dimensional torus S' x S! is an example of space with strong category equal to 2. There are
spaces with arbitrarily large strong category. The following results establish a direct relationship
between the chromatic number of a graph and the strong category of its independence complex.

Theorem 6.2. Let G be a graph. Then x(G) > Cat(Ig) + 1.

Proof. Let n = x(G). Then the set of vertices of G can be partitioned into n independent sets.
The star clusters of these sets cover Ig. [

We will see that Cat(/g) is in fact a lower bound for a local parameter which can be much
smaller than the chromatic number. Note for instance that if G has one isolated vertex, then I
is contractible and therefore its strong category is O.

In the next, Ng(v) denotes the subgraph of G induced by the neighbors of v.

Theorem 6.3. Let v be a vertex in a graph G. Then
Cat(lg) = x(Ng(v)).

Proof. If n = x(Ng(v)), then the set of neighbors of v can be partitioned into n independent
sets o1, 02, ..., 0,. The contractible subcomplexes st(v), SC(o1), SC(02), ..., SC(0,) cover
I since an independent set which cannot be extended to v must contain a neighbor of v. Thus,
Cat(lg) <n. 0O

Example 6.4. The chromatic number of the graph G of Fig. 9 is 4. However the bound of Theo-
rem 6.2 is not sharp since there is a vertex v such that y (Ng(v)) = 2 and then, by Theorem 6.3,
Cat(Ig) < 2. In this case, the equality holds.

Unfortunately, Cat(/g) can be very far from x(Ng(v)). Consider the Kneser graph G =
K Gy i for k > 2. Then the subgraph induced by the neighbors of any vertex v = {a, b} is isomor-
phic to KG3 x—>. By Lovdsz—Kneser’s Theorem, x (Ng(v)) = k. On the other hand Cat(Ig) = 1
since I is homotopy equivalent to a wedge of 2-dimensional spheres by Theorem 4.11.
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Example 6.5. It is well known that the cup-length of a space is a lower bound for the strong
category. The cup length of the complex projective space CPP" equals its complex dimension 7.
In particular we deduce from Theorem 6.2 that if G is a graph whose independence complex is
homotopy equivalent to CPP”, then x (G) > n + 1.

The cup length of the n-dimensional torus 7" is also n. Therefore if Ig >~ T", x(G) > n+1.

Corollary 6.6. If G is a planar graph, then Cat(Ig) < 3.

Proof. This follows immediately from the Four Color Theorem and Theorem 6.2, but we give a
proof using more basic results. Since G is planar, there exists a vertex v of degree less than or
equal to five. Again, by the planarity of G, the subgraph Ng(v) induced by the neighbors of v
does not contain a clique of four vertices. Then it is easy to check that x (Ng(v)) < 3 and the
result follows from Theorem 6.3. [

Theorem 6.3 can be used to obtain lower bounds for the chromatic number of a graph G, since
for any graph H containing a vertex v such that Ny (v) is isomorphic to G, we have x (G) >
Cat(I/y). However, we show that these bounds do not improve the one given by Theorem 6.2.

Proposition 6.7. Let G and H be two graphs such that there exists a vertex v of H with Ny (v)
isomorphic to G. Then Cat(Ig) < Cat(lg) + 1.

Proof. Let G' = Ny (v). Let K = I and let L be the full subcomplex of Iy spanned by the
vertices which are different from v and all its neighbors. We consider / realized in an euclidean
space. The points of the space Iy which are not in st(v) are convex combinations (1 — #)k + ¢/
of a point k of K and a point/ of L. Let

A
|

~ 1
K:{(1—t)k~|—tl€IH|keK,l€Land0§t_ }
~ 1
L={(1—t)k+tleIH|keK,leLand§§t§1}.

A linear homotopy shows that K is a strong deformation retract of K. Analogously, L is a strong
deformation retract of L and therefore, st(v) = st(v) U L is a strong deformation retract of
st(v) U L. The spaces K and L are regular CW-complexes, moreover they are polytopal com-
plexes, and their intersection K N L is a subcomplex of both.

Let n = Cat(Ig), then there exists a CW-complex homotopy equivalent to /g which can be
covered by n + 1 contractible subcomplexes. By [27, Theorem 2], there is a simplicial complex
R =~ I which can be covered by n + 1 contractible subcomplexes Ry, Ry, ..., R,. We do not
need R to be finite.

Letg : a(E ) — R be a simplicial homotopy equivalence where ot(kv ) denotes a subdivision
of K which is simplicial. The map ¢ can be obtained by taking any simplicial approximation
of a homotopy equivalence (K )’ — R, where (K)' is the barycentric subdivision of the regular
CW-complex K. _ o o

The subdivision « (K ) induces a subdivision « (K NL) in KNL. Since the map ¢ = ‘P|a(1?ri) :
a(E N Z) — R is simplicial, v (R)isa subcomplex ofa(I? N Z) for every 0 < i < n. The
mapping cylinders My, of the restrictions ¥; = ¥y, —1(g,y : ¥~ (R;) — R; constitute a cover
of My by contractible subcomplexes. This idea of the construction of the mapping cylinder My,
and its cover is essentially contained in Ganea’s proof of [22, Proposition 2.1]. If R was just a
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CW-complex and ¢ : KNL — R acellular map, then ¥ ~!(R;) would not be a subcomplex of
KNLin general. This is why we need to work in the simplicial setting.

Letg : R — oe(K) be a homotopy inverse of ¢ and let H : a(K N L) x I — a(K) be
a homotopy such that Hig = gei and Hi; = i, where i : a(K N L) — «a(K) denotes the
canonical inclusion. By the universal property of the pushout

RN —2a®nD)x1

a(K)

there exists a map F : My — a(K ) such that Fiy = H and Fjy = g. We will identify the
space a(K N L) with yiy(@(K N L)) C My Therefore F|, gn7y = ly&nr)- Moreover, F is
a homotopy equivalence since Fjo = g where jo and g are homotopy equivalences. Since the
inclusions of (K N L) in both My, and a(K) are cofibrations, we obtain by [12, 7.2.8] that F is
a homotopy equivalence relative to o:(K N L)

Since L U st(v) = st(v) is contractible, the inclusion a(K N L) < LU st(v) extends to a
map f C(a(K N L)) AT st(v) from the cone ofa(K N L) and again, since the inclusions
of a(K N L) in both LU st(v) and C (a(K N L)) are cofibrations, f is a homotopy equivalence

relative to (K N L). We conclude that F' and f together give a homotopy equivalence
My |J C@®nl)—a®) |J Lustw) =1y
a(RND) a(KNL)
Since the simplicial complex My Ua( R C (a(K N L)) is covered by n + 2 contractible sub-
complexes My,, My, , ..., My, and C(a(K N L)) Cat(Ilg) <n+1. O
Consider the numerical graph invariant @ defined by @(¥) = 0, @(G) = miny,eg @(Ng(v))
+ 1if G # 0. It is a direct consequence of Proposition 6.7 that Cat(Ig) < @(G) — 1. Also

it is obvious that @(G) is a lower bound for the clique number @ (G). Therefore we have the
following refinement of Theorem 6.2:

Corollary 6.8. Let G be a graph. Then
Cat(lg) + 1 < @(G) < w(G) < x(G).

There is an equivalent definition for @ given by the following

Proposition 6.9. The number &(G) is the smallest cardinality of a maximal clique in G.

Proof. Let G # () be a graph and let n be the smallest cardinality of a maximal clique. There
exists v € G such that @(G) = @(Ng(v)) + 1. By induction N (v) has a maximal clique of
@(Ng (v)) vertices and then G has a maximal clique with @(Ng (v)) + 1 = @(G) vertices. Thus
n < @(G). Take a maximal clique of G with n vertices. If w is a vertex of that clique, Ng (w)
has a maximal clique with n — 1 vertices. By induction n — 1 > @(Ng(w)) > @(G) — 1. Then
o(G)=n. O
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In particular we deduce the following stronger version of Theorem 3.5.

Corollary 6.10. Let G be a graph such that there is an edge of G which is contained in no
triangle. Then the independence complex of G has the homotopy type of a suspension.

Proof. By hypothesis @(G) < 2. Therefore Cat(/g) < @(G) — 1 < 1, which shows that I has
the homotopy type of a suspension. [

In some sense Theorem 6.2 provides the best lower bound for the chromatic number in terms
of the strong category of the independence complex. For instance the equality holds for all the
complete graphs. We conclude this section with two questions. An affirmative answer would say
that the bounds given in Theorems 6.2 and 6.3 are sharp in a different sense.

Question 1. Is it true that for any finite simplicial complex K there exists a graph G such that
I is homotopy equivalent to K and x (G) = Cat(K) + 1?

Question 2. Is it true that for any finite simplicial complex K there exists a graph G with a vertex
v such that /5 is homotopy equivalent to K and x (Ng(v)) = Cat(K)?

Of course, a positive answer to the first question gives an affirmative answer to the second.
If x(G) = Cat(K) + 1, then for any vertex v € G, x(Ng(v)) < x(G) — 1 = Cat(K), and by
Theorem 6.3 the equality holds. Question 1 has a positive answer if Cat(K) < 1 in view of
Theorem 3.8. In particular this is true for any sphere and wedges of spheres.

7. Suspensions of graphs

We introduce a construction that will allow us to generalize some results mentioned in the
previous sections and a new result of Skwarski [30] on independence complexes of planar graphs.
We will also use this to prove some results on graphs with bounded maximum degree.

Definition 7.1. Let G be a graph and H C G a subgraph. The suspension of G over H is a graph
S(G, H) whose vertices are those of G, a new vertex v, and a new vertex vy, for each maximal
independent set of vertices M in the graph H. The edges of S(G, H) are those edges of G which
are not edges of H, the pairs (v, vys) and the pairs (w, vys) with w a vertex of H which is not
contained in M.

Proposition 7.2. Let H be a subgraph of a graph G. Then the independence complex of S(G, H)
is homotopy equivalent to X (1g).

Proof. Since v is contained in no triangle, by Theorem 3.6 it is enough to prove that sty ,,, (V)N
SC(NsG,m)(v)) = Ig. Let o € st(v) N SC(N(v)) and let w, w’ € o. It is clear that w, w’ € G.
Suppose that w, w’ € H. The fact that {w, w’} € SC(N(v)) says that there exists a maximal
independent set M of H such that {w, w'} € M and, in particular, (w, w’) is not an edge of H.
Since o is independent in S(G, H), (w, w’) is not an edge of G either. Since this is true for any
pair of vertices w, w’ € o, 0 € Ig. Conversely, if o # @ is an independent set of vertices of G,
it is also independent in S(G, H). Moreover o N H is independent in H and then there exists a
maximal independent set M of H containing o N H. Thus, o can be extended to vy,. Therefore
o estv)NSC(N(w)). O
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Fig. 10. In the graph at the left two edges intersect. At the right, a suspension of the graph embedded in the plane.

If the subgraph H is discrete, then S(G, H) is just the disjoint union of G and an edge. If H is
an edge, then S(G, H) is the subdivision described in Proposition 4.9, which consists of replac-
ing the edge by a path of length 4. If H = G then S(G, H) is a bipartite graph. Taking a graph
G such that I is the barycentric subdivision of a complex K, this provides an alternative proof
of Theorem 3.8 which says that for any complex K there exists a bipartite graph whose indepen-
dence complex is homotopy equivalent to X'(K). An interesting application of Proposition 7.2 is
the following alternative proof of a result recently proved by Skwarski [30].

Theorem 7.3 (Skwarski). Let K be a complex. Then there exists a planar graph whose indepen-
dence complex is homotopy equivalent to an iterated suspension of K.

Proof. By Proposition 7.2 it is enough to show that for any graph G there is a sequence G =
Go, G1, ..., G, of graphs in which G;4 is the suspension of G; over some subgraph H;, and
such that G, is planar. We will show that this is possible taking the subgraphs H; € G; as just
one edge or two non-adjacent edges.

We consider the graph G drawn in the plane, in such a way that the vertices are in general
position, all the edges are straight lines and no three of them are concurrent.

Suppose that only two edges (wo, w1), (2o, z1) of G intersect. In this case we take the sub-
graph H as the union of these edges. The suspension S(G, H) is a planar graph. Indeed, it is
possible to find an embedding of S(G, H) in the plane keeping all the vertices of G fixed, choos-
ing v as the intersection of (wg, w1) and (zo, z1), and each of the other four new vertices vy, 2}
(i, j € Z) in the triangle w; +1vz ;11 closely enough to v (see Fig. 10).

Now suppose that in the general case G has an arbitrary number of intersecting edges. First
we subdivide the edges, making suspensions over one edge at the time, in such a way that the
resulting graph is drawn in the plane with each edge intersecting at most one other edge. Then
we take suspensions one at the time over each pair of intersecting edges, following the idea of
the basic case described above. In each step the number of intersecting edges is reduced by one,
and finally a planar graph is obtained. [

This result says that the homology groups of planar graphs can be arbitrarily complicated. On
the other hand Corollary 6.6 asserts that not any homotopy type is realized as the independence
complex of a planar graph. It remains as an open problem the description of the homotopy types
of independence complexes of planar graphs.

Recall once again that the maximum degree of a graph G is the maximum number m among
all the degrees of the vertices of G. If m = 1, I is homotopy equivalent to a sphere or it is
contractible. If m < 2, G is a disjoint union of cycles and paths, and by the results of Section 4,
I is contractible or homotopy equivalent to a join of discrete spaces of cardinalities 2 or 3.
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Since for complexes K, L, we have that K « L ~ (K A L), where K A L denotes the smash
product between K and L, it is easy to see that the join between \/;_; S" and the discrete space
((k]—l) gn+l
=

of k points is homotopy equivalent to \/ . Therefore by an inductive argument it is

possible to prove the following

Proposition 7.4. A complex K is homotopy equivalent to the independence complex of a graph
with maximum degree m < 2 if and only if K is contractible or homotopy equivalent to \/lzr: 1 S"
for somen >r — 1.

The next case, for graphs with maximum degree less than or equal to 3 is already much more
complex. We will use suspensions of graphs to prove a result similar to Theorem 7.3 for that
class.

Theorem 7.5. Let K be a complex. Then there exists a graph of maximum degree not greater
than 3 whose independence complex is homotopy equivalent to an iterated suspension X" (K)
of K.

Proof. As in the proof of Theorem 7.3, we will see that for any graph G there exists a sequence
of graphs, each of which is the suspension of the previous one over some subgraph, that starts
in G and ends in a graph with maximum degree less than or equal to 3. We make the proof by
induction (in the sum of the degrees of the vertices v € G such that deg(v) > 3).

Suppose that G contains a vertex w of degree greater than 3. Let w; and w; be two different
neighbors of w. Consider the subgraph H which consists of the vertices w, wy, wy and the edges
(w, wy), (w, wp). The suspension S(G, H) contains the vertices of G and three new vertices
V, V() and vy, w,). The degrees in S(G, H) of the vertices different from w, v, vy and viy, w,)
are the same as in G. But degs(G, n)(w) = degg(w) — 1, deg(v) = 2, deg(vyy)) = 3 and
deg(v{y,,w,})) = 2. By induction there exists a sequence as we want starting in S(G, H), and
therefore there is one starting in G. [J

As we mentioned in Section 5, the independence complex of a graph with n vertices and
maximum degree m is [% — 1]-connected. The ideas used in that section lead us to a similar
result but involving the dimension of the complex instead of the number of vertices.
dim(Ig)

m

Proposition 7.6. Let G be a graph of maximum degree m. Then Ig is [ — 1]-connected.

Proof. Let o be an independent set of G of maximum cardinality d+1 = dim(/g)+ 1. If another
independent set T has at most [%] vertices, it can be extended to some vertex of o. The result
follows then from Proposition 5.11.

We can deduce then that if G has maximum degree m, the support of the homology of Ig
lies in an interval of the form {[-*], ..., n}. Therefore, the independence complexes of graphs
with maximum degree 3 do not cover all the homotopy types of complexes. Moreover, the
previous remark gives a lower bound for the number r in the statement of Theorem 7.5. If
ﬁi (K) #0 # ﬁj(K) for some i < j, then r has to be greater than j7§73. If X' (K) ~ I for
G of maximum degree at most 3, then {i +r, j +r} C supp(ﬁ(E’(K))) C {[%], ...,n} for
some n. In particular i +r > [5] > 5 — 1, j +r < n, and hence r > 1_32’_3, as we claimed.

Given a class C of graphs with bounded maximum degree, the homotopy types of the
independence complexes of elements of C is a proper subset of the set of homotopy types of
complexes. In other words, we have the following
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Corollary 7.7. Given a positive integer n, there exists a complex K such that for any graph G
with Ig ~ K, the maximum degree of G is strictly greater than n.

Example 7.8. If G is such that I ~ S' v S0, then there exists a vertex v € G of degree at
least 6. Since Hyo(S! v $1%) = Z # 0, dim(/g) > 10 and then I is [L2 — 1]-connected, where

m is the maximum degree of G. Since S v §10 is not simply connected, then [%O —1] < 1and
therefore m > 6.
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